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ABSTRACT 
The problem of sorting a signed permutation by reversals is 

inspired and motivated by comparative genomics. Following the 

first polynomial time solution of this problem, several 

improvements have been published on the subject. The currently 

fastest algorithms is defined by the sequence augmentation 

sorting algorithm using balanced binary tree with running time 

O(n3/2√log n). We give a parallel implementation of the sequence 

augmentation sorting algorithm on the Mesh of trees architecture. 

Categories and Subject Descriptors 
C.1.2[Processor Architectures]: Multiple Data Stream 

Architectures – Interconnection Architectures 

G.1.0 [Numerical Analysis]: General – parallel algorithms 

General Terms 
Algorithms 

Keywords 
Genome rearrangements, Sorting by reversals, Interconnection 

network, Time complexity. 

1.INTRODUCTION 
With new techniques for sequencing the entire genome of 

organisms, biology is rapidly moving towards a data-intensive 

computational science. The great challenge we face now is how 

to process this huge amount of data and extract from it relevant 

biological information. One way to structure this information is 

by comparative genomics, where we analyze data coming from 

distinct species and learn from the similarities and differences in 

related genomes. In this area, very large DNA molecules are 

investigated with respect to the relative order of genes in them. 

This is motivated from an observation that closely related species 

mostly have homologous genes but the genes occur in different 

orders. The order of genes in the genomes of species can change 

during evolution and can provide information about their 

phylogenetic relationship. An interesting method to infer the 

phylogenetic relationship from the gene orders is to use different 

types of rearrangement operations and to find possible 

rearrangement scenarios using these operations. One of the most 

common rearrangement operations is reversals, which reverse the  

 

order of a subset of neighbored genes. Reversals are by far the 

best studied gene order rearrangement operations. In comparative 

genomics, algorithms that sort permutations by reversals are 

often used to propose evolutionary scenarios of large-scale 

genomic mutations between species. 

In this context, unichromosomal genomes are usually encoded as 

signed permutations, in which each element represents a gene 

and the sign determines the orientation of the gene. The problem 

of sorting signed permutations by reversals can be stated as: 

given two chromosomes, represented as sequences of genomic 

segments, find a parsimonious sequence of reversals that 

transforms a chromosome into the other one. The first polynomial 

algorithm was given by Hannenhalli and Pevzner [6], and took 

O(n4) time. After many subsequent improvements on the running 

time currently, the best known algorithm for this problem runs in 

O(n3/2√log n) time [10]. 

Sorting a signed permutation π by reversals involves two 

successive procedures on what is called the overlap graph of π. 

The first one consists in transforming the overlap graph such that 

all its connected components become oriented. This can be done 

in linear time [2]. The computational bottleneck of the sorting by 

reversals problem occurs in the second procedure: sorting the 

oriented components. The complexity of sorting the oriented 

components is determined by the time necessary to detect and 

choose an oriented arc, and apply the corresponding reversal to 

the permutation. With a classical data structure, using for 

instance a vector array to represent the current permutation, this 

is easily achievable in linear time. As a consequence, the 

algorithm, as well as any algorithm for sorting by reversals that 

has to apply a reversal at each step, will run in O(n2). In [7], 

Kaplan and Verbin described a clever data structure which 

allows to choose an oriented arc and apply the corresponding 

reversal in sublinear time. Eric Tannier, Anne Bergeron, Marie-

France Sagot [10] used the same data structure, just adding some 

flags in order to be able to choose an oriented arc in a specific 

subset of the arcs, making it possible to apply a reversal and 

maintain the data structure in time O(√n log n) resulting in 

overall O(n3/2√log n) time complexity.  

In this paper we propose O(n log n) parallel algorithm to sort  a 

permutation of length n on the MOT (2m) interconnection 

network [4] where 2m-1 < n ≤ 2m. This paper is organized as 

follows: we have formalized the sorting by reversal problem in 
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section 2. Section 3 gives a brief introduction of the MOT 

interconnection network. We give details of parallel 

implementation of sorting by reversal algorithm on MOT 

interconnection network in section 4. We summarize our results 

in Section 5. 

2.PROBLEM FORMALIZATION 
For the purpose of sorting we identify the genes with the integers 

1, . . . , n, with a plus or minus sign to indicate their direction. 

The order and direction of genomic markers will be represented 

by a signed permutation of {1, . . . , n}. 

To simplify exposition, we adopt the usual extension which 

consists in adding π0 = 0, and πn+1 = n + 1 to the permutation. We 

usually denote a signed permutation by simply writing (0 π1 . . . 

