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ABSTRACT 

The passive tracking of manoeuvring objects using line of sight 

(LOS) angle measurements only is an important field of research 

in the application areas of submarine tracking, aircraft 

surveillance, autonomous robotics and mobile systems. In this 

paper, the tracking of target dynamics is treated as a system 

identification problem. We propose to use the coordinated turn 

(CT) model along with extended Kalman filter to track all 

possible dynamics such as  velocity, acceleration and coordinated 

turn of manoeuvring targets. Simulations are used to demonstrate 

the effectiveness of this approach and the results obtained are 

promising.   

Categories and Subject Descriptors 

C.4  [Performance of Systems]: C.4.3 - Measurement Techniques, 

C.4.4  - Modeling Techniques. 

C.3.4  [ Special Purpose and Application Based Systems (J7)]: - 

Signal Processing Systems. 

1.6.4 – [Simulation and Madeling (G.3)] – Model Validation and 

Analysis 

 

General Terms 

Algorithms,Measurement,Performance. 

Keywords 

bearings-only tracking, manoeuvring target tracking, extended 

Kalman filter. 

1. INTRODUCTION 
The problem of bearing only tracking arises in a variety of 

important practical applications in diverse fields. There is a 

problem in tracking of manoeuvring target that it might have 

abrupt change of its state by sudden operation of acceleration 

pedal , break or steering. The most commonly used scheme under 

these conditions  is the interactive multiple model (IMM) 

described in [1,2,3,13]. They make assumption that at any time in 

the observation period, the target motion obeys one of the three 

dynamic models: (a) CV model (b) clockwise CT model and (c) 

anticlockwise CT model. One model corresponds the typical 

motion of the target, while the other models possible deviations 

from that standard model.  

 

 

In any multiple model algorithm, it is important to know when the 

tartget is manoeuvring so that the algorithm can switch from one 

model to another.  In this paper , the problem of using manoeuvre 

detection and switching to corresponding model is alleviated 

using EKF and treating the tracking as a system identification 

problem, thus leading to an adaptive target tracking.  

The target is modelled by general state space representation that 

consists of system model for the dynamics and observation model 

[5,6,7] for the measurement process with non-linear formula. The 

system model used is a single  CT model (no separate models fpr 

clockwise and anticlockwise CTs as in [1]). The state vector is 

augmented with the angular turn-rate (Ω ) and the states are 

estimated recursively using EKF, with Ω  as a parameter. Thus 

the target tracking ultimately boils down to a sort of parameter 

estimation problem. The error performance of the developed filter 

is analysed by Monte Carlo (MC) simulations and compared with 

the therotical Cramer-Rao lower bounds (CRLBs). 

The paper is organised as follows. Section 2 deals with the 

formulations of problem The need and scope of Kalman filter is 

dealt with in  section 3. The concept of Cramer Rao lower bound  

in evaluating the performance in any estimation problem, is  

described in section 4. Simulation and results are discussed in 

section 5. Finally conclusions are drawn in section 6. 

2. PROBLEM STATEMENT 
The basic problem in bearing only tracking is to estimate the 

trajectory of  a target from  

noise – corrupted data. In a single sensor problem , the bearing 

data is obtained from a  moving observer. Consider a typical 

target – observer geometry depicted in figure 1.  The target 

located at Coordinates (xt,yt ) moves with a constant velocity 

vector (xt,yt ).The target state vector is defined as  

[ ]Ttyt
y

t
x

t
x

t
X &&=                                                    (1) 

where (x,y) and x,y) are position and velocity components. The 

own-ship state is similarly defined as  
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 The relative state vector is defined by   

=−=
o

X
t

XX1 [ ]Tyyxx &&                                        (3) 

 

In practice , two most common form of target motion in Cartesian 

plane are 1) a target  that moves with constant course and speed 
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and 2) a constant speed target that undergoes a constant radius 

turn. 

Model 1- Constant velocity model  

In this case the target-observer motion can be modelled by general 

discrete time state equation 

kvk
XF
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T is the sampling period  and ),0( QNkv ≈  is the process noise 

vector. 2IaQ σ=  where σa is a scalar and I2  is a 2x2 identity 

matrix. The available measurement at time k is the angle from the 

observer’s platform to the target  and is given by 

 

kwkkXhkZ += ],[                                                               (7) 

where wk is a zero mean independent  Gaussian noise with 

variance
2
θσ and 
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is the bearing angle. 

 Given a sequence of measurements Zk , k=1,2,… the bearing only 

tracking problem is to obtain estimate of the state vector Xk. The 

problem is non linear as the measurements are non-linearly related 

to the state vector. To track the target with angle only 

measurements, it has been found[1,6] that the observer must 

outmanoeuvre the target. 

In state estimation, tracking a constant course and speed target  

can be done accurately. Tracking a moanoeuvring target is more 

difficult since manoeuvre must be detected and a filter reasonably 

matched to the motion must be used to gain accuracy. 

Model 2 – Coordinated turn model 

 The dynamics of manoeuvring target is modelled by multiple 

switching regimes. In this case the assumption is that  at any time 

in the observation period, the target motion obeys one of the 

3dynamic model..1) CV model 2) Clockwise Coordinated turn 

model and 3) anti clockwise Coordinated turn model. Then the 

target dynamic model can be mathematically written as  

kvkkrkXkXkXfkX Γ+++=+ )1,
0

1,
0

,(1                   (9) 

         kvkkXkF Γ+=                                                   (10) 

 

kΓ  and kv  are as defined in  

 

 for the CV motion kF  is as defined in 

 

The transition matrix corresponding to coordinated turn model is 

given by  
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where Ω =
2
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am
 >0 is typical manoeuvre acceleration. Positive values of am 

correspond to clockwise CT and negative values correspond to 

anticlockwise CT. 

