
 International Symposium on Devices MEMS, Intelligent Systems & Communication (ISDMISC) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

19

Cross Site Scripting: An Overview

Vishwajit S. Patil
Department of MCA

P.R.M.I.T.& R. Bandera, Amravati

Dr. G. R. Bamnote
Professor & Head,
Department of CSE

P.R.M.I.T.& R. Bandera, Amravati

Sanil S. Nair
Department of MCA

P.R.M.I.T.& R. Bandera, Amravati

ABSTRACT

This paper describes the security attacks and specially focuses
on Cross Site Scripting attacks. It further also discusses types
and several counter measures. The major problem faced by
the web application is the parameter manipulation, through
which the attackers are aiming to access the database.
Generally web applications maintain same structure and
value. In that, required information is being accessed by the

identical variables and keywords through web parameters.
Parameter manipulation is the major issue in the web
application used by the attacker to manipulate the parameter
being sent by the browser and executed by the server.

These vulnerabilities occur after the string gets

returned to the user's web browser by a susceptible web

application. Therefore, to prevent XSS vulnerabilities, it is

obligatory to prepare preventative measures to protect the

parsing processing in the web browser so that there is no

influence even from the effect of the string prepared by the

attacker.

1. INTRODUCTION
Web Application have become one of the most important
ways of information communication between various kinds of
users and service providers .the rapid growth of internet
resulted in feature rich, dynamic web application. This

increase resulted in the harmful impact of security flaws in
such applications. Vulnerabilities leading to compromise of
sensitive information are being reported continuously,
resulting in ever increasing financial damages.

Cross site scripting better known as XSS, is the most
widespread and harmful web application security issue. This

flaw occur whenever a web application takes data that
originated from user and sends it to a web browser without
first validating or encoding that content. This attack could
pose a serious security threat. If an attacker made a specially
crafted link and sent it to an unsuspecting victim and that
victim clicked the link and a piece of Java Script code could
be executed which would send the victim’s cookie away to a
CGI Script, obviously the attack could do some serious

damage [Tiwari et al., 2008]. Cross Site Scripting (XSS) is
one of the most common application layer attacks that hackers
use to sneak into web applications [Shanmugam &
Ponnavaikko, 2007]. XSS exploits flaws in web applications
which allow attackers to execute arbitrary code without the
authorization of the web application. This way, an unaware
user can be the victim of an identity theft, electronic fraud or
other modalities of cyber-crime [Galan, et al., 2010].

XSS is a web application level vulnerability that can be used
by the malicious third party to easily bypass the cookie
protection mechanism. Since the vulnerability resides at the
web server site, various server side solutions are proposed for
protecting users from the XSS attack. But most of them
usually degrade the server performance gracefully and cause
tremendous configuration overhead [Ismail et al., 2004].

Web Cohort’s Application Defense Center research report
states that 80% of the web applications are vulnerable to XSS

vulnerability. Application worm takes advantage of these XSS
vulnerabilities for self replication. The attack involves three
primary parties, the malevolent payload, the browser (victim)
and the vulnerable web pages in the web server. Web
developers are using the mishmash of web technologies to
provide better user know-how and to use the bandwidth
effectively. Implementation of such new technologies
increases the vulnerability of the web applications for XSS
attacks [Shanmugam & Ponnavaikko, 2007]. XSS

vulnerabilities appear because the structure of the HTML
document is modified by the effect of the string that contains
the malicious script prepared by an attacker. These
vulnerabilities occur after that string is returned to the user's
web browser by a susceptible web application. Therefore, to
prevent XSS vulnerabilities, it is obligatory to prepare
preventative measures to protect the parsing processing in the
web browser so that there is no influence even from the effect

of the string prepared by the attacker [Iha & Doi, 2009].
Websites that are susceptible to XSS attacks are running some
sort of dynamic content, dynamic content is anything that

changes due to user interaction or information stored in a
database about a user, things such as Forums, web based
email and places where information is submitted are
vulnerable to XSS attacks.

An HTML-injection attack can occur because the browser
fails to sanitize arbitrary input that will be displayed in its
History Search results. The attacker's malicious script will
have full access to the browsing history.

