
International Symposium on Devices MEMS, Intelligent Systems & Communication (ISDMISC) 2011
Proceedings published by International Journal of Computer Applications® (IJCA)

27

An Intuition of the Necessitate of Column-Oriented
Database Systems

Sanil.S.Nair 1

Lecturer, Prof. Ram Meghe

Institute of Technology &

Research, Badnera- Amravati.

Vishwajit.S.Patil 2

Lecturer, Prof. Ram Meghe
Institute of Technology &

Research, Badnera- Amravati.

Bhruthari.G.Pund 3

Lecturer, Prof. Ram Meghe
Institute of Technology &

Research, Badnera- Amravati.

ABSTRACT

In this paper, we are paying attention to the problem of poor

performance of row-by-row data layout for the emerging

applications, and evaluate the column-by-column data layout

opportunity as a solution to this problem. There have been a

variety of proposals for how to build a database system on top of

column-by-column layout. These proposals have different levels

of implementation effort, and have different performance

characteristics. If one wanted to build a new database system that

utilizes the column-by-column data layout, it is unclear which

proposal to follow. This paper provides (to the best of our

knowledge) the detailed study of multiple implementation

approaches of such systems, categorizing the different approaches

into three broad categories, and evaluating the tradeoffs between

approaches.

Keywords

Column oriented database, c-store, Query execution plans, and
row stores

1. INTRODUCTION
We ask that authors follow some simple guidelines. In essence,

we ask you to make your paper look exactly like this document.
The easiest way to do this is simply to download the template,
and replace the content with your own material.

The world of relational database systems is a two dimensional
world. Data is stored in tabular data structures where rows
correspond to distinct real-world entities or relationships, and
columns are attributes of those entities. For example, a business
might store information about its customers in a database table

where each row contains information about a different customer
and each column stores a particular customer attribute (name,
address, e-mail, etc.). There is, however, a distinction between
the conceptual and physical properties of database tables. This
afore-mentioned two dimensional property exists only at the
conceptual level. At a physical level, database tables need to be
mapped onto one dimensional structure before being stored.
This is because common computer storage media (e.g. magnetic

disks or RAM), despite ostensibly being multi-dimensional,
provide only a one dimensional interface (read and write from a
given linear offset).

There are two obvious ways to map database tables onto a one
dimensional interface: store the table row-by-row or store the
table column-by-column. The row-by-row approach keeps all
information about an entity together. In the customer example

above, it will store all information about the first customer, and
then all information about the second customer, etc. The
column-by-column approach keeps all attribute information
together: the entire customer names will be stored consecutively,
then all of the customer addresses, etc. Both approaches are
reasonable designs and typically a choice is made based on

performance expectations. If the expected workload tends to
access data on the granularity of an entity (e.g., find a customer,
add a customer, delete a customer), then the row-by-row storage
is preferable since all of the needed information will be stored
together.

On the other hand, if the expected workload tends to read per
query only a few attributes from many records (e.g., a query that
finds the most common e-mail address domain), then column-
by-column storage is preferable since irrelevant attributes for a

particular query do not have to be accessed

The vast majority of commercial database systems, including the
three most popular database software systems (Oracle, IBM
DB2, and Microsoft SQL Server), choose the row-by-row
storage layout. The design implemented by these products
descended from research developed in the 1970s. The design
was optimized for the most common database application at the
time: business transactional data processing. The goal of these

applications was to automate mission-critical business tasks. For
example, a bank might want to use a database to store
information about its branches and its customers and its
accounts. Typical uses of this database might be to find the
balance of a particular customer’s account or to transfer $100
from customer A to customer B in one single atomic transaction.
These queries commonly access data on the granularity an entity
(find a customer, or an account, or branch information; add a

new customer, account, or branch). Given this workload, the
row-by-row storage layout was chosen for these systems.

2. NEED FOR CHANGE
Starting in around the 1990s, however, businesses started to use

their databases to ask more detailed analytical queries. For

example, the bank might want to analyze all of the data to find

associations between customer attributes and heightened loan

risks. Or they might want to search through the data to find

customers who should receive VIP treatment. Thus, on top of

using databases to automate their business processes, businesses

started to want to use databases to help with some of the

decision making and planning. However, these new uses for

databases posed two problems. First, these analytical queries

tended to be longer running queries, and the shorter transactional

International Symposium on Devices MEMS, Intelligent Systems & Communication (ISDMISC) 2011
Proceedings published by International Journal of Computer Applications® (IJCA)

28

write queries would have to block until the analytical queries

finished (to avoid different queries reading an inconsistent

database state). Second, these analytical queries did not

generally process the same data as the transactional queries,

since both operational and historical data (from perhaps multiple

applications within the enterprise) are relevant for decision

making. Thus, businesses tended to create two databases (rather

than a single one); the transactional queries would go to the

transactional database and the analytical queries would go to

what are now called data warehouses. This business practice of

creating a separate data warehouse for analytical queries is

becoming increasingly common; in fact today data warehouses

comprise $3.98 billion [10] of the $14.6 billion database market

[7] (27%) and is growing at a rate of 10.3% annually [10].

