
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 1

7

Sequential Structuring Element for CFG Induction

Using Genetic Algorithm
N. S. Choubey

MPSTME, NMIMS University,
Shirpur, Maharastra, India

M. U. Kharat
Institute of Engineering

Bhujbal Knowledge City Nashik, India

ABSTRACT

This paper investigates the induction of Context free Grammar

with genetic algorithm. The genetic algorithm is not very effective

at this [1]. To overcome this problem we investigate combined

effect of two methods for structuring the chromosomes. The first is

to bias the distribution of Non-terminals in the chromosome at the

time of chromosome generation as well as updating. The latter

approach is sequential structural mapping from chromosome to

grammar. It is shown that biasing the chromosome in this fashion

produces extremely fast convergence as shown in the result

section. Grammars are an extremely general and useful tool with

many applications. These include the higher levels of signal

processing, such as pattern recognition. However, the application

of grammars is limited by the algorithms we can apply to infer

them from samples of data. The main contribution of this paper is

the effective decoding of the context free grammar from

chromosomes with the distinct approaches mentioned.

Categories and Subject Descriptors
F. [MATHEMATICAL LOGIC AND FORMAL LANGUAGES]-

F.4.2 Grammars and Other Rewriting Systems (D.3.1)- Grammar

types (context-free)

General Terms

Experimentation, Languages, Theory.

Keywords

Genetic Algorithm, Grammar Induction, Pattern Recognition,

Context Free Grammar, Informant Learning.

1. INTRODUCTION
The Genetic Algorithms (GA‟s) were invented by John

Holland in the 1960s. Wyard [2] explored the impact of different

grammar representations and experimental results show that an

evolutionary algorithm using standard context-free grammars

(BNF) outperformed other representations. The section II of the

paper discusses the brief overview of the Genetic Algorithm, the

details of the structure implementation for the chromosome along

with an example is covered in section III, whereas the section IV

and section V includes the details of the implementation done

by the authors for CFG induction with Genetic Algorithm. Section

6 of the paper displays the result obtained for eight different set of

languages.

2. Strategies For Grammar Induction And

Genetic Algorithm

2.1 Role of Genetic Algorithm
Genetic Algorithms (GA‟s) were invented by John Holland in

the 1960s. In contrast with Evolution Strategies and

Evolutionary Programming, Holland's original goal was not

to design algorithms to solve specific problems, but rather to

formally study the phenomenon of adaptation as it occurs in

nature and to develop ways in which the mechanisms of natural

adaptation might be utilized into computer systems. Holland's

1975 book “Adaptation in Natural and Artificial Systems”

presented the Genetic Algorithm as an abstraction of biological

evolution and gave a theoretical framework for adaptation under

the GA. Holland's GA is a method for moving from one

population of "Chromosomes" (e.g., strings of ones and zeros,

or "bits") to a new population by using a kind of "natural

selection" together with the genetics-inspired operators of

Crossover, Mutation, and Inversion. Each Chromosome consists

of "Genes" (e.g., bits), each Gene being an instance of a

particular "allele" (e.g., 0 or 1). The Selection Operator

chooses those Chromosomes in the Population that will be

allowed to reproduce, and on average the fitter Chromosomes

produce more offspring than the less fit ones. Crossover exchanges

subparts of two Chromosomes, roughly mimicking biological

recombination between two single-Chromosome ("haploid")

organisms; Mutation randomly changes the allele values of some

locations in the Chromosome; and Inversion reverses the order of a

contiguous section of the Chromosome, thus rearranging the order

in which genes are arrayed.

2.2 Grammar Induction Process
The Grammar Induction (or Grammar Inference or Language

Learning) is the process of learning of a grammar from training

data. Various algorithms exist for learning regular languages,

which represent the largest class of languages which can be

efficiently learned. Inductive inference involves making

generalizations from examples. The generalizations sought in this

research are languages. The focus is on grammatical inference, i.e.

the inference of formal languages such as those of the Chomsky

hierarchy from positive (and negative) sample strings.

Wyard[2] explored the impact of different grammar representations

and experimental results show that an evolutionary algorithm using

standard context-free grammars (BNF) outperformed other

representations. This performance differential was attributed to the

larger grammar search space of the other representations, which

was a consequence of them having a more complex grammar form.

In the conventional grammatical induction, a language acceptor is

constructed to accept all the positive examples. Learning from

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 1

8

1. Create a random sequence of 0‟s and 1‟ with fixed size.

2. Map the chromosome, from first step, into symbolic form by

using appropriate structuring element and Backus-Naur

Form to get the rules of the CFG.