A cross-site scripting attack can occur via the 'q' parameter of
the history search feature.

An origin-validation attack can occur via the browser's
preferences configuration option when used in conjunction
with the history search feature. Attackers can exploit this issue
to, for example, configure a remote proxy or define arbitrary
handlers for mail events. An attacker may be able to obtain
sensitive information or execute arbitrary local programs

within the context of the browser [Shanmugam &
Ponnavaikko, 2007].

There are largely two distinct countermeasures for XSS
prevention in”real-life” web applications: Input filtering and
output sanitation. Input filtering describes the process of
validating all incoming data. ”Suspicious” input that might
contain a code injection payload is either rejected, encoded, or
the “offensive” parts are removed using so called “removal
filters”. The protection approach implemented by these filters

relies on removing predefined keywords, such as document.
Such filtering approaches are, however, error-prone due to
incomplete keyword-lists or non-recursive implementations. If
output sanitation is employed, certain characters, such as <, ",
or ’, are HTML encoded before user-supplied data is inserted
into the outgoing HTML. As long as all untrusted data
is”disarmed” this way, XSS can be prevented.

 International Symposium on Devices MEMS, Intelligent Systems & Communication (ISDMISC) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

20

Both of the above protections are known to frequently fail
[Johns et al., 2008] either through erroneous implementation,
or because they are not applied to the complete set of user-
supplied data

2. LITERATURE REVIEW
Integrating security throughout the life cycle can improve
overall web application security [Meir, 2006]. Web
applications are widely adopted in today’s life. More and
more individuals and organizations strongly depend on their
correct functioning, resulting in an increasing demand for

reliability and security [Desmet et al., 2008]. There are
number of web applications available and day by day the use
of it increasing as numbers of users are increasing. So that
users are facing problem of security. Our studies will
emphasis on identifying the security problems and try to solve
it.Providing document security in XML-based Web services
requires access control models that offer specific capabilities
suggested by authers[Bhatti et al., 2004]. Their XML-based

access control specification language addresses a new set of
challenges that traditional security models do not address. In
[Chien, 2006] author proposed a new digital signature
scheme, and claimed the scheme can resist the forgery attack
without using one-way hash function and any redundancy
padding. This claim is very interesting to all designers,
because conventionally a one-way hash function is required to
resist the attacks. Their article shows an existential forgery

attack on the scheme, and shows that the scheme would still
be insecure even if a secure one-way function were adopted in
the scheme. [Curphey & Arawo, 2006] studied Web
applications and Web services for security vulnerabilities,
along with each type's advantages and disadvantages. [Desmet
et al., 2008] focused on one specific type of implementation
vulnerability, namely, broken dependencies on session data.
This vulnerability can lead to a variety of erroneous behavior
at runtime and can easily be triggered by a malicious user by

applying attack techniques such as forceful browsing. Their
paper shows how to guarantee the absence of runtime errors
due to broken dependencies on session data in Web
applications. The proposed solution combines development-
time program annotation, static verification, and runtime
checking to provably protect against broken data
dependencies. They have developed a prototype
implementation of our approach, building on the JML

annotation language and the existing static verification tool
ESC/Java2, and successfully applied their approach to a
representative J2EE-based e-commerce application.

[Galan, et al., 2010] depicted that a novel multi-agent system
for the automated scanning of web sites to detect the presence

of XSS vulnerabilities exploitable by an stored-XSS attack.
The rate of detection of the system is evaluated in two
different scenarios over here. [Gebre et al., 2010] suggested a
server-side ingress filter that aims to protect vulnerable
browsers which may treat non-HTML files as HTML files.
The filter over here examines user uploaded files against a set
of potentially dangerous HTML elements (a set of regular
expressions). The result of the experiment shows that the

proposed automata-based scheme is highly efficient and more
accurate than existing signature-based approach. [Halfond et
al., 2008] expressed a new highly automated approach for
protecting Web applications against SQL injection that has
both conceptual and practical advantages over most existing
techniques. From a conceptual standpoint, the approach is
based on the novel idea of positive tainting and on the concept
of syntax-aware evaluation. They claimed that this technique
is precise and efficient, has minimal deployment

requirements, and incurs a negligible performance overhead in

most cases. They have implemented techniques in the Web
application SQL-injection preventer (WASP) tool, which they
used to perform an empirical evaluation on a wide range of
web applications that were subjected to a large and varied set
of attacks and legitimate accesses. They further claimed that

WASP was able to stop all of the otherwise successful attacks
and did not generate any false positives.

