
2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

51

Focused Web Crawler with Page Change Detection Policy

 Swati Mali,
VJTI, Mumbai

B.B. Meshram
VJTI, Mumbai

ABSTRACT
Focused crawlers aim to search only the subset of the web related

to a specific topic, and offer a potential solution to the problem.

The major problem is how to retrieve the maximal set of relevant

and quality pages. In this paper, We propose an architecture that

concentrates more over page selection policy and page revisit

policy The three-step algorithm for page refreshment serves the

purpose. The first layer contributes to decision of page relevance

using two methods. The second layer checks for whether the

structure of a web page has been changed or not, the text content

has been altered or whether an image is changed. Also a minor

variation to the method of prioritizing URLs on the basis of

forward link count has been discussed to accommodate the

purpose of frequency of update. And finally, the third layer helps

to update the URL repository.

General Terms
Algorithms, Performance, Design

Keywords

Focused crawler, page change detection, crawler policies, crawler

database.

1. INTRODUCTION
A crawler is an automated script, which independently browses

the World Wide Web. It starts with a seed URL and then follows

the links on each page in a Breadth First or a Depth First method

[1].

A Web Crawler searches through all the Web Servers to find

information about a particular topic. However, searching all the

Web Servers and the pages, are not realistic, because of the

growth of the Web and their refresh rates. To traverse the Web

quickly and entirely is an expensive, unrealistic goal because of

the required hardware and network resources [1, 2].

Focused Crawling is designed to traverse a subset of the Web to

gather documents on a specific topic and addresses the above

problem [3]. The major problem of the focused crawler is how to

identify the promising links that lead to target documents, and

avoid off-topic searches. To address this problem we not only use

content of web page to improve page relevance but also uses link

structure to improve the coverage of a specific topic. Also, it is no

longer limited to simple HTML pages, but it supports a whole

variety of pages used to display dynamic content and ever

changing layouts.

The outline of the paper is as follows: Section 2 provides a more

detailed overview of focused crawling. Section 3 describes the

architecture and implementation of our approach. Comparisons

with existing focused crawling algorithms on some test crawls are

as shown in Section 4, and we conclude by discussing extensions

and implications in Section 5.

2. LITERATURE REVIEW
A focused crawler is a program used for searching

information related to some interested topics from the Internet.

The main property of focused crawling is that the crawler does not

need to collect all web pages, but selects and retrieves relevant

pages only[1] [2] [3].

The design of a good crawler presents many challenges.

Externally, the crawler must avoid overloading Web sites or

network links as it goes about its business. Internally, the crawler

must deal with huge volumes of data. Unless it has unlimited

computing resources and unlimited time, it must carefully decide

what URLs to scan and in what order. The crawler must also

decide how frequently to revisit pages it has already seen, in order

to keep its crawler informed of changes on the Web.

2.1 General Architecture
Roughly, a crawler starts with the URL for an initial page P0.

It retrieves P0, extracts any URLs in it, and adds them to a queue

of URLs to be scanned. Then the crawler gets URLs from the

queue (in some order), and repeats the process. Every page that is

scanned is given to a crawler that saves the pages, creates an

index for the pages, or summarizes or analyzes the content of the

pages[1] [3] [5].

Design of basic crawler is as shown in fig 1.

2.2 Crawling Policies
The behavior of a Web crawler is the outcome of a

combination of policies [1] [3]:

A selection policy : This states which pages to download As

a crawler always downloads just a fraction of the Web pages, it is

highly desirable that the downloaded fraction contains the most

relevant pages and not just a random sample of the Web.

Designing a good selection policy has an added difficulty: it must

work with partial information, as the complete set of Web pages is

not known during crawling.

A re-visit policy : This states when to check for changes to

the pages. The Web has a very dynamic nature, and crawling a

fraction of the Web can take a really long time, usually measured

in weeks or months. By the time a Web crawler has finished its

crawl, many events could have happened. These events can

include creations, updates, and deletions. From the search engine's

point of view, there is a cost associated with not detecting an

event, and thus having an outdated copy of a resource.