3. Apply the masking operator

4. Eliminate left recursion.

5. Perform Left factoring of the Grammar to avoid multiple

rules starting with same variable or terminal.

Figure 1. Steps for the individual grammar construction.

positive examples is called text learning. A more powerful

technique uses negative samples as well. This is learning with an

informant. In informant learning, the language acceptor is

constructed so as to accept all the positive examples and reject all

the negative examples. By comparison, context-free grammar

(CFG) learning requires more information than a set of positive

and negative samples (e.g. a set of skeleton parse trees) which

makes them a bigger challenge for grammatical inference. In a

broad sense, a learner has access to some sequential or structured

data and is asked to return a grammar that should in some way

explain such data.

Grammar induction has several practical applications outside the

field of theoretical linguistics, such as structural pattern

recognition [3][4] (in both visual images and more general

patterns), automatic computer program synthesis and programming

by example, information retrieval, programming language and

bioinformatics. Syntactic processing has always been paramount to

a wide range of applications, such as machine translation,

information retrieval, speech recognition and the like. It is

therefore natural language syntax has always been one of the most

active research areas in the field of language technology [5]. All of

the typical pitfalls in language like ambiguity, recursion and long-

distance dependencies, are prominent problems in describing

syntax in a computational context. Historically, most

computational systems for syntactic parsing employ hand-written

grammars, consisting of a laboriously crafted set of grammar rules

to apply syntactic structure to a sentence. But in recent years, a lot

of research efforts are trying to automatically induce workable

grammars from annotated corpora, i.e. large collections of pre-

parsed sentences [6]. Since the tree-structures in these annotated

corpuses already implicitly contain a grammar, it is a relatively

trivial task to induce a large-scale grammar and parser that is able

to acquire reasonably high parsing accuracies on a held-out set of

data. Yet, data-analysis of the output generated by these parsers

still brings to light fundamental limitations to these corpus-based

methods. Even though they generally provide a much broader

coverage as well as higher accuracy than hand-built grammars,

corpus-induced grammars will still not hold enough grammatical

information to provide an important trend in the field of Machine

Learning sees researchers employing combinatory methods to

improve the classification accuracies of their algorithms. Natural

language problems in particular benefit from combining classifiers

to deal with the large datasets and expansive arrays of features that

are paramount in describing this difficult and disparate domain that

typically features a considerable amount of sub-regularities and

exceptions [7]. The field of evolutionary computing has been

applying problem-solving techniques that are similar in intent to

the Machine Learning recombination methods. Most evolutionary

computing approaches hold in common that they try and find a

solution to a particular problem, by recombining and mutating

individuals in a society of possible solutions. This provides an

attractive technique for problems involving large, complicated and

non-linearly divisible search spaces.

3. SIMULATION AND CONSTRUCTION

OF AN INDIVIDUAL CHROMOSOME

3.1 Chromosomes for Context Free Grammar
In Genetic Algorithm application the choice of the chromosome

structure is an important decision. When dealing with grammars,

however, the number of parameters required by the model is

unknown, and hence (ideally) the chromosomes can be of

variable lengths, making the operation of the crossover operator

less straightforward than before. Furthermore, the interactions of

the individual genes is now profound: the flipping of a single bit

(and the corresponding removal or addition of a production)

can render a previously perfect grammar utterly useless. Perhaps

as a result of these problems, only relatively simple (and

deterministic) Context Free Grammars have been inferred (e.g. [2])

using GAS.

The authors have adapted two approaches of generating the

effective context free grammar. First approach is to generate

random string consisting of 0‟s and 1‟s of a specific length and

then divide the string in to the sequential blocks of equal length to

get the desired number of production rules by mapping them to the

terminals and non-terminals. Effective use of empty symbol

(Epsilon) results in to the production with variable length. The

resulted productions are then treated with traditional methods such

as left factoring and left-recursion removal in order to get the

resultant production. Lateral approach involves use of a masking

operator to get the symbol on the left hand side of every

production as a non-terminal.

3.2 Example
There are several ways of representing language equivalent

grammars. They may be represented in a free format, where each

production is of the form: A BC, where A is a non-terminal

and BC is a (possibly empty) string of terminals and non-

terminals, or they may be represented in some normal form, where

restrictions are placed on the form of BC. Authors used a fixed

length chromosome of length 240 which is decoded by a three bit

pattern. First bit is used for categorizing the symbols (0- for non-

terminal and 1- for terminal) and remaining bits are used for

representing non-terminals/terminals. Masking operator used to get

left hand side of production used the first bit effectively for the

desired output. The example, figure 2, derives a grammar with two

terminals and four variables from a chromosome with length 240.

