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ABSTRACT 

 This paper proposes a model for estimating the direction of 

arrival (DOA) of a signal source impinging on a Uniform Linear 

Array(ULA). An algorithm which uses this model for estimating 

the delay of the signal received at two separated sensors, in a 

system identification perspective has been developed and its 

performance is compared with   the results obtained through  

beam forming using conventional and Minimum Variance 

Distortionless Response(MVDR)  methods. The  unknown 

parameter, which is the phase delay  at the sensors, as a result of  

the target presence at any bearing  is estimated using the proposed 

method.  The phase delayed signals at any sensor  is  generated by 

interpolating the samples form the previous  sensor. The 

interpolation coefficients are estimated by considering them as  

part of the state vector of  an  Extended Kalman Filter (EKF). The 

EKF is used to recursively estimate the interpolation coefficients 

and thereby the delay. Simulation results demonstrate the 

feasibility of the model and the algorithm in estimating DOA both 

for narrowband and broadband signals. The mean of the estimates 

shows a reasonable degree of convergence to the true value. The 

variance of the estimate of the proposed method is less than that 

of the conventional method and very close to the MVDR method. 

Further it has been found that the proposed method exhibits a 

faster convergence. 

 

Categories and Subject Descriptors 

C.4 [Performance of Systems ]: C.4.3 – Measurement 

Techniques,C.4.4- Modeling Techniques. 

C.3.4 [Special Purpose and Application Based Systems(J.7) 

]:Signal Processing Systems. 

 

1.6.4 Simulation and Modeling (G.3) – Model Validation and 

Analysis. 

Keywords 
Modeling, Direction of arrival, Estimation, Extended Kalman 

Filter, Minimum Variance Distortionless Receiver. 

1. INTRODUCTION 
Array signal processing has applications in radar, sonar, acoustics, 

astronomy, seismology, communication and medicine.  

 

 

One of the important tasks of array processing is beam forming  

 

[1][2]. A problem central to the beam forming is the estimation of 

DOA [3]. Many methods for estimating the DOA of plane waves 

sampled by an array of sensors have been investigated in the last 

decade .  

 

Significant among these methods are the minimum variance 

distortinless response (MVDR)[4,5], multiple signal classification 

(MUSIC), estimation of signal parameters via rotational 

invariance technique (ESPRIT), method of direction estimation 

(MODE), signal subspace fitting (SSF), noise subspace fitting 

(NSF), and variance thereof [6]-[9]. These methods estimate the 

DOA by using properties of second order statistics of the data, in 

particular by estimating the array output covariance matrix and its 

eigen decomposition [10]. 

 

EKF has already been proved to be suitable for estimation of 

DOA. An algorithm based on EKF using a single snapshot is 

presented in [11], which proposes intialisation of the EKF 

through a conventional DOA estimation such as MUSIC.  An FFT 

based algorithm for localisation of wideband acoustic signals  has 

been proposed in [12], where EKF is utilised in the localisation as 

robust approach against the errors, which result from the point-

size of the FFT in time-delay computation and other noisy effects. 

A comparison of different beamforming algorithms is available 

in[13]. In this paper, the DOA is assumed to be a random variable 

with a known probability density function. This allows the design 

of an estimator robust   to uncertainties in DOA within a  

statistical framework.  A recursive system identification procedure 

based on EKF algorithm is applied which leads to an iterative 

solution to the DOA problem [14]. It is known that the time delay 

between the signals received at spatially separated sensors is a 

function of the DOA [15]. Once this time delay between the 

arrival times at two sensors is estimated, the DOA can be 

computed. 

 

The organization of the paper is as follows. In section 2 our 

approach in obtaining the state space model is explained. The 

EKF algorithm for joint state and parameter estimation is 

explained in section 3 [16][17]. The simulation results are 

discussed in section 4. Finally a summary of the results is given 

and conclusions are drawn in section 5. 

. 

2. PROBLEM FORMULATION 
First the problem is formulated using a state space realization [15] 

and it is motivated by the fact that, the state space 
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parameterisation enables reduction of parameter sensitivity. 