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

52

Fig 1: General architecture of web crawler [1]

2.2.1 A politeness policy: This states how to avoid

overloading Web sites. Needless to say, if a single

crawler were performing multiple requests per second

and/or downloading large files, a server would have a

hard time keeping up with requests from multiple

crawlers.

2.2.2 A parallelization policy: This states how to coordinate

distributed Web crawlers. A parallel crawler is a

crawler that runs multiple processes in parallel. The

goal is to maximize the download rate while

minimizing the overhead from parallelization and to

avoid repeated downloads of the same page. To avoid

downloading the same page more than once, the

crawling system requires a policy for assigning the

new URLs discovered during the crawling process, as

two different crawling processes can find the same

URL.

2.3 Design issues of web crawler
Different types of crawlers and the different techniques

used make one to consider different issues while designing and

implementing them[1] [3] [5] [6].

2.3.1 Restricting followed links: A crawler may only want

to seek out particular pages and avoid all other rest of

the types. In order to make this happen, the designer

needs to decide over restriction on the followed links.

This strategy may cause numerous Web resources to

be unintentionally skipped

2.3.2 Path-ascending crawling: Some crawlers intend to

download as many resources as possible from a

particular web site. So path-ascending crawler was

introduced that would ascend to every path in each

URL that it intends to crawl.

2.3.3 Focused crawling:The importance of a page for a

crawler can also be expressed as a function of the

similarity of a page to a given query. Web crawlers

that attempt to download pages that are similar to each

other are called focused crawler or topical crawlers [1]

[2] [3] [7] [8].

2.3.4 Crawling the Deep Web: A vast amount of Web pages

lies in the deep or invisible Web. These pages are

typically only accessible by submitting queries to a

database, and regular crawlers are unable to find these

pages if there are no links that point to them.

2.4 Web Crawler Architecture

The basic architecture of the crawler is tailored to meet

the different crawler policies. Some of them are focused crawler,

intelligent crawler, deep web crawler, parallel crawler and so on.

A focused crawler is a program used for searching

information related to some interested topics from the Internet[1]

[2].

This identifies the most promising links that lead to

target documents, and avoid off topic searches. In addition, it does

not need to collect all web pages, but selects and retrieves relevant

pages only. It starts with a topic vector, and for each URL , the

relevance is computed for the contribution of web page in the

selected domain. If it is found to be important, it gets added to the

URL list else, gets discarded.

The general architecture of the focused crawler is as

shown in fig 2.

3. PROPOSED WEB CRAWLER
The proposed architecture is divided into three layers

a. page relevance computation

b. determination of page change

c. update the URL repository

3.1 Proposed Architecture
The focused crawler that concentrates more on revisit policy

starts with an URL as seed. It doesn’t download the page, instead

it parses to extract the URLs and words of interest into that page.

Frequency of related words and number of forward and backward

links to the page combinely decide the importance of the page

being parsed. If the page is really important and not visited yet, it

will be sent to the next layer. Otherwise, it will be checked for

http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/MIME_type
http://en.wikipedia.org/wiki/MIME_type
http://en.wikipedia.org/wiki/MIME_type
http://en.wikipedia.org/wiki/Deep_Web

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

53

changes since the last visit. The changes will be considered in

three categories : change in page structure, change in page

contents and change in the images contained in the page. This

property of the crawler helps to minimize the work of re- links

Fig 2: General Architecture of focused crawler[2]

Receive URL

Parse Page

Compute relevance

PValue Method

relevance score method

Calculate string1, string2

Discard URL

Extract content

Calculate text code

Calculate IVal

Compare parameters Download page

Send to

repository
Extract URLs

Add to URL

list

Change in Text
Change in Page structure

Change in image

Determine Change in page

Relevance

computation layer

Determine Change
in page

Update Repository

Fig 3: Proposed architecture of focused crawler with revisit policy

downloading the same pages again. In the last layer, it

considers certain parameters and checks importance of the page in

comparison with other pages in repository. If the level of

relevance crosses predefined threshold, it will be downloaded,

will be extracted and added to the repository. The page will

simply be discarded otherwise.