[Holz et al., 2006] describes some of the new threats like
workstations: client-side attacks have increased because direct
attacks on servers aren't so easy any more. Moreover, as new
defenses are raised, information flows are increasingly
embedded into Web applications, making them extremely
valuable as well, and, thus, the next target. [Hondo et al.,

2002] proposed a mechanism for the client to provide
authentication data, based on the service definition, and for
the service provider to retrieve those data. They also
demonstrated how XML Digital Signatures and encryption
can be exploited to achieve a level of trust. [Iha & Doi, 2009]
proposed a binding mechanism, which is comparable to the
binding mechanism for SQL. Furthermore, this paper shows
the evaluation results of this mechanism by implementing this

mechanism into the web browser (Firefox 3.0). [Ismail et al.,
2004] proposed a client-side system that automatically detects
XSS vulnerability by manipulating either request or server
response. The system also shares the indication of
vulnerability via a central repository. The purpose of the
proposed system was twofold, to protect users from XSS
attacks, and to warn the web servers with XSS
vulnerabilities.[Jovanovic et al., 2006] presented a solution

that provides complete automatic protection from XSRF
attacks. The approach is based on server side proxy that
detects and prevents XSRF attacks in a way that is transparent
to users as well as to the web application itself. [Johns et al.,
2008] advised a passive detection system to identify
successful XSS attacks. Based on a prototypical
implementation, we examine our approach’s accuracy and
verify its detection capabilities. The author compiled a data-
set of 500.000 individual HTTP request/response-pairs from

95 popular web applications for this, in combination with both
real word and manually crafted XSS-exploits; our detection
approach results in a total of zero false negatives for all tests,
while maintaining an excellent false positive rate for more
than 80% of the examined web applications.

The authors [Kieyzun et al., 2009] advised an automatic
technique for creating inputs that expose SQLI and XSS
vulnerabilities. The technique generates sample inputs,

symbolically tracks taints through execution (including
through database accesses), and mutates the inputs to produce
concrete exploits. This technique creates real attack vectors,
has few false positives, incurs no runtime overhead for the
deployed application, works without requiring modification of
application code, and handles dynamic programming-
language constructs. The author also implemented the
technique for PHP, in a tool Ardilla. [Louw &

Venkatakrishnan, 2009] presented a XSS defense strategy
designed to be effective in widely deployed existing web
browsers, despite anomalous browser behavior. Their
approach seeks to minimize trust placed on browsers for
interpreting untrusted content. This approach was
implemented in a tool called BLUEPRINT that was integrated
with several popular web applications. The authors evaluated
BLUEPRINT against a barrage of stress tests that demonstrate

strong resistance to attacks, excellent compatibility with web
browsers and reasonable performance overheads.

 International Symposium on Devices MEMS, Intelligent Systems & Communication (ISDMISC) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

21

[Meir, 2006] shares a way to improve Web application
security by integrating security throughout the life cycle. The
ideas he presented here are based on empirical evidence from
consulting with hundreds of customers - real-world scenarios
with real project constraints and security concerns - across a

variety of scenarios and putting into practice the security
techniques that the experts know. The result is an approach
that has evolved and refined itself over time. [Nichols &
Peterson, 2007] had broken an applications life cycle into
three main phases: design, deployment, and runtime. By
organizing metrics according to life cycle in addition to
OWASP type, insight from the derived quantitative results
can potentially point to defective processes and even suggest

strategies for improvement. [Schneier, 2007] focused on these
problems—risk analyses, ROI models, audits—yet critical
technologies that still remain uninstalled and important
networks that remained insecure. The entire IT security
industry is an accident: a piece of how the computer industry
developed.

