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Analysis of PAPR of Real and Complex OFDM systems 
 

 
  

ABSTRACT 

For wireless applications, Multicarrier transmission,  also 
known as orthogonal frequency division multiplexing 

(OFDM) or discrete  multitone (DMT),  based system can 
be of huge interest  because it provides greater immunity to 
multipath fading and impulse noise, and eliminates  the 
need  for equalizers,  while efficient hardware  
implementation can be realized using fast Fourier  
transform (FFT)  techniques with high-speed wireless 
communications and recent  advances in digital signal 
processing  technology 

 In this paper, two aims will be studied. First, it introduces  a  
practical  technique  for  evaluating  the  continuous-time PAPR 
of OFDM signals using complex modulation is presented. Using  
the  proposed  scheme,  it  is  observed that  the  TWO-times or 
more over sampled discrete-time  PAPR  is  a  good  
approximation  of the  continuous-time PAPR  even  for  
complex  OFDM  signals. Second, it introduces a conventional 
OFDM systems with the limitation of their behavior with peak-
to-average-power ratio  (PAPR). Computing   the continuous-

time PAPR of  OFDM  signals  is  computationally  challenging. 
It is shown that the instantaneous envelope power function (EPF) 
can be transformed into a linear sum of Chebyshev 
polynomials. Consequently, the roots of the derivative of EPF 
can be obtained by solving a polynomial.  The pioneering work 
of calculating PAPR of single carrier FDMA, multi-carrier 
BPSK-OFDM(Real-Valued Modulation) and  multi-carrier 
QPSK-OFDM(Complex Modulation)  is achieved.  

Keywords 

OFDM, DMT, peak-to-average-power ratio, EPF, multicarrier 
modulation, SC-FDMA, MC-BPSK, MC-QPSK 

1. INTRODUCTION 
One of the major challenges of Orthogonal Frequency 

Division Multiplexing (OFDM) is that the output signal may 

have a potentially very large peak-to-average power ratio 

(PAPR, also known as PAR). The resulting technical challenges, 

as well as PAPR-reduction techniques and related issues, have 

been widely studied and reported in the research literature [1],  

[2]. 

The most widely PAPR reduction techniques  known are based on 

amplitude clipping  or on some forms of coding [2]. However, 

comparative analysis of those methods could be a complex task, 

because the effects of those methods are usually analyzed using 

simulations or by simple case study, and no general analytical 

framework for such analysis exists. In this work, we try to 

characterize analytically the statistics of the PAPR problem in 

OFDM by considering the probability that the PAPR of an OFDM   

symbol will exceed a given level.  

Since the actual signal that enters the power amplifiers is a 
continuous-time signal, we ultimately want to reduce the 
PAPR of the continuous-time OFDM signal (we call this the 
“continuous-time PAPR” for convenience). However, the 
evaluation of the continuous-time PAPR is analytically non- 
trivial and computationally expensive. Therefore, most PAPR- 
reduction techniques focus on discrete-time approximations of 

the continuous-time PAPR. The discrete-time approximations 
result in what we call the “discrete-time PAPR”. 
The  central l imi t  theorem effect ive l y de cides   the  
envelope of the OFDM signal and it is shown that, effectively, the 
PAPR grows as 2 ln N and not linearly with N [7] ,where  N   is  
the total number of subcarriers .In [3], Tellambura investigated 
the differences between the continuous-time PAPR and 
discrete- time  PAPR.  To  do  this,  Tellambura introduced a  

practical scheme to compute the continuous-time PAPR, using 
Chebyshev  polynomials of  the  first kind.  The  scheme  was  
then used to obtain numerical results. Based on these results, a 
common rule-of-thumb that has since emerged in the OFDM 
research community is that the discrete-time PAPR with four- 
time over sampling is a sufficiently accurate approximation of 
the continuous-timePAPR [2]. 
Unfortunately, Tellambura’s  method  [3]  applies  only  to real-

valued modulation schemes like BPSK (and results were only  
presented  for  N=512  BPSK-OFDM, but not complex-valued 
schemes like  QPSK. To circumvent this  shortcoming, [4]  
extended Tellambura’s method to complex modulation schemes, 
using Chebyshev polynomials of both the first and second 
kinds. However, neither [3] nor [4] present any analysis of the 
error from using the discrete-time PAPR instead of 
continuous- time PAPR. Thus, even though the empirical 
distribution of the continuous-time PAPR and the four-time 

oversampled discrete-time PAPR may look close, there is no 
guarantee that the error is bounded. Some analytical bounds 
have been provided in [5]–[6]. However, due to the lack of 
computationally feasible methods to obtain the continuous-
time PAPR, [5]–[6] used the discrete-time PAPR to verify their 
continuous- time PAPR bounds.  
In this paper, we introduce a computational method that is 
more general than Tellambura’s [3], to find the peaks for 

