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ABSTRACT 

This paper investigates the induction of Context free Grammar 

with genetic algorithm. The genetic algorithm is not very effective 

at this [1].  To overcome this problem we investigate combined 

effect of two methods for structuring the chromosomes. The first is 

to bias the distribution of Non-terminals in the chromosome at the 

time of chromosome generation as well as updating. The latter 

approach is sequential structural mapping from chromosome to 

grammar. It is shown that biasing the chromosome in this fashion 

produces extremely fast convergence as shown in the result 

section. Grammars are an extremely general and useful tool with 

many applications.  These include the higher levels of signal 

processing, such as pattern recognition.  However, the application 

of grammars is limited by the algorithms we can apply to infer 

them from samples of data. The main contribution of this paper is 

the effective decoding of the context free grammar from 

chromosomes with the distinct approaches mentioned. 
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1. INTRODUCTION 
The Genetic Algorithms (GA‟s)   were   invented   by   John  

Holland  in  the  1960s. Wyard [2] explored the impact of different 

grammar representations and experimental results show that an 

evolutionary algorithm using standard context-free grammars 

(BNF) outperformed other representations.  The section II of the 

paper discusses the brief overview of the Genetic Algorithm, the 

details of the structure implementation for the chromosome along 

with an example is covered in section III, whereas  the section IV 

and section V includes  the  details  of  the  implementation  done  

by  the authors for CFG induction with Genetic Algorithm. Section 

6 of the paper displays the result obtained for eight different set of 

languages. 

2. Strategies For Grammar Induction And 

Genetic Algorithm  

2.1 Role of Genetic Algorithm 
Genetic  Algorithms (GA‟s)  were  invented  by  John  Holland  in  

the  1960s. In   contrast   with   Evolution   Strategies   and   

Evolutionary   Programming,   Holland's original  goal  was  not  

to  design  algorithms  to  solve  specific  problems,  but  rather  to 

formally  study  the  phenomenon  of  adaptation  as  it  occurs  in  

nature  and  to  develop ways in which the mechanisms of natural 

adaptation might be utilized into computer systems.   Holland's   

1975   book   “Adaptation   in   Natural   and   Artificial   Systems” 

presented the Genetic Algorithm as an abstraction of biological 

evolution and gave a theoretical framework for adaptation under 

the GA.  Holland's  GA  is  a  method  for moving  from  one  

population  of  "Chromosomes"  (e.g.,  strings  of  ones  and  zeros,  

or "bits")  to  a  new  population  by  using  a  kind  of  "natural  

selection"  together  with  the genetics-inspired operators of 

Crossover, Mutation, and Inversion. Each Chromosome consists  

of  "Genes"  (e.g.,  bits),  each  Gene  being  an  instance  of  a  

particular  "allele"  (e.g.,  0  or  1).  The  Selection Operator  

chooses  those  Chromosomes  in  the  Population that  will  be  

allowed  to  reproduce,  and  on  average  the  fitter  Chromosomes  

produce more offspring than the less fit ones. Crossover exchanges 

subparts of two Chromosomes, roughly mimicking biological 

recombination between two single-Chromosome ("haploid") 

organisms; Mutation randomly changes the allele values of some 

locations in the Chromosome; and Inversion reverses the order of a 

contiguous section of the Chromosome, thus rearranging the order 

in which genes are arrayed. 

2.2 Grammar Induction Process 
The Grammar Induction (or Grammar Inference or Language 

Learning) is the process of learning of a grammar from training 

data. Various algorithms exist for learning regular languages, 

which represent the largest class of languages which can be 

efficiently learned. Inductive inference involves making 

generalizations from examples. The generalizations sought in this 

research are languages. The focus is on grammatical inference, i.e. 

the inference of formal languages such as those of the Chomsky 

hierarchy from positive (and negative) sample strings.  

Wyard[2] explored the impact of different grammar representations 

and experimental results show that an evolutionary algorithm using 

standard context-free grammars (BNF) outperformed other 

representations. This performance differential was attributed to the 

larger grammar search space of the other representations, which 

was a consequence of them having a more complex grammar form. 

In the conventional grammatical induction, a language acceptor is 

constructed to accept all the positive examples. Learning from 
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1. Create a random sequence of 0‟s and 1‟ with fixed size. 

2. Map the chromosome, from first step, into symbolic form by 

using appropriate structuring element and Backus-Naur 

Form to get the rules of the CFG. 

3. Apply the masking operator 

4. Eliminate left recursion. 

5. Perform Left factoring of the Grammar to avoid multiple 

rules starting with same variable or terminal. 

 

Figure 1. Steps for the individual grammar construction. 

positive examples is called text learning. A more powerful 

technique uses negative samples as well. This is learning with an 

informant. In informant learning, the language acceptor is 

constructed so as to accept all the positive examples and reject all 

the negative examples. By comparison, context-free grammar 

(CFG) learning  requires more information than a set of positive 

and negative samples (e.g. a set of skeleton parse trees) which 

makes them a bigger challenge for grammatical inference. In a 

broad sense, a learner has access to some sequential or structured 

data and is asked to return a grammar that should in some way 

explain such data.  