Further the use of Kalman filtering requires signal modelling by 

dynamic state equations and the assumption that the stochastic 

process involved is Gaussian. A Uniform Linear Array (ULA) of 

N sensors, with half wavelength spacing λ/2 is considered (fig. 1). 
Let the discrete time signal received at the two sensors be 

(k)qs(k)(k)x
11

+=                                                   (1) 

Mkkqkskx ,........2,1),(2)()(2 =+∆−=                       (2)                                          

 

The parameter  ∆  represents the difference in arrival times at the 
two sensors and M is the number of samples collected at each 

channel. )(1 kq  and )(2 kq  are uncorrelated zero mean Gaussian 

process with variances 1δ  and 2δ . The signal received at the 

second sensor can be represented as 

   )(kbx(k)ax)(kx 11112 −+=+                          (3)                                                                       

Where a  and b  are the interpolation coefficients[18] of a second 

order filter which are functions of the difference in arrival times at 

the two sensors given by 
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where r is a 2×2 matrix 
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 sf  – sampling frequency in Hz 

 2,1 ff  – frequency limits  of  the broad band signal 

c
d )sin(θ×

=∆ - the delay in units of samples 

 c  – velocity of propagation.  
 

2.1 State Space Model   

The Kalman filtering requires the signal modelling by dynamic 

state equation and the assumption that the stochastic process 

involved is Gaussian. We focus on the following non-linear state 

space representation 

              Wkf[X(k),k]1)X(k +=+                                       (5) 

         Vkk]h[X(k),1)Y(k +=+                                     (6)                                                

Where X (k) ε ℜ n is the state vector, Y (k) ε ℜ m is the output 
vector, Wk and Vk are uncorrelated white noise with zero mean 

and Gaussian distribution having covariance matrices designated 

by Q and R respectively. The process noise Wk represents 

uncertainty on how the parameters evolve and modelling errors. 

We model the uncertainty in the measurements by assuming it to 

be corrupted by noise Vk.     

2.2  Process Model       

The process represented by equation (3) can be modelled as   

kW)(kX

(k)X

ba)(kX

)(kX
+
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=
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where a  and b  are the interpolation coefficients used to 
compute the (k+1) th output of j th sensor from k th and (k-1) th 

outputs of the (j-1) th sensor. The observed output of the j th  

sensor at (k+1) th instant is assumed to be that at the k th instant 

plus  noise. This is included only to maintain the dimensionality 

of the state space model. The coefficients a  and b  are functions 
of ∆, the time delay between the signals at the spatially separated 
sensors [1][2]. The system state is augmented with time delay and 

it is estimated simultaneously with the model recognition. The 

resulting process model is 
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Now the inaccurately known parameter  ∆   is a part of the new 

state vector  [ ]T∆(k))(kX(k)XXe 1
11

−= , to be estimated. 

The estimate of ∆  will be mainly determined by the 

measurements ]N,.....Y,Y[YY(k) 21=                                      (9)                                                            

2.3 Measurement Model 

The measurement model is given by 

       [ ] (k)
e

V∆(k)kX(k)hY(k) +=                            (10)                                          
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Taking h (.) = I, The measurement Y (k) = X (k).   

The observation at  the j th sensor at the k th instant is given by 

 

3...Mk2....N,j1;2)jbY(k11)jaY(kY(k)j ==−−+−−=            (11)                 

   ∆  is updated using every sensor output  of a snapshot and a ,b 
are updated at the end of each snapshot. 

The algorithm for estimating the parameters ( ∆(θ)ba  ) is 

developed as follows. 