[Scott & Sharp, 2003] investigated new tools and techniques
which address the problem of application-level Web security.

They 1) described a scalable structuring mechanism
facilitating the abstraction of security policies from large
Web-applications developed in heterogeneous multiplatform
environments; 2) presented a set of tools which assist
programmers in developing secure applications which are
resilient to a wide range of common attacks. [Shanmugam &
Ponnavaikko, 2007] proposed signature based misuse
detection approach. It expresses a security layer on top of the

web application, so that the existing web application remain
unchanged whenever a new threat is introduced that demands
new security mechanisms. They claim that this approach is
very effective as it addresses the vulnerabilities at a granular
level of tags and attributes, in addition to addressing the XSS
vulnerabilities.

The behavior based anomaly detection approach was
proposed by [Shanmugam & Ponnavaikko, 2007]. They

introduced a security layer on top of the web application, so

that the existing web application remain unchanged whenever
a new threat is introduced that demands new security
mechanisms. Further application level parameters are also
introduced to reduce the processing time. [Shanmugam &
Ponnavaikko, 2007] illustrated a thread based solution for
efficient process utilization of the web server and to prevent
XSS threats. [Tiwari et al., 2008] introduced a client side
solution that uses a step by step approach to detect XSS,

without degrading much the user’s web browsing experience.
[Wei et al., 2010] addressed localization attacks against ITM
systems in which an attacker impairs the effectiveness of an
ITM system by identifying the locations of ITM monitors.
They proposed an information-theoretic framework that
models localization attacks as communication channels.
Based on this model, they generalized all existing attacks as
"temporal attacks,” derived closed formulas of their

performance, and proposed an effective attack detection
approach. The information-theoretic model also inspires a
new attack called a spatial attack and motivates the
corresponding detection approach.

[Wurzinger et al., 2009] recommended SWAP (Secure Web
Application Proxy), a server-side solution for detecting and
preventing cross-site scripting attacks is introduced. SWAP
comprises a reverse proxy that intercepts all HTML

responses, as well as a modified Web browser which is
utilized to detect script content. SWAP can be deployed
transparently for the client, and requires only a simple

automated transformation of the original Web application.
Using SWAP, the author was able to correctly detect exploits
on several authentic vulnerabilities in popular Web
applications. [Xie & Yu, 2009] focused on the detection for
new DDoS attacks, a scheme based on document popularity

was introduced. An Access Matrix is defined to capture the
spatial-temporal patterns of a normal flash crowd. Principal
component analysis and independent component analysis are
applied to abstract the multidimensional Access Matrix. A
novel anomaly detector based on hidden semi-Markov model
is proposed to describe the dynamics of Access Matrix and to
detect the attacks. The entropy of document popularity fitting
to the model is used to detect the potential application-layer

DDoS attacks. Numerical results based on real Web traffic
data are presented to demonstrate the effectiveness of the

proposed method. In this [Zhang et al., 2010] recommended

an execution-flow analysis for JavaScript programs running in
a web browser to prevent Cross-site Scripting (XSS) attacks.
The authors constructed a Finite State Automaton (FSA) to
model the client-side behavior of Ajax applications under
normal execution. Here the system is deployed in a proxy
mode. The proxy analyzes the execution flow of client-side
JavaScript before the requested web pages arrive at the
browser to prevent potentially malicious scripts, which do not

conform to the FSA. [Zhenyu et al., 2007] proposed a client-
side system that automatically detects XSS vulnerability by
manipulating either primitive detection mode or advanced
detection mode. Through the modified model the system has
concluded that the input invalidation is the most important
aspect which causes XXS. The system also shares the
vulnerability information via a central database.