Grammar induction has several practical applications outside the 

field of theoretical linguistics, such as structural pattern 

recognition [3][4] (in both visual images and more general 

patterns), automatic computer program synthesis and programming 

by example, information retrieval, programming language and 

bioinformatics. Syntactic processing has always been paramount to 

a wide range of applications, such as machine translation, 

information retrieval, speech recognition and the like. It is 

therefore natural language syntax has always been one of the most 

active research areas in the field of language technology [5]. All of 

the typical pitfalls in language like ambiguity, recursion and long-

distance dependencies, are prominent problems in describing 

syntax in a computational context. Historically, most 

computational systems for syntactic parsing employ hand-written 

grammars, consisting of a laboriously crafted set of grammar rules 

to apply syntactic structure to a sentence. But in recent years, a lot 

of research efforts are trying to automatically induce workable 

grammars from annotated corpora, i.e. large collections of pre-

parsed sentences [6]. Since the tree-structures in these annotated 

corpuses already implicitly contain a grammar, it is a relatively 

trivial task to induce a large-scale grammar and parser that is able 

to acquire reasonably high parsing accuracies on a held-out set of 

data. Yet, data-analysis of the output generated by these parsers 

still brings to light fundamental limitations to these corpus-based 

methods. Even though they generally provide a much broader 

coverage as well as higher accuracy than hand-built grammars, 

corpus-induced grammars will still not hold enough grammatical 

information to provide an important trend in the field of Machine 

Learning sees researchers employing combinatory methods to 

improve the classification accuracies of their algorithms. Natural 

language problems in particular benefit from combining classifiers 

to deal with the large datasets and expansive arrays of features that 

are paramount in describing this difficult and disparate domain that 

typically features a considerable amount of sub-regularities and 

exceptions [7]. The field of evolutionary computing has been 

applying problem-solving techniques that are similar in intent to 

the Machine Learning recombination methods. Most evolutionary 

computing approaches hold in common that they try and find a 

solution to a particular problem, by recombining and mutating 

individuals in a society of possible solutions. This provides an 

attractive technique for problems involving large, complicated and 

non-linearly divisible search spaces. 

3. SIMULATION AND CONSTRUCTION 

OF AN INDIVIDUAL CHROMOSOME 

3.1 Chromosomes for Context Free Grammar 
In Genetic Algorithm application the choice of the chromosome 

structure is an important decision. When dealing with  grammars, 

however, the  number of  parameters required by  the model is 

unknown, and hence  (ideally) the chromosomes can  be of  

variable lengths, making the operation of  the  crossover operator  

less straightforward  than  before.  Furthermore, the interactions of  

the individual genes is now profound:  the flipping of  a single bit  

(and  the  corresponding removal or  addition of  a production)  

can render  a previously perfect grammar utterly useless. Perhaps 

as a result of these problems, only relatively simple (and 

deterministic) Context Free Grammars have been inferred (e.g. [2]) 

using GAS.  

The authors have adapted two approaches of generating the 

effective context free grammar. First approach is to generate 

random string consisting of 0‟s and 1‟s of a specific length and 

then divide the string in to the sequential blocks of equal length to 

get the desired number of production rules by mapping them to the 

terminals and non-terminals. Effective use of empty symbol 

(Epsilon) results in to the production with variable length. The 

resulted productions are then treated with traditional methods such 

as left factoring and left-recursion removal in order to get the 

resultant production. Lateral approach involves use of a masking 

operator to get the symbol on the left hand side of every 

production as a non-terminal. 

3.2 Example 
There are several ways of representing language equivalent 

grammars.  They  may  be  represented in a free format, where each 

production is of  the form:   A   BC,   where A  is a non-terminal  

and  BC  is a (possibly empty) string of  terminals and non-

terminals, or they may be represented in some normal form, where 

restrictions  are placed  on the form of BC. Authors used a fixed 

length chromosome of length 240 which is decoded by a three bit 

pattern. First bit is used for categorizing the symbols (0- for non-

terminal and 1- for terminal) and remaining bits are used for 

representing non-terminals/terminals. Masking operator used to get 

left hand side of production used the first bit effectively for the 

desired output. The example, figure 2, derives a grammar with two 

terminals and four variables from a chromosome with length 240. 

4. FITNESS FUNCTION 
The fitness function is based on the weights associated with the 

acceptance and rejection of the positive and negative string 

samples. Weights (Wp) are added for every acceptance of positive 

string and rejection of negative string similarly weight (Wn) is 

subtracted for every rejection of positive string and rejection of 

positive string. Fitness function also includes a component for 

limiting the number of rules in the resultant production (Wr). 

Fitness function is given by  
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P1 0 1 1 1 0 0 1 1 

Cut  P11 P12 P13 

 1 1 1 1 1 0 1 0 

P2 P21 P22 P23 

         

CH1 1 1 1 0 1 1 0 1 

 P22 P13 P11 

CH2 1 1 0 0 1 0 1 1 

 P12 P23 P21 

(a) 

P1 0 1 1 1 0 0 1 1  
          

Random Mask 1 0 1 0 1 0 1 0  

 *  *  *  *   

CH1 1 1 0 1 1 0 0 1  

* bits are inverted for ‘1’ in the random mask. 