OFDM  signals with  arbitrary complex-valued modulations. 
We express the instantaneous envelope power as a polynomial 
of powers of tan (πt). In contrast with [4], the proposed 
method only employs Chebyshev polynomials of the first kind. 
Also, because of the one-to-one relationship between tan(πt) 
and  t in0≤ t≤ 1,  the  new  method  does  not  require 
breaking the problem into two domains (0 ≤ t≤0.5and 0.5 
≤ t≤ 1) and carefully mapping the roots differently for each 

domain. Furthermore, comparisons are made between the 
distribution of the continuous-time PAPR obtained through the 
proposed method with the discrete-time PAPR obtained from 
over sampled signals and some of the analytical upper bounds 
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derived in [5]–[6].   

 

2.  ANALYTICAL MODEL 
The baseband continuous-time OFDM signal with N  carriers 
can be expressed as 

      
 

  
               

   

   

          

where {sn } are data symbols and t is normalized with 

respect to the OFDM symbol duration.With unity average 
power, the continuous-time PAPR, γc , is defined as 

γc = max |x(t)|
2 

.     …………             (2) 

γc measures the instantaneous envelope peak power of the 

baseband signal and represents the maximal PAPR. It is non- 
trivial to compute. Tellambura’s method [3] works only for 

the special case of real-valued modulation. 
As a computationally feasible alternative, the discrete-

time PAPR, γd , is often used instead of γc and defined as 

   
   

        
    

 ……..(3) 

where  

    
 

  
                      

   

   

 

 with L being the over sampling rate.  

Let Pa(t)=|x(t)|
2

.Without loss of generality, no 

assumptions are made on the modulation scheme used   to 
generate{Sn}. It can be easily shown that, 

        
 

 
                           

   

   

      

where βk and αk are defined as follows 

            
 

     

   

                      

and 

            
 

     

   

                       

with (·)∗denoting complex conjugation and R {·}and I {·} 

being the real and imaginary part of the enclosed quantity, 
respectively. 
Clearly, a necessary condition for Pa (t) to achieve  its 

maximum at t*,i.e  maxt Pa(t)=Pa(t
*), is  

 
      

  
           

Thus, a practical approach to computing Pa (t
∗) is to first   find 

the roots of ∂Pa(t)/∂t followed by comparing the  values of 

Pa(t) at only the real roots. Following the  approach of  [2],  

we  denote  by Tk (t)=cos(k cos−1t) the kth-order Chebyshev 

polynomial. For each k,  Tk (x) can  be expressed as  a  kth-

degree    polynomial in terms  of  x, where T
0 (x) =1,T1(x) =x  

andTk+1(x) =2xTk (x)−T
k−1 

(x) for  k  > 1.  Exploiting the 

equalities Tk (cos θ) = cos kθ and sin(θ) =    
 

 
   , we can 

rewrite (5) in terms of Chebyshev polynomials  as 

 

        
 

 
  

 
                

    
 

 
                 

   
 

  
             

Being different from the BPSK-OFDM systems considered 
in [3], the complex OFDM signal introduces the second term 
on the right hand side (R.H.S.) of (8), which presents a major 
challenge in obtaining exact γc values. 

3. PROPOSED METHOD 
All trigonometric functions of an angle θ may be expressed as 

rational expressions in terms of t= tan(θ/2)[8]. Let x = 

tan(πt).Substituting(1 – x2)/(1+ x2) for cos(2 t) and 2x/(1 + 

x2 ) for sin(2πt), and letting γk =cos(π/2k) and  δk = 

sin(π/2k), we have 

 

          
 

 
      

    

    
    

     
 

 
        

    

    
    

   

  2 1+ 2…………..(9) 

We  need  only  to  find  the  roots  of  ∂Pa (x)/∂x,  since ∂Pa 

(t)/∂t = ∂Pa (x)/∂x(π sec2 (πt)). Because Tk (x) is an 

order-k polynomial, the highest power of 1/(1+ x2 ) in(9) is N 

− 1. Hence we can remove the denominator and thus obtain a 

polynomial Q(x) by writing  

  

Q(x) is a polynomial of degree at most 2N  in x and all 

roots of ∂Pa (x)/∂x are also roots of Q(x). Thus, ∂Pa (x)/∂x 

has at most 2N  roots. Pa (x) can be routinely computed from 

(9) by expanding the Chebyshev polynomials, factoring out  

1/(1+x2)N ,and collecting terms. We may then 

evaluate the values of Pa (x) at the real roots, and the 

maximum is γc . 