2.4   Algorithm 

Let the  ULA consists of N sensors and the observations are of M 

snapshots. Each snapshot consists of the signal impinging on  the 

N sensors at one instant.The time delay  )(θ∆ over successive 

sensors remain the same. We perform Kalman filterimg along the 

ULA. The initially assumed value of ∆  and thereby DOA is 
updated using the observation on the successive sensors of a 

single snapshot. At the end of Kalman filtering along the ULA 

over the first snapshot , the interpolation  coefficients a and b are 

updated using (4). The updated interpolation coefficients are used 

for performing Kalman filtering along the ULA, using the 

observation on each  sensor of the second snapshot.Thus ∆  is 

updated using the observation on successive  sensors  of a 

snapshot   and the interpolation coefficients are updated at the end 

of each snapshot. The updated ∆  is used to compute θ  using the 

relation 
d
c∆1

Sinθ
−

= . This is repeated over the M snapshots. 

Initialise θandba,  

for k = 3….M 

 { 

   for j = 2…..N 

       { 

          12)jbY(k11)jaY(kY(k)j −−+−−=  

                update  ∆(k,θ)  

           
d

c∆1
Sinθ

−
=   

     } 

        update ba,  

  } 

  

As the time delay forms part of the state vector, the model turns 

out to be non-linear and we propose the use of  EKF [7] for 

estimating  the states [ ]∆ba ,  as indicated in “update( ba, )” 

above. 

A real time Taylor approximation of the system function 

at the previous state and that of the observation function at the 

corresponding predicted position is considered which is the EKF 

[16]. This EKF has advantage over the linear KF in both state 

estimation and adaptive parameter identification [17],[19-21]. In 

joint state and parameter estimation algorithm, the estimates of the 

parameters are provided immediately after the presentation of the 

current observation vector. Thus EKF based parameter estimation 

is a recursive online method suitable for applications requiring 

continuous parameter update at each observation time step and 

where not all data needs to be available. 
. 

3. EXTENDED KALMAN FILTER  
The system state and output equations are of the following form 

        )(]),([)1( kWekkXefkXe +=+                               (12)                                        

       )(]),([)( kVekkXehkY +=                                         (13)                          

Where f and h are non-linear functions depending on the 

system state. Xe(k)  and y(k) are the augmented state vector 

and output vector. We(k) and Ve(k) are the corresponding 

system and measurement noises respectively. These noises 

are white with zero mean and characterized by 

 )()}()({,0)}({ kQk
T
eWkeWEkeWE ==                       (14)                             

)()}()({,0)}({ kRk
T
eVkeVEkeVE ==                           (15)                            

Initialisations 

)]E[X(),X( 000 =                                                             (16)                                                                                                    

)Pe(),Pe( 000 =                                                (17)                               

Prediction equations 

We(k)(k,k)]θe(k,k),Xf[)e(kX +=+ ˆˆ1ˆ                             (18)                                                                                    

)()(),()(),1( kQe
T
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Where eX̂  is the state estimate and Pe is the estimation error 

covariance and 
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Update equations 
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Kalman filter gain       
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Updated covariance    

),1()1()1(),1()1,1( kkPekHkKkkPekkPe +++−+=++         (23)                                  
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1)]k1,h[Xe(k
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∂
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                                              = [ ]0000ba  

The state variable ∆ computed above  is used for calculating  a 
and b using Eqn.. 4,  The predication equations are then updated 

using 18. Calculation of H(k+1) and F(k) are done analytically. 

4. SIMULATIONS AND RESULTS 
In this paper we have considered a uniform linear array of N 

sensors with inter element  spacing of half a wave length. The 

observations for various  DOAs at different SNRs are generated 

by adding white noise of different power to the quadratic coupled 

signals. The observation  consist of M snapshots. The time delay 

∆ over the successive sensors remain the same. In the proposed 

method, Kalman filtering is performed along the ULA. The time 

delay is updated using the observation on successive sensors and 

the interpolation coefficients are updated at the end of each 

snapshot. The algorithm is terminated, when the maximum 

number of iterations are reached. 