3. PROPERTIES OF ANALYTIC

 APPLICATIONS
The nature of the queries to data warehouses is different from

the queries to transactional databases. Queries tend to be:

•Less Predictable: In the transactional world, since databases are

used to automate business tasks, queries tend to be initiated by a

specific set of predefined actions. As a result, the basic

structures of the queries used to implement these predefined

actions are coded in advance, with variables filled in at run-time.

In contrast, queries in the data warehouse tend to be more

exploratory in nature. They can be initiated by analysts who

create queries in an ad-hoc, iterative fashion.

• Longer Lasting: Transactional queries tend to be short, simple

queries (―add a customer‖, ―find a balance‖, ―transfer $50 from

account A to account B‖). In contrast, data warehouse queries,

since they are more analytical in nature, tend to have to read

more data to yield information about data in aggregate rather

than individual records. For example, a query that tries to find

correlations between customer attributes and loan risks needs to

search though many records of customer and loan history in

order to produce meaningful correlations.

• More Read-Oriented than Write-Oriented: Analysis is naturally

a read-oriented endeavour. Typically data is written to the data

warehouse in batches (for example, data collected during the day

can be sent to the data warehouse from the enterprise

transactional databases and batch-written over-night), followed

by many read-only queries. Occasionally data will be

temporarily written for ―what-if‖ analyses, but on the whole,

most queries will be read-only.

• Attribute-Focused Rather than Entity-Focused: Data

warehouse queries typically do not query individual entities;

rather they tend to read multiple entities and summarize or

aggregate them (for example, queries like ―what is the average

customer balance‖ are more common than ―what is the balance

of customer A’s account‖). Further, they tend to focus on only a

few attributes at a time (in the previous example, the balance

attribute) rather than all attributes.

4. IMPLICATIONS ON DATA

 MANAGEMENT
As a consequence of these query characteristics,

storing data row-by-row is no longer the obvious choice; in fact,

especially as a result of the latter two characteristics, the

column-by-column storage layout can be better. The third query

characteristic favours a column-oriented layout since it

alleviates the oft-cited disadvantage of storing data in columns:

poor write performance. In particular, individual write queries

can perform poorly if data is laid out column-by-column, since,

for example, if a new record is inserted into the database, the

new record must be partitioned into its component attributes and

each attribute written independently. However, batch-writes do

not perform as poorly since attributes from multiple records can

be written together in a single action. On the other hand, read

queries (especially attribute-focused queries from the fourth

characteristic above) tend to favours the column-oriented layout

since only those attributes accessed by a query need to be read,

and thus this layout tends to be more I/O efficient. Thus, since

data warehouses tend to have more read queries than write

queries, the read queries are attribute focused, and the write

queries can be done in batch, the column-oriented layout is

favoured. Surprisingly, the major players in the data warehouse

commercial arena (Oracle, DB2, SQL Server, and Teradata)

store data row-by-row (in this paper, they will be referred to as

―row-stores‖). Although speculation as to why this is the case is

beyond the scope of this paper, this is likely due to the fact that

these databases have historically focused on the larger

transactional database market and wish to maintain a single line

of code for all of their database software [9]. Similarly, database

research has tended to focus on the row-by-row data layout,

again due to the field being historically transactional focused.

Consequently, relatively little research has been performed on

the column-by-column storage layout (―column-stores‖).

5. EXPLORING COLUMN-STORE

 DESIGN APPROACHES
Due to the recent increase in the use of database technology for

business analysis, planning, and intelligence, there has been

some recent work that experimentally and analytically compares

the performance of column-stores and row-stores [2, 3, 4, 5, 64,

9, 1]. In general, this work validates the prediction that column-

stores should outperform row-stores on data warehouse

workloads. However, this body of work does not agree on the

magnitude of relative performance. This magnitude ranges from

only small differences in performance [4], to less than an order

of magnitude difference [3, 5], to an order of a magnitude

difference [9, 1], to, in one case, a factor of 120 performance

difference [9].

International Symposium on Devices MEMS, Intelligent Systems & Communication (ISDMISC) 2011
Proceedings published by International Journal of Computer Applications® (IJCA)

29

One major reason for this disagreement in performance

difference is that there are multiple approaches to building a

column-store.

6. APPROACHES IN BUILDING A

 COLUMN-STORE
One approach is to vertically partition a row-store database.

Tables in the row-store are broken up into multiple two column

tables consisting of (table key, attribute) pairs [6]. There is one

two-column table for each attribute in the original table. When a

query is issued, only those thin attribute-tables relevant for a

particular query need to be accessed—the other tables can be

ignored. These tables are joined on table key to create a

projection of the original table containing only those columns

necessary to answer a query, and then execution proceeds as

normal. The smaller the percentage of columns from a table that

needs to be accessed to answer a query, the better the relative

performance with a row-store will be (i.e., wide tables or narrow

queries will have a larger performance difference). Note that for

this approach, none of the DBMS code needs to be modified —

the approach is a simple modification of the schema.