3.2 IMPLEMENTATION FOCUSED WEB

CRAWLER WITH REVISIT POLICY

Layer 1: Page relevance computation

 We propose two fold method to evaluate the importance

of the relevant page with pagerank.

3.1.1 Relevance computation with topic vector

Step 1: Topic vector: T is a topic and denotes the topic

vector.

T = [(k1,w1), (k2,w2), (k3,w3),…. (kl,wl),]

Where j k denotes j-th keyword or phrase of topic T. wj is the

weight of the j-th keyword or phrase, denotes importance of the j-

th keyword or phrase in the topic T, and Σwj = 1 , 1 ≤ j ≤ l . l = |T|

, is the amount of keyword or phrase of topic T.

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

54

Step 2: Contribution of web page as domain

The formula

 Uk = (|UKk|/|UD|)*Wk

denotes the contribution of D for k-th keyword or phrase of

topic T.

Where |UKk| is the frequency that the k-th keyword or phrase

Kk of the topic T appears in the web D, |UD| is the amount of

effective words in D. wk is the weight of the k-th keyword or

phrase, denotes importance of the k-th keyword or phrase in the

topic T, Σwj = 1, 1≤ j ≤ l .

Step 3: Relevance-score. The relevance-score represents

the relevance-score of a page. The relevance-score of the page D

is defined as follows

Sim (T,D) = ∑ k=1..l uk

Where l = |T| , it is the length of T, uk is the contribution of D for

k-th keyword or phrase of topic T, and it is defined in step 2.

3.1.2 Relevance computation with link analysis Of

Forward Links And Backward Links Of

The Page [6]

a) The parameter used to classify URLs in the above

categories is the difference of the backward link

count (BkLK) and the forward link count (FwdLK)

as

Pvalue = FwdLK – BkLK

b) This difference will be known as the Pvalue (priority

value) of that page. A URL having the difference

between FwdLK and BkLK as the highest would be

given the highest Pvalue.

c) To calculate the values of FwdLK, the server would

parse the page without downloading it for just to

return the number of links in it.

d) To estimate the number of BkLK, the server would

refer to the existing database built by crawler

machines to calculate how many pages refer to this

page from the point of view of current database.

The crawler will sort the list of URLs received from the

repository according to descending order of Pvalue. It will then

send this sorted list of URLs in order to maintain quality of

crawling. This method is particularly useful as it gives weightage

to current database and builds a quality database of indexed web

pages even when the focus is on crawling the entire web. It works

well if the database is in growing or in the maturity stage. In

addition, the method would work well for broken links; as such, a

URL will have a zero value for FwdLK. Even if it is referenced

from pages in the database, Pvalue will always be negative

resulting in low page priority [6].

Layer 2: Determine change in page (Revisit policy)[6]

 Change in text contents.

 Change in image (Hyperlinked or as a part of the

page).

Example web page:

Not all the above steps are necessary to be taken care of. A

parameter is compared only if the preceding parameter returns no

change.

The following changes are of importance when considering

changes in a web page[1][2][6]

 Change in page structure.

 Changes in Page Structure

This method tries to capture the changes in the structure of pages.

Here by structure we mean how are the different texts and images

and other objects displayed on that page. All these objects are

designed using HTML or other formatting tools. These tools use

tags to define their characteristics and actual appearance on the

page. Any change in structure will lead to rearrangement of tags.

The algorithm creates two strings using the tags of that page [6].

 The first string will store the characters appearing at

first position in the tag for all tags in the order they

appear.

 The second string stores the character at the last position

in a tag for all tags in the order they appear.

 In case the tag contains only one letter, it will be

repeated as it is, in the second string.

The proposed method offers the following advantages

 At the time of page updating, the crawler only needs to

check these two strings to determine a change.

 If the String1 itself returns a changed value, there is no

need for comparison with the second string or with

other change parameters for that matter.

 This method will work for different pages with different

and varied formatting styles accurately capturing their

structures at a given point of time.

 For most cases, a check with the first string should

suffice.