 

The performance of the proposed algorithm is compared with that 

of the conventional  method using FFT and the high resolution 

MVDR method.. Figures 2 and 3 demonstrates the convergence of 

the estimated parameters at various SNRs[-10,-5,0,5] for true 

DOAs 0f 700 and 300. The initial values were assumed to be [ 580, 

250] respectively. Figure 6 compares the convergence of the 

algorithm for a true DOA of 600 at an SNR of 5.The RMSE and 

CRB of the proposed method is compared against the RMSE of 

the conventional and MVDR methods in fig 7. Fig 8 illustrates the 

variation of RMSE with SNR, for all the three methods. The 

MVDR method exhibits zero variance. This may be due to the fact 

that, in the MVDR method, the DOA is obtained by plotting the 

energy against  different angles and picking the point at which 

peak energy occurs. 

 

 Table 1 presents the mean and variance of the DOA estimation 

based on the three methods for various true values of DOA. The 

percentage estimation error for the proposed method falls in the 

range of -1.32 to 12.86, where as that for the conventional method 

is between -0.0958 to 7.78. The variance of the proposed method 

lie in the range of 0.0262 and 0.0543 where as the variance in the 

conventional method is in the range 0.000099 – 0.2377.  The 

MVDR gives zero variance for all DOAs and SNRs as it is a high 

resolution method. 

 

 The execution time of the proposed algorithm is less than that of 

the conventional and MVDR methods and hence they are fast 

enough to be implemented in real time. 

  Table 1 lists the means and variances of the DOA estimates 

based on the three methods for various true values of DOA. Table 

2 compare the time required for convergence of the three 

methods. The execution time for 100 simulations using a PC with 

an AMD Athlon 64 (2GHz clock frequency) processor was 

computed. The execution times for the proposed method and 

MVDR method are 0.156034 seconds 0.261068 seconds 

respectively. It is clear that the proposed method converges fast. 

5. CONCLUSION 
A model and an algorithm for the DOA estimation using EKF is 

discussed in this paper.    The DOA problem has been 

reformulated  in state space. We then propose  the use of  EKF for 

identifying the interpolation coefficients to produce the phase 

delayed signals at any sensor of uniform linear array using 

samples of the signals at the previous sensor.   The results of the 

proposed algorithm are compared with the results obtained using 

conventional and MVDR methods. DOA as well as the 

interpolation coefficients of the second order model were treated 

as the augmented states of the EKF, thereby reducing the 

estimation  to a system identification problem. The EKF  brings 

out an  algorithm that is suitable for recursive estimation of DOA.. 

The performance of the model and algorithm is compared with the 

popular MVDR and conventional methods. It has been found that 

the proposed method converges close to the true value and 

convergence time is less. In terms of variance of the estimates, the  

performance of the proposed method is better than that of the 

conventional method..    

 

The problem addressed is an important one, both in theoretical 

and in practical applications in signal processing. The presented 

analysis is to highlight the ability of EKF to estimate DOA. Effort 

is made to treat DOA estimation as parameter estimation problem, 

using EKF. The flexibility in choosing the parameter set and fast 

convergence, suggest that the proposed algorithm is a useful tool 

for estimating DOA in the case of isolated targets. The foremost 

advantage of the algorithm, we propose is the simplicity, as 

computationally it is not very demanding. The problem 

reformulation allows for power techniques to be brought  in for 

solving the DOA estimation problem. 

 

         Fig.1 incident signal and sensor array 
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Fig.2 convergence of the proposed algorithm for true DOA = 30 

deg. 
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Fig.3 convergence of the proposed algorithm for true DOA = 70 

deg. 
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Fig.4 Convergence of the interpolation coefficient b 

0 10 20 30 40 50 60 70 80 90 100
0.8

1

1.2

1.4

1.6

1.8

2

No of iterations

v
a
ri
a
ti
o
n
 o
f 
p
a
ra
m
e
te
r 
a

 

                   Fig.5 Convergence of the interpolation coefficient a 
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Fig.6 Comparison of the convergence of the three methods for 

true DOA = 60 deg. 
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Fig.8  Variation of RMSE with SNR for true DOA =60 deg 

 

Table 1  Mean and variances of estimation of the three algorithms 

 (Method 1-conventional, Method II – MVDR, Method III – 

proposed) 

 

 

 

Table 2.Comparison of execution times of the three methods 
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