4. NUMERICAL PROCEDURE 

SUMMARY 

The proposed method for computing the continuous-time 

PAPR for a given symbol set {sn } and number of sub 

carriers  N  is summarized as follows. 

1) Compute βk  and αk  for k = 1, 2, · · · , N −1according to 

(6) and (7); 

2) Compute Pa (x) according to (9), expanding  and collecting 

the coefficients of the different powers of x; 

3) Find the derivative of Pa (x);
 

4) Find the roots of Q(x), and hence of ∂Pa (x)/∂x       

using standard polynomial root finding algorithms; 

5) Keep only the real roots of Q(x); 
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6) Evaluate and compare the values of Pa (x) at the real 

roots, and obtain γc . 

Each step is straightforwardly handled by common 
mathematical software like Mathematica or Matlab. In our 

experiments, we have found that step 2 (expanding and 
simplifying Pa (x)), while conceptually easy, may dominate 

the computation time, especially for large N . In particular, 

expanding and simplifying Tk[γk(1−x2)/(1+x2) 

+ζk(2x)/(1+x2 )]
 
is a time consuming operation for  large  k.  

For  a  given  N ,pre-computing these terms helps to 

significantly reduce the computation time 

 

5.   RESULTS 

 In this section, we evaluate the proposed scheme using QPSK-OFDM 

system for  N=512 with different  sampling  rates 

 

 

Fig1. Simulation of PAPR of QPSK-OFDM (for different  

Sampling rate) 

 

Fig.1 shows  the  complementary cumulative distribution 
function  (CCDF)  of  γd  with  different  over sampling rates, 

L = 2, 4, 8. The CCDF of γc labeled as “continuous-time” is 

also plotted in Fig.1. As indicated in Fig.1, γ obtained from 
over sampled signals approaches γc  as L increases, and γd 
obtained with a over sampling rate greater than or equal to L  =  
2  is an accurate approximation of γc . These result agrees to 

some extend with those reported in [3], where real-valued 
OFDM signals were considered. 
 In Fig.2, we evaluate the performance of PAPR of  different 
real and complex modulation schemes used in OFDM systems 
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 Fig2. Comparison Of  PAPRs (with different modulation 

schemes) 

Fig.2 shows that  the  transmitted  SC-FDMA  signal with a single 

carrier  has the  probability of errors is very less as it is a 
continuous-time real valued modulation scheme . In fact, for a 
PAPR of ~7dB, we get a probability of error ~0.0001, as shown 
in the plot. 
For a  transmitted  BPSK-OFDM  signal  with multicarrier has    
the probability of errors is high for a slight increase in PAPR as 
it is a continuous-time real valued multicarrier modulation 

technique . In fact, for a PAPR of ~8dB, we get a probability of 
error ~0.01, as shown in the plot. 
 It  is  found f r om  the  transmitted  QPSK-OFDM  signal  that for 
a multi carrier ,effect on the probability of errors is very low  
for a slight increase in PAPR as it is a discrete-time real valued 
multicarrier modulation technique . In fact, for a PAPR of 
~10dB, we get a probability of error ~0.0001, as shown in the 
plot  

 

6.  CONCLUSION 
Using the proposed scheme, we have shown(Fig.1) for 
complex-valued modulations (like QPSK-OFDM) that the 
discrete-time PAPR obtained from TWO-times or more 
oversampled signals may be considered a sufficiently accurate 
approximation of the continuous-time PAPR.  

 

 We have also used our scheme to examine the empirical plots 
(Fig.2), where we can conclude that , the   discrete time PAPR 
of QPSK-OFDM  has the less probability of errors even with 
the higher order nonlinearity in the system. This means that the 
signal is highly resistant to clipping distortions caused by the 
power amplifier used in transmitting the signal. It also means 
that the signal can be purposely clipped by up to ~2dB so that 
the probability of errors in both the cases (BPSK & QPSK) be 

reduced allowing an increased transmitted power 
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