4. FITNESS FUNCTION
The fitness function is based on the weights associated with the

acceptance and rejection of the positive and negative string

samples. Weights (Wp) are added for every acceptance of positive

string and rejection of negative string similarly weight (Wn) is

subtracted for every rejection of positive string and rejection of

positive string. Fitness function also includes a component for

limiting the number of rules in the resultant production (Wr).

Fitness function is given by

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 1

9

P1 0 1 1 1 0 0 1 1

Cut P11 P12 P13

 1 1 1 1 1 0 1 0

P2 P21 P22 P23

CH1 1 1 1 0 1 1 0 1

 P22 P13 P11

CH2 1 1 0 0 1 0 1 1

 P12 P23 P21

(a)

P1 0 1 1 1 0 0 1 1

Random Mask 1 0 1 0 1 0 1 0

 * * * *

CH1 1 1 0 1 1 0 0 1

* bits are inverted for ‘1’ in the random mask.

(b)

Figure 3 . a. Crossover and b. Mutation methods used.

Step 1: Binary Chromosome (Length = 240)

01110110100101000010111100111001011001111110100

00001000001010001011110010000010010010111000001

10000111111001101010001101001011100110001011111

10001110100011011111111001111001110001100000011

10100000001000010001000001001011100010011100100

00101

Step 2&3 : Mapping is done & Results are

Symbol Bits used Symbol Bits used

S 000 C 011

A 001 (100

B 010) 101

Equivalent Symbolic Chromosome (length =80)

C))ABS)?A?B?C?)SS(S)S)?ASAAAC(S?S??A)BA)AC(?A

C?(C)S????C?C(CSS?BSS(AS(S()?AA?BS)

Productions Extracted (Total rules = 15)

C->))AB S->)A B->C) S->S(S)

S->)AS A->AAC(S->S A->)BA)

A->C(A C->(C) S->? C->C(C

S->SBS S-> (AS(S-> ()A A->BS)

Step 4: Productions after rule shift & Useless removal

S->???? S->S(S) S->S???

Productions after left recursion removal

M->(S)M S->M???? M->?????

Step 5: Total number of valid Production :: 3

S->M M->? M->(S)M

Note : Epsilon is denoted by „?‟

Figure 2. Example for the grammar construction.

f(x) = A-B+C

 = (Wp*Np) - (Wn*Nn) + (Wr-Nr).

 Here, Np, Nn & Nr denotes the number of accepted

positive & rejected negative strings, the number of rejected

positive string & accepted negative string and the number of rules

available in the context free grammar respectively. Wr is balanced

with respect to the complexity of the language to be constructed. It

is inversely proportional to the complexity of the language.

5. LANGUAGE SET
To asses the performance of the adapted approach, the set of six

different languages is used which includes four languages from

the language set given by Lankhorst[9] along with two other

languages. The definition of the language set is

Language 1 : Balanced Parenthesis Problem.

Language 2 : Even length Palindrome over Zero-One Problem

Language 3: (10)* Language.

Language 4: Language containing No Odd Zero after Odd ones

over {0,1}*

Language 5: No Triplets of Zeros over an alphabet {0,1}*

Language 6: 0*1*0*1* Problem over an alphabet {0,1}*

6. METHODOLOGY ADAPTED FOR

IMPLEMENTATION
Diversity in the population is the best method to get fast

convergence. The effective Crossover and mutation methods are

the best way to achieve diversity in the population. The method

adapted in the experiment is based o Simple Genetic Algorithm

(SGA). The crossover and mutation method adapted for the

experimentation are shown in figure 3.

The crossover method used is a variation of two point crossover

method based on the cyclic crossover method. The mutation

method uses a random mask of 0‟s and 1‟s. for every bit „1‟ of the

random mask the respective bit in the child is inverted.

7. RESULTS & CONCLUSION
Experiment is done with JDK 1.4 on Intel® Core™2 CPU with

1.66GHZ and 1 GB RAM. The population size, size of the

chromosome, Maximum number of generations, crossover rate and

mutation rate is taken as 100, 240, 500, 0.9 and 0.8 respectively.

Sample set of 30 strings is taken as learning set for grammar

induction

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 1

10

Results obtained for first ten successful run on each language set,

which does not end with local optima, are summarized in the

figure 4. Figure 4 shows the best grammar received over all

successful run of the experiment. Methodology adapted found to

be working successfully and efficiently on the language set

considered. The language set used are the example of the

lightweight grammars. There is further scope for adoption of the

same method for more complex grammar sets.