3. EXISTING COUNTERMEASURES
3.1 Binding mechanism in the web browser
3.2 A multiagent scanner
3.3 Reverse proxy
3.4 Signature based model
3.5 Robust defense

3.6 Model based detection system
3.7 Serevr side solution
3.8 Client side solution
3.9 Automatic detecton/collection system
3.10 An execution flow based method

4. CONCLUSION
From the above paper we can depict that Cross-Site Scripting
is extremely dangerous. It identifies the theft and act as
impersonation. Cross-Site Scripting causes due to missing or
insufficient input validation. We can prevent our web
application by implementing XSS prevention in application,
not assuming input values are benign. The server should not
trust on client side validation rather it should check and

validate all inputs before processing. In all application a
conceptual solution should be used.

5. REFERENCES
[1] R.Bhatti, E.Bertino, A. Ghafoor, J.B.D Joshi, "Xml-

Based Specification for Web Services Document
Security," Computer , vol.37, no.4, pp. 41- 49, April
2004.

[2] Hung-Yu Chien, "Forgery Attacks On Digital Signature
Schemes Without Using One-Way Hash and Message

Redundancy," Communications Letters, IEEE , vol.10,
no.5, pp. 324- 325, May 2006.

 International Symposium on Devices MEMS, Intelligent Systems & Communication (ISDMISC) 2011
 Proceedings published by International Journal of Computer Applications® (IJCA)

22

[3] M.Curphey, R. Arawo, "Web Application Security
Assessment Tools," Security & Privacy, IEEE , vol.4,
no.4, pp.32-41, July-Aug. 2006

[4] L. Desmet, P. Verbaeten, W. Joosen, F.Piessens, "Provable
Protection against Web Application Vulnerabilities

Related to Session Data Dependencies," Software
Engineering, IEEE Transactions on , vol.34, no.1, pp.50-
64, Jan.-Feb. 2008

[5] E.Galan, A. Alcaide, A. Orfila, J. Blasco, "A Multi-
Agent Scanner To Detect Stored-XSS Vulnerabilities,"
Internet Technology and Secured Transactions (ICITST),
2010 International Conference for , vol., no., pp.1-6, 8-
11 Nov. 2010.

[6] M.T Gebre,.; Kyung-Suk Lhee; ManPyo Hong; , "A
Robust Defense Against Content-Sniffing XSS Attacks,"
Digital Content, Multimedia Technology and its
Applications (IDC), 2010 6th International Conference
on , vol., no., pp.315-320, 16-18 Aug. 2010.

[7] W.G.J Halfond, A.Orso, P. Manolios, “WASP: Protecting
Web Applications Using Positive Tainting and Syntax-
Aware Evaluation," Software Engineering, IEEE

Transactions on , vol.34, no.1, pp.65-81, Jan.-Feb. 2008

[8] T. Holz, S. Marechal, F. Raynal, "New Threats and
Attacks on the World Wide Web," Security & Privacy,
IEEE , vol.4, no.2, pp.72-75, March-April 2006.

[9] M. Hondo, N. Nagaratnam, A. Nadalin, "Securing Web
Services," IBM Systems Journal , vol.41, no.2, pp.228-
241, 2002.

[10] G.Iha, H. Doi, "An Implementation of the Binding

Mechanism in the Web Browser for Preventing XSS
Attacks: Introducing the Bind-Value Headers,"
Availability, Reliability and Security, 2009. ARES '09.
International Conference on , vol., no., pp.966-971, 16-
19 March 2009.

[11] O.Ismail, M. Etoh,Y. Kadobayashi,S. Yamaguchi, "A
Proposal and Implementation of Automatic
Detection/Collection System for Cross-Site Scripting
Vulnerability," Advanced Information Networking and

Applications, 2004. AINA 2004. 18th International
Conference on , vol.1, no., pp. 145- 151 Vol.1, 2004

[12] M.Johns, B.Engelmann, J.Posegga, "XSSDS: Server-Side
Detection of Cross-Site Scripting Attacks," Computer
Security Applications Conference, 2008. ACSAC 2008.
Annual , vol., no., pp.335-344, 8-12 Dec. 2008.

[13]Nenad Jovanovic,; Engin Kirda,; Christopher
Kruegel,;"Preventing Cross Site Request Forgery

Attacks," Securecomm and Workshops, 2006 , vol., no.,
pp.1-10, Aug. 28 2006-Sept. 2006.