Changes in Text Content
This is the next step to be carried out if the first level of

determining changes does not find any changes. It may be the case

For example consider the following page

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

55

String1: [hhtbhppp] String2: [ldey1ppp]

that the structure of the page remains intact but there is

some definite change in the actual text content of the page. This

change will not be captured by the above method.

In this method, we assign a code to all text content

appearing in a page. At the time of page updating, only

comparison will be made to the text code of that page and if any

change in that value is detected for the actual copy on the web as

compared to the local copy, the page will be refreshed or re-

crawled [6].

The formula for text coding = ∑ (frequency) * ASCIIsymbol /

Distinct symbol count

For example, consider the following partial text content

March 26, 2007 issue - The stereotype of the "dumbjock" has

never sounded right to Charles Hillman. A jock himself, he plays

hockey four times a week, but when he isn't body-checking his

opponents on the ice, he's giving his mind a comparable workout

in his neuroscience and kinesiology lab at the University of

Illinois. Nearly every semester in his classroom, he says, students

on the women's cross-country team set the curve on his exams. So

recently he started wondering if there was a vital and overlooked

link between brawn and brains—if long hours at the gym could

somehow build up not just muscles, but minds.

The ASCII sum of characters: 56652

Total character count: 619

Distinct character count: 43

Therefore, the code for the text will be: 1317.488403

Even minute changes in above text, results in significant changes

in parameters as given below.

March 26, 2007 issue - The stereotype of the "dumb jock" has

never sounded right to Charles Hillman. A jock himself, he used

to play hockey five times a week, but when he isn't body-checking

his opponents on the ice, he's giving his mind a comparable

workout in his neuroscience and kinesiology lab at the University

of Florida. Nearly every semester in his classroom, he says,

students on the women's cross-country team set the curve on his

exams. So recently he started wondering if there was a vital and

overlooked link between brawn and brains—if long hours at the

gym could somehow build up not just muscles, but minds.

The parameters are as follows

The ASCII sum of characters: 57113

Total character count: 625

Distinct character count: 43

Therefore, the code for the text will be: 1328.209351

The proposed method offers the following advantages,

 It gives a unique code for all text contents on a

particular page.

 Even a minute change of addition or deletion of a

single blank space is recorded significantly and with

pin point accuracy by this code.

 The use of coding of text system eliminates the need

for word-by-word parsing and comparison of each

word at the time of page updating.

 Only the code of that page is compared, there is no

issue of storing the whole page as an indexed structure,
hence saving on large amount of storage.

 ASCII values have been used in the formula because

each symbol has a distinct representation in ASCII

table leading to no ambiguity.

Change in Image

While the above two methods may suffice while dealing with
normal pages which uses tags for formatting their structure and

text contents, they will fail for image links. In this section, we
propose a method to derive a code for images to determine

whether they have undergone a change or not. Ideally, a change in
a link to an image hyperlink will be reflected in the label of the

hyperlink for that image and the same will be depicted by the
formula proposed in step 2. However, in case the text does not

change but the image is replaced, it will still be left undetected[6].

Therefore, we propose the following method for image

change detection

 The first step requires the image to be scaled to a

standard size of n*n. Here n is of the form 2x, where

value of x may vary from 4 to 6.

 Convert the image to two tone and read as an n*n array

with each value being either zero or one.

 For each row of n elements, we will take 24 elements at

a time and convert it to a 4 digit hexadecimal number.

This will result in each row being converted to n/24

elements from n elements with each element being a 4

digit hexadecimal number.

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

56

 After doing the same operation on all the rows, we

obtain an n/24* n/24 array.

 Simply, by computing the determinant of such an array,

we can reduce the image to as single value (Ival).

 For each image, an Ival will be stored and at time of

page updating, the crawler machines without actual

download of image will calculate this Ival.

Layer 3: Repository Update Policy

If the page passes the relevancy criteria and if it has not been

downloaded yet, or if the was downloaded earlier, and has also

passed the change in page test, then

 Download the page

 Extract the URLs in that

 Add them to URL list

4. CONCLUSION

The architecture that has been proposed by us in this paper has the

following distinct advantages:

 The centralized database of downloaded URLs reduces

the dependency of the system.