8. ACKNOWLEDGMENTS
We sincerely extend our acknowledgements to Dr. V. M. Thakre,

P. G. Department of Computer Science, Sant Gadge Baba

Amravati University, Amravati, Maharastra, India, for his kind

support in providing Laboratory infrastructural facility required for

carrying out of research work.

9. REFERENCES
[1] Simon Lucas, IEEE, 2000, A. Structuring Chromosomes for

Context-Free Grammar Evolution

0

100

200

300

400

500

600

700

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Generations

F
it

n
e
s
s

one

two

three

four

five

six

seven

eight

nine

ten

L1: Balanced Parenthesis Problem.

Generations required : 17±14

Best Grammar: {S->?,S->(S)L, L->S, L->? }

0

100

200

300

400

500

600

700

1 5 9 13 17 21 25 29 33 37 41 45 49

Generations

F
it

n
es

s

One

Two

Three

Four

Five

Six

Seven

Eight

Nine

Ten

L2: Even length palindrome over Zero-One Problem

Generations required : 30±15

Best Grammar : {S->? , S-> 0S0, S-> 1S1}

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7

Generations

F
it

n
e
s
s

one

two

three

four

five

six

seven

eight

nine

ten

L3: (10)*

Generations required : 4±3

Best Grammar : {S->? ,S->10S}

0

100

200

300

400

500

600

700

1 7 13 19 25 31 37 43 49 55 61

Generations
Fi

tn
es

s

One

Two

Three

Four

Five

Six

Seven

Eight

Nine

Ten

L4: No Odd Zero after Odd ones

Generations required : 52±10 Best Grammar : {S->M,

S->11SM, S->0SM, M->?, M->1M, M->00M}

0

100

200

300

400

500

600

700

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Generations

F
it

n
e
s
s

One

Two

Three

Four

Five

Six

Seven

Eight

Nine

Ten

L5: No Triplets of Zeros

Generations required : 36±12

Best Grammar :{ S->M, S->0J, M->?, M->1SM, J->M, J->0M}

L6: 0*1*0*1* Problem

Generations required : 48±28 , Best Grammar : { S->M,

S->C0M, S->0SM, M->CM, M->?, M->1A1M, C->1, C->00C,

A->01}

Figure 4 . Results Sets for first ten successful runs of the language sets

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 1

11

[2] Wyard P.,1994, Representational Issues for Context-Free
Grammar Induction Using Genetic Algorithm in Proceedings
of the 2nd International Colloquim on Grammatical Inference
and Applications, Lecture Notes in Artificial Intelligence, Vol
862, pp. 222-235,

[3] De la Higuera, 2005, “A Bibliographical Study of
Grammatical Inference”, Pattern Recognition, v. 38, no. 9,
2005, pp. 1332-1348.

[4] Ernesto Rodrigues and Heitor Silvério Lopes, Genetic
Programming with Incremental Learning for Grammatical
Inference, Graduate Program in Electrical Engineering and
Computer Science, Federal University of Technology –
Paraná, Av. 7 de setembro, 3165 80230-901, Curitiba, Brazil.

[5] Guy De Pauw, 2003, Evolutionary Computing as a Tool for
Grammar Development, CNTS – Language Technology
Group, UIA – University of Antwerp, Antwerp – Belgium, E.

Cant´u-Paz et al. (Eds.): GECCO 2003, LNCS 2723, pp. 549–
560, 2003.,c_Springer-Verlag Berlin Heidelberg 2003.

[6] Marcus, M.P., Santorini, B., Marcinkiewicz, M., 1994,
Building a large annotated corpus of english: the penn
treebank. Computational linguistics 19 (1993) 313–330
Reprinted in Susan Armstrong, ed., Using large corpora,
Cambridge, MA: MIT Press, 273–290.

[7] Daelemans,W., van den Bosch, A., Zavrel J, 1999, Forgetting
exceptions is harmful in language learning. Machine
Learning, Special issue on Natural Language Learning 34
(1999) 11–41.

[8] F. Javed, B. R. Bryant, M.Crepinek, Mernik, Sprague,2004,
“Context-free Grammar Induction using
GeneticProgramming”, ACMSE, Huntzville.

[9] Marc Lankhorst, “A Genetic Algorithm for the Induction of
Nondeterministic Pushdown Automata”, University of
Groningen, The Netherlands, May 1995.