The noise gain is  
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 The turning rate is expressed as a function of target speed ( a 

non-linear function of state vector) and the model is non-linear 

one 
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3. THE EXTENDED KALMAN FILTER 
The Kalman filter [10,11,12]  was first proposed in 1960s and it is 

the most commonly used technique in target tracking ever since. 

The basic Kalman filter has shown to be a form of Bayesian filter 

that is an optimal estimator with respect to the variance of the 

estimation errors. For linear Gaussian systems the KF gives the 

minimum variance estimate of the state vector. Given a series of 

noisy measurements , the Kalman Filter is capable of estimating 

the state of the system. 

      For non-linear systems( in this case  target tracking), the 

extended Kalman [12,13] filter has to be used. The EKF is a 

sophisticated algorithm that is suitable for estimation of the  

parameters in many complex situations [14,15]. To apply the EKF 

for simultaneous state and parameter estimation,  an extension to 

the Kalman Filter is the Extended Kalman filter. This enables data 

such as bearing  only passive sonar data to be used in the KF. Due 

to the linearization step, the EKF is sub-optimal. 

 

The system state and output equations are of the following form 

  )(]),([)1( kvkkXfkX +=+                                             (13)                                                   

   )(]),([)( kwkkXhkz +=                                                   (14)                                                       

Where f and h are non-linear functions depending on the 

system state. 

 X(k)  and z(k) are the  state vector and output vector. v(k) and 

w(k) are the corresponding system and measurement noises 

respectively. These noises are white with zero mean and 

characterized by 
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Initialisations 
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Where X̂  is the state estimate and P is the estimation error 

covariance and 
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Update equations 
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The Jacobian of the measurement model is given by 
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. 

4. CRAMER – RAO LOWER BOUNDS 
Cramer- Rao lower bounds (CRLBs) [16,17,18] has been used as 

a bench mark for the comparison of implemented sub-optimal 

filtering and the assessment of the effects of introduced 

approximations. Such a performance bound is important in 

practice. It enables one to predict the best achievable performance 

based on the fundamental properties of dynamic and measurement 
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models and it can be used to optimise sensor placement or 

scheduling. 

 

According to the CRLB the mean square error corresponding to 

the estimator cannot be smaller than a certain quantity related to 

likelihood function. If an estimator variance is equal to CRLB, 

then such an estimator is called efficient. 
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Following [17] a recursion for kJ can be written as 
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 where in the case of additive Gaussian model the elements 
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2
1 θσ=+kR  is the variance of the bearing measurements  and 

kQ  is the process noise covariance matrix. 

 

5. SIMULATION AND RESULTS 
To analyse the effectiveness of the CT model in tracking 

manoeuvring targets, a simulation experiment has been done as 

follows. At first a synthetic data have been generated to simulate 

the manoeuvring target. The bearing data are assumed to be 

actually observed and used for estimation. Variances of the 

observation are assumed to be known. For implementation of this 

algorithm, the initial estimates of the target state vector are chosen 

as follows. [ ]TX 1.01339805.76940)00( −−= .The elements of 

the initial covariance matrix are given 

as [ ]8^10*8017.008^10*2.308^10*2.3)00( =P . In the own ship-

target geometry, the target is initially at  20000 Km moving  at a 

speed of 12 km/sec on a course of 150 deg. The observer is 

making a manoeuvre at a speed of -15 Km/sec. The measurements 

are assumed to be corrupted with 1 deg. The target takes two co-

ordinated turn for 25 minutes with a turn rate of the target is 0.1 

rad/sec. The simulations for three different target – observer 

geometry are shown in figures 1-3. For all the scenarios the 

parameters mentioned remain the same. Only the coordinated turn 

rate and the duration for which it exists change.  The target and 

own ship trajectories of the CT scenarios and    the estimated  

target trajectories are shown in fig 1a 2a and 3a, for the process 

noise covariance matrix Q= 1*diag[1 1 1 1 1]. Figures 1b,2b and 

3b indicate the velocity profile of the different target scenarios. 

The rmses of  bearing, position, velocity and  their  CRLBs are 

shown in figures 1c-1e,2c-2e and 3e-3e. The simulation results 

clearly demonstrate the excellent tracking capability of the CT 

model for manoeuvring  targets. Figures 2a-2e represent the 

performance measures of the observer-target scenario with two 

coordinated turn each of 0.1 rad/sec for durations of 1.6 minutes. 

Figure 3a-3e represents the performance for a target making a 

coordinated turn of 1 rad/sec for 25 minutes. All the results 

illustrate the ability of the CT model alone to track targets 

performing varied manoeuvres. 
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Fig 1a-1e Tracking performance for scenario I 
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Fig 2a-2e Tracking performance for scenario II 
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Fig 3a-3e Tracking performance for scenario III 

 

7.CONCLUSION 

In this paper we have employed a single CT model along with 

EKF to capture all (velocity, acceleration and coordinated turn) 

the dynamics of some manoeuvring target scenarios. The 

performance parameters such as position RMSE, velocity RMSE 

and  bearing RMSE are computed and compared with the 

respective CRLBs that indicate the best possible performance  one 

can expect for a given scenario and a set of parameters. It has 

been proved to provide excellent  target tracking capabilities. 

 

Annexure 
The Jacobian of the CT model  can be computed as  
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The Jacobian of the measurement model is given by 
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