πn n+1). The identity permutation (0 1 . . . n+1) is denoted by I. 

The inverse permutation π−1 of π is the (signed) permutation such 

that π · π−1 = I. 

The reversal of the interval [i, j] , 1 ≤ i, j ≤ n, i ≠ j  is the signed 

permutation ρ i,j = (0 . . . i − 1 − j . . . − i  j + 1 . . . n + 1). Note 

that π · ρi,j is the permutation obtained from π by reversing the 

order and flipping the signs of the elements in the interval [i, j]: 

       π.ρi,j = (π0 … πi-1 –πj … -πi πj+1 … πn+1). 

If ρ1,…,ρk is a sequence of reversals, we say that it sorts a 

permutation π.ρ1…ρk = I. 

To each πi , 0 ≤ i ≤ n+1, are associated two points, named πi
- and 

πi
+ , except for 0 and n + 1, for which we define only the points 

0+ and (n + 1)− respectively. 

An arc(πi, πj) is drawn between the points πi
+and πj

- where 0 ≤ i,j 

≤ n and | πj | = | πi | + 1  (see Figure 1). Thus, there are n + 1 arcs 

and each point is the endpoint of a unique arc. Such arcs will be 

referred to as the arcs of π. Two arcs are said to overlap if the 

intervals they span (that is the set of points between the 

endpoints in the given order) intersect but none is contained in 

the other. If an arc is not overlapping with any other arc then it is 

said to be isolated. The arc(πi, πj) is said to be oriented if πi and πj 

have different signs, otherwise unoriented.  

 

       0           2                   -3                     1        4 

       0+           2-    2+               3+    3-                1-   1+            4- 

     ●             ●    ●                 ●    ●                 ●    ●            ● 

 

 

Figure 1. a signed permutation (0 2 -3 1 4) with associated 

points and arcs 

3.MESH OF TREES ARCHITECTURE 
 The mesh of trees is a hybrid interconnection network based on 

arrays and trees. It owns two advantages of small diameter and 

large bisection width and is known as the fastest network when 

considered solely in terms of speed. 

A two-dimensional 2n×2n mesh of trees consists of 2n×2n grid of 

nodes where there is a 2n-leaf complete binary tree on each row 

and each column. For convenience MOT(2n) to denote a 2n×2n 

mesh of trees. The trees built on rows and columns are called 

row trees and column trees, respectively. The leaf nodes are 

labeled by a pair of integers (i,j); i is the row index and j is the 

column index. For example MOT(4) is depicted in Figure 3, 

where each square represents a leaf node and each darkened 

circle represents a root node. There are 3×22n-2n+1 nodes 

contained in MOT(2n). The diameter and bisection width of 

MOT(2n) are 4n and 2n,respectively. denotes the row tree with 

leaf nodes denoted as (d,0),(d,1), …,(d,(2n-1)) and by  denotes 

the column tree with leaf nodes (0,d), (1,d), …, , ((2n-1),d) 

where 0 ≤ d ≤ 2n-1. Each leaf-node is the intersection of a row 

tree and a column tree. So a leaf node (i,j) will be at the 

intersection of  and , i.e. it is the jth leaf node of tree and 

ith leaf node of tree . 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: MOT (4) 

4.PROPOSED PARALLEL ALGORITHM 
Let we have to sort a signed permutation π of extended length n    

(n is two plus the actual number of elements in the original 

permutation).The only operation that we have used is the reversal 

operation. We present our parallel algorithm for sorting the 

permutation π on MOT(2m) where m ≥ log n. If m = log n then 

we have MOT(n) with n row trees and n column trees where 

each tree is a complete binary tree having n leaf nodes. If m > log 

n (when n is not power of two) then only first n leaf nodes of n 

leftmost column trees and n bottommost row trees will be used.  

4.1Initialization 
The elements of the permutation π are distributed to the root 

nodes of all the trees such that root node of ith row/column tree 

has (i+1)th element of the permutation π, where 0 ≤ i ≤ n-1. Now 

the value stored in the root node of each tree is broadcasted to all 

its leaf nodes. Each leaf node (i,j) has two data, Rij and Cij. The 

value broadcasted by the root node of the ith row tree is stored in 

Rij and the value broadcasted by the root node of the j th column 

tree is stored in Cij where 0 ≤ i, j ≤ n-1.  Figure 3 shows 

initialization of the leaf nodes of MOT (4) for the permutation (0 

2 -1 3). 