 The architecture is easily scalable.

 The algorithm for checking page update parameters is

designed to show even the smallest of change in a web

page and leaves no ambiguity as the values stored for

the parameters are distinct for small details as well. This

helps the client crawler to clearly determine whether or

not a page has changed and saves memory and

bandwidth overheads.

 The twofold method for checking the relevancy results

in download and retrieval of only most relevant pages.

Potential work related to the parallel crawler that may be added

on, is the adaptation of this model for building a full fledged

search engine.

5. FOCUSED CRAWLER WITH REVISIT POLICY VS OTHER ARCHITECTURES

 Feature General Focused

Web Crawler

URL Based

Crawler

Intelligent Crawler focused Crawler with Revisit

Policy

Relevance

computation

considers only page

relevance

considers URL

regular

expression to

decide if the

page is topic

specific

page with least the

distance of least no of

clicks is given the

higher priority

considers page relevance with

forward and backward link

analysis; can be calculated even

without downloading the actual

pages

Revisit

policy

no specific policy is

defined

no specific

policy is

defined

no specific policy is

defined

determines the changes in image,

page and text; computes the

difference with original page and

decides weather to visit again

depending on specific parameters

Repository

update

pages with better

relevance factor are

saved, rest are

discarded

Positive pages

from the given

set and

derivative sites

are added to

data store

pages with minimum

distance are kept for

further use, rejected

otherwise

pages with highest relevance, pages

with major difference in values

than traversed last and the URLS

extracted from those pages are

added to repository

Harvest ratio too many search

insignificant results

poor harvest

ratio

significant harvest

ratio

significant harvest ratio

Accuracy Poor Moderate accuracy improves

with learning

multiple methods of calculating

relevance gives more accurate

results

Change

detection

No No Slow simple methods to detect change in

page structure, and content

Broken links doesn’t recognize

broken links

doesn’t

recognize

broken links

performance improves

with learning

detects broken links

Performance

improvement

with learning

doesn’t learn learns; but

learning rate is

very slow

learns and improves

better

doesn’t need to learn

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

57

6. REFERENCES
[1] Bidoki, Yazdani et el, “FICA: A fast intelligent

crawling algorithm”, Web Intelligence,

IEEE/ACM/WIC International conference on

Intelligent agent technology, Pages 635-641, 2007.

[2] Cui Xiaoqing Yan Chun,” An evolutionary relevance

calculation measure in topic crawler ” CCCM 2009,

ISECS International Colloquium on Computing,

Communication, Control, and Management, 267 –

270, aug 2009

[3] Junghoo Cho, Hector Garcia-Molina, Lawrence

Page, |Efficient crawling through URL ordering”, 7th

International WWW Conference , April 14-18,

Brisbane, 1998.

[4] Mukhopadhyay et al, “A New Approach to Design

Domain Specific Ontology Based Web Crawler”,

ICIT 2007, 10th International Conference on

Information Technology, 289 - 291, Dec. 2007

[5] Peisu, Ke et el, “A Framework of deep web crawler”,

27th Chinese Proceedings of the 27th Chinese Control

Conference, Pages 582-586, July 16-18, 2008.

[6] www.wikipedia.org/web_crawler , accessed last May

12, 2010.

[7] Yadav, Sharma et el, “Architecture for parallel

crawling and algorithm for change detection in web

pages”, 10th International Conference on Information

Technology, Pages 258-264, ICIT 2007.

[8] Yuan, Yin et el, “Improvement of pagerank for

focused crawler”, 8th ACIS International Conference

on Software Engineering, Artificial Intelligence,

Networking, and Parallel/Distributed Computing,

Pages 797-802, SNPD 2007.

[9] Zheng, Chen, “HAWK: a Focused crawler with

content and link analysis”, E-business engineering,

2008, ICEBE’08, IEEE international conference,

pages 677-680, Oct 2008.

[10] Zheng, Zhaou ET el, “URL Rule based focused

crawler”, E-business engineering, ICEBE’08, IEEE

international conference, Oct 2008, pages 147-154,

2008.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4418246