Another approach is to modify the storage layer of the DBMS to

store data in columns rather than rows. At the logical level the

schema looks no different; however, at the physical level,

instead of storing a table row-by-row, the table is stored column-

by-column. The key difference relative to the previous approach

is that table keys need not be repeated with each attribute; the ith

value in each column matches up with the ith value in all of the

other columns (i.e., they belong to the same tuple). Similarly

with the previous approach, only those columns that are relevant

or a particular query need to be accessed and merged together.

Once this merging has taken place, the normal (row-store) query

executor can process the query as normal. This is the approach

taken in the studies performed by Harizopoulos et. al. [5] and

Halverson et. al. [4]. This approach is particularly appealing for

studies comparing row-store and column-store performance

since it allows for the examination of the relative advantages of

systems in isolation. They only vary whether data is stored by

columns or rows on disk; data is converted to a common format

for query processing and can be processed by an identical

executor. A third approach is to modify both the storage layer

and the query executor of the DBMS [8, 9, 1]. Thus, not only is

data stored in columns rather than rows, but the query executor

has the option of keeping the data in columns for processing.

This approach can lead to a variety of performance

enhancements. For example, if a predicate is applied to a

column, that column can be sent in isolation to the CPU for

predicate application, alleviating the memory-CPU bandwidth

bottleneck. Further, iterating through a fixed width column is

generally faster than iterating through variable-width rows (and

if any attribute in a row is variable-width, then the whole row

becomes variable width).Finally, selection and aggregation

operations in a query plan might reduce the number of rows that

need to be created (and output as a result of the query), reducing

the cost of merging columns together. Consequently, keeping

data in columns and waiting to the end of a query plan to create

rows can reduce the row construction cost. Thus, one goal of

this paper is to explore multiple approaches to building a

column-oriented database system, and to understand the

performance differences between these approaches (and the

reasons behind these differences).

7. CONCLUSION
Surprisingly, the major players in the data warehouse

commercial arena (Oracle, DB2, SQL Server, and Teradata)

store data row-by-row (in this paper, they will be referred to as

―row-stores‖). Although speculation as to why this is the case is

beyond the scope of this paper, this is likely due to the fact that

these databases have historically focused on the larger

transactional database market and wish to maintain a single line

of code for all of their database software [9]. Similarly, database

research has tended to focus on the row-by-row data layout,

again due to the field being historically transactional focused.

Consequently, relatively little research has been performed on

the column-by-column storage layout (―column-stores‖).

8. REFERENCES
[1] Peter Boncz, Marcin Zukowski, and Niels Nes.

MonetDB/X100: Hyper-pipelining query execution. In
CIDR, 2005.

[2] Zhiyuan Chen, Johannes Gehrke, and Flip Korn. Query
optimization in compressed database systems. In SIGMOD
’01, pages 271–282, 2001.

[3] George Copeland and Setrag Khoshafian. A decomposition
storage model. In SIGMOD, pages 268–279, 1985.

[4] Alan Halverson, Jennifer L. Beckmann, Jeffrey F.
Naughton, and David J. Dewitt. A Comparison of C-Store
and Row-Store in a Common Framework. Technical Report
TR1570, University ofWisconsin-Madison, 2006.

[5] Stavros Harizopoulos, Velen Liang, Daniel J. Abadi, and
Samuel R. Madden. Performance tradeoffs in
readoptimized databases. In VLDB, pages 487–498, Seoul,
Korea, 2006.

[6] Setrag Khoshafian, George Copeland, Thomas Jagodis,

Haran Boral, and Patrick Valduriez. A query processing
strategy for the decomposed storage model. In ICDE, pages
636–643, 1987.

[7] Carl Olofson. Worldwide RDBMS 2005 vendor shares.
Technical Report 201692, IDC, May 2006.

[8] Michael Stonebraker, Daniel J. Abadi, Adam Batkin,

Xuedong Chen, Mitch Cherniack, Miguel Ferreira,
EdmondLau, Amerson Lin, Samuel R. Madden, Elizabeth
J. O’Neil, Patrick E. O’Neil, Alexander Rasin, Nga Tran,
and Stan B. Zdonik. C-Store: A Column-Oriented DBMS.
In VLDB, pages 553–564, Trondheim, Norway, 2005.

[9] Michael Stonebraker, Chuck Bear, Ugur Cetintemel, Mitch
Cherniack, Tingjian Ge, Nabil Hachem, Stavros
Harizopoulos, John Lifter, Jennie Rogers, and Stan Zdonik.

International Symposium on Devices MEMS, Intelligent Systems & Communication (ISDMISC) 2011
Proceedings published by International Journal of Computer Applications® (IJCA)

30

One size fits all? - Part 2: Benchmarking results.In
Proceedings of the Third International Conference on
Innovative Data Systems Research (CIDR), January 2007.

[10] Dan Vesset. Worldwide data warehousing tools 2005
vendor shares. Technical Report 203229, IDC, August
2006.