[14]A.Kieyzun, P.J. Guo,K. Jayaraman, M.D. Ernst,
"Automatic Creation of SQL Injection And Cross-Site
Scripting Attacks," Software Engineering, 2009. ICSE
2009. IEEE 31st International Conference on , vol., no.,
pp.199-209, 16-24 May 2009.

[15]M.Ter Louw, V.N Venkatakrishnan, "Blueprint: Robust

Prevention of Cross-Site Scriping Attacks for Existing
Browsers," Security and Privacy, 2009 30th IEEE
Symposium on , vol., no., pp.331-346, 17-20 May 2009

[16] Meier, J.D, "Web Application Security Engineering,"
Security & Privacy, IEEE, vol.4, no.4, pp.16-24, July-
Aug. 2006

[17] Nichols, E.A.; Peterson, G.; , "A Metrics Framework to
Drive Application Security Improvement," Security &

Privacy, IEEE , vol.5, no.2, pp.88-91, March-April 2007.

[18] Schneier, B, "The Death of the Security Industry,"
Security & Privacy, IEEE , vol.5, no.6, pp.88, Nov.-Dec.
2007

[19] D. Scott, R. Sharp, "Specifying and enforcing
application-level Web security policies," Knowledge and
Data Engineering, IEEE Transactions on , vol.15, no.4,
pp. 771- 783, July-Aug. 2003

[20] J .Shanmugam, M.Ponnavaikko, "XSS Application
Worms: New Internet Infestation and Optimized
Protective Measures," Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed
Computing, 2007. SNPD 2007. Eighth ACIS
International Conference on , vol.3, no., pp.1164-1169,
July 30 2007-Aug. 1 2007.

[21] J.Shanmugam, M.Ponnavaikko, "Risk mitigation for

cross site scripting attacks using signature based model
on the server side," Computer and Computational
Sciences, 2007. IMSCCS 2007. Second International
Multi-Symposiums on , vol., no., pp.398-405, 13-15
Aug2007.

[22]J.Shanmugam, M.Ponnavaikko, "Behavior-Based
Anomaly Detection on the Server Side to Reduce the
Effectiveness of Cross Site Scripting Vulnerabilities,"

Semantics, Knowledge and Grid, Third International
Conference on , vol., no., pp.350-353, 29-31 Oct. 2007

[23] S.Tiwari, R.Bansal, D.Bansal, "Optimized client side
solution for cross site scripting," Networks, 2008. ICON
2008. 16th IEEE International Conference on , vol., no.,
pp.1-4, 12-14 Dec. 2008

[24] Wei Yu; Nan Zhang; Xinwen Fu; Bettati, R.; Wei Zhao,
"Localization Attacks to Internet Threat Monitors:
Modeling and Countermeasures," Computers, IEEE

Transactions on , vol.59, no.12, pp.1655-1668, Dec. 2010
[25] P.Wurzinger, C.Platzer, C. Ludl, E. Kirda, C Kruegel,

"SWAP: Mitigating XSS attacks using a reverse proxy,"
Software Engineering for Secure Systems, 2009. SESS
'09. ICSE Workshop on , vol., no., pp.33-39, 19-19 May
2009.

[26] Yi Xie; Shun-Zheng Yu; , "Monitoring the Application-
Layer DDoS Attacks for Popular Websites," Networking,

IEEE/ACM Transactions on , vol.17, no.1, pp.15-25,
Feb. 2009

[27] Qianjie Zhang, Hao Chen, Jianhua Sun, "An execution-
flow based method for detecting Cross-site Scripting
attacks," Software Engineering and Data Mining
(SEDM), 2010 2nd International Conference on , vol.,
no., pp.160-165, 23-25 June 2010

[28] Qi Zhenyu, Xu Jing, Li Baoguo, Tan Fang, "MBDS:

Model-based detection system for Cross Site Scripting,"
Wireless, Mobile and Sensor Networks, 2007.
(CCWMSN07). IET Conference on , vol., no., pp.849-
852, 12-14 Dec. 2007