(b) 

Figure 3 . a. Crossover and b. Mutation methods used. 

Step 1: Binary Chromosome (Length = 240) 

01110110100101000010111100111001011001111110100

00001000001010001011110010000010010010111000001

10000111111001101010001101001011100110001011111

10001110100011011111111001111001110001100000011

10100000001000010001000001001011100010011100100

00101 

 

Step 2&3 : Mapping is done & Results are 

Symbol Bits used Symbol Bits used 

S 000 C 011 

A 001 ( 100 

B 010 ) 101 

 

Equivalent Symbolic Chromosome  (length =80) 

C))ABS)?A?B?C?)SS(S)S)?ASAAAC(S?S??A)BA)AC(?A

C?(C)S????C?C(CSS?BSS(AS(S()?AA?BS) 

 

Productions Extracted (Total rules = 15)  

C->))AB S->)A B->C) S->S(S) 

S->)AS A->AAC( S->S A->)BA) 

A->C(A C->(C) S->? C->C(C 

S->SBS S-> (AS( S-> ()A A->BS) 

 

Step 4: Productions after rule shift & Useless removal 

S->???? S->S(S) S->S??? 

Productions after left recursion removal 

M->(S)M S->M???? M->????? 

 

Step 5: Total number of valid Production :: 3 

S->M M->? M->(S)M 

Note : Epsilon is denoted by „?‟ 

Figure 2. Example for the grammar construction. 

f(x) = A-B+C  

      = (Wp*Np) - (Wn*Nn) + (Wr-Nr).   

 Here, Np, Nn & Nr denotes the number of accepted 

positive & rejected negative strings, the number of rejected 

positive string & accepted negative string and the number of rules 

available in the context free grammar respectively. Wr is balanced 

with respect to the complexity of the language to be constructed. It 

is inversely proportional to the complexity of the language. 

5. LANGUAGE SET 
To asses the performance of the adapted approach, the set of six 

different languages is used which includes four languages from  

the language set given by Lankhorst[9] along with two other 

languages. The definition of the language set is 

Language 1 : Balanced Parenthesis Problem.  

Language 2 : Even length Palindrome over Zero-One Problem 

Language 3: (10)* Language. 

Language 4: Language containing No Odd Zero after Odd ones 

over {0,1}* 

Language 5: No Triplets of Zeros over an alphabet {0,1}* 

Language 6: 0*1*0*1* Problem over an alphabet {0,1}* 

6. METHODOLOGY ADAPTED FOR 

IMPLEMENTATION 
Diversity in the population is the best method to get fast 

convergence. The effective Crossover and mutation methods are 

the best way to achieve diversity in the population. The method 

adapted in the experiment is based o Simple Genetic Algorithm 

(SGA). The crossover and mutation method adapted for the 

experimentation are shown in figure 3. 

The crossover method used is a variation of two point crossover 

method based on the cyclic crossover method. The mutation 

method uses a random mask of 0‟s and 1‟s. for every bit „1‟ of the 

random mask the respective bit in the child is inverted.  

7. RESULTS & CONCLUSION 
Experiment is done with JDK 1.4 on Intel® Core™2 CPU with 

1.66GHZ and 1 GB RAM. The population size, size of the 

chromosome, Maximum number of generations, crossover rate and 

mutation rate is taken as 100, 240, 500, 0.9 and 0.8 respectively. 

Sample set of 30 strings is taken as learning set for grammar 

induction  
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Results obtained for first ten successful run on each language set, 

which does not end with local optima, are summarized in the 

figure 4. Figure 4 shows the best grammar received over all 

successful run of the experiment. Methodology adapted found to 

be working successfully and efficiently on the language set 

considered. The language set used are the example of the 

lightweight grammars. There is further scope for adoption of the 

same method for more complex grammar sets. 
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L1: Balanced Parenthesis Problem. 

Generations required : 17±14 

Best Grammar: {S->?,S->(S)L, L->S, L->? } 
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L2: Even length palindrome over Zero-One Problem 

Generations required : 30±15 

Best Grammar : {S->? , S-> 0S0, S-> 1S1} 

   

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7

Generations

F
it

n
e
s
s

one

two

three

four

five

six

seven

eight

nine

ten

 

L3: (10)*  

Generations required : 4±3 

Best Grammar : {S->? ,S->10S} 
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L4: No Odd Zero after Odd ones  

Generations required : 52±10 Best Grammar : {S->M,             

S->11SM, S->0SM, M->?, M->1M, M->00M} 
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L5: No Triplets of Zeros 

Generations required : 36±12 

Best Grammar :{ S->M, S->0J, M->?, M->1SM, J->M, J->0M} 

 
 

 

L6: 0*1*0*1* Problem 

Generations required : 48±28 , Best Grammar : { S->M,          

S->C0M, S->0SM, M->CM, M->?, M->1A1M, C->1, C->00C, 

A->01} 

Figure 4 . Results Sets for first ten successful runs of the language sets  
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