(3,0) (3,1) (3,2) (3,3) 

(2,0) (2,2) (2,3) 

(1,0) (1,1) (1,2) (1,3) 

(2,1) 

(0,0) (0,1) (0,2) (0,3) 
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4.2Parallel Sorting by Reversal Algorithm 
In this we are giving the parallel algorithm that sorts a 

permutation of extended length n using MOT(n) interconnection 

network.  

4.2.1Main Algorithm 
The main sorting algorithm (Algorithm 1) is using two auxiliary 

algorithms, Algorithm 2 for finding neighbors of each element of 

the current permutation and Algorithm 3 for carrying out 

reversals of elements in a given interval. 

Algorithm1 

Input: the elements of the permutation are initially distributed as 

described above (see subsection 4.1). The lists S1 and S2 in the 

root node of the column tree T0 are initialized as null.  

Output: the sorted elements are present in Ri0, 0≤ i ≤ n-1, in the 

leaf nodes of the column tree T0. They are also present in, C0j, 0≤ 

j ≤ n-1, in the leaf nodes of the row tree T0. Root node of the 

column tree T0 contains the sequence of reversal intervals in the 

combined list S1S2. 

The above output is obtained by applying the following steps- 

Step 1. Find the set of arcs using the neighbor finding algorithm 

(Algorithm 2 described in subsubsection 4.2.2). 

Step 2. For 0 ≤ i ≤ n-2 and 0≤ j ≤ n-1, the leaf node (i,0) of the 

column tree T0 sends its arc along with the oriented and 

isolated flags to its parent node. The parent node sets it 

oriented flag as false if none of the arcs are oriented. If all 

the arcs are isolated then it sets isolated flag as true. 

Otherwise, if there is an oriented arc which is not isolated 

then it sets oriented flag as true and isolated as false and 

also saves that arc. However, if all the oriented arcs are 

isolated then it will set oriented as true and isolated as true 

(i.e. there is no oriented arc which is not isolated).  Now 

the parent nodes send their flags to their parent nodes.  

The arc is also sent if oriented=true and isolated=false for 

that arc. The new parent node compute their flags using 

the same rule as described above and the process is 

repeated until the parent node is the root node.  

Step 3. The root node of the column tree T0 checks its oriented and 

isolated flags.  

a. If (oriented = false & isolated = true) then go to 

step 5. 

b.  If (oriented = true & isolated = true) then remove the 

last reversal interval (low, high) from the list S1 and 

add it to S2. 

c. Otherwise, the root node of the column tree T0 

computes the reversal interval for the oriented arc ((i, 

πi), (j, πj)), received from one of its child nodes, as 

follows:   

i. If i<j then l:=i and h:=j else l=j and h:=i. 

ii. If (πl < 0 & |πl| < πh) or (πl ≥0 & πl > |πh|) then 

low = l and high = h-1 else low = l+1 and 

high = h.  

iii. It adds the reversal interval (low, high) to the 

list s1. 

Step 4. Use the parallel reversal algorithm (Algorithm 3 described 

in subsubsection 4.2.3) to perform the reversal in the 

interval (low, high). Go to step 1. 

Step 5. Root node of the column tree T0 output the sequence S1S2.                          

4.2.2Neighbor Finding Algorithm 
We say that πj is neighbor of πi iff |πi| +1 = |πj|, 0 ≤ i ≤ n-2, 1 ≤ j 

≤ n-1. That is there is an arc between πi & πj, which we denote as 

arc ((i, πi), (j, πj)).The arc ((i, πi), (j, πj))  is said to be oriented if 

πi & πj have opposite signs otherwise it is unoriented. According 

to the definition of the isolated arc given in section 2, we can say 

that arc ((i, πi), (j, πj)) is isolated if both πi & πj are negative and 

j-i =1or if both πi & πj are positive and i-j=1. Each row tree Ti 

except Tn-1 uses the neighbor finding algorithm to find its 

neighbor tree Tj such that |πi| +1 = |πj|. We have dropped the 

superscript for the row as only row trees are participating in this 

algorithm. 

 

Algorithm 2 

Input: Rij contains the element πi and Cij contains element πj of 

the input permutation π in the leaf node (i,j), 0 ≤ i, j ≤ n-1.  

Output: The leftmost leaf node of each row except Tn-1 tree has 

an arc ((i,πi),(j,πj)) along with isolated and oriented flags to 

indicate if the arc is isolated or oriented respectively. 

The corresponding algorithm is defined as- 

For 0 ≤ i ≤ n-2, 0≤ j ≤ n-1 do in parallel 

Step 1.  Leaf nodes of each row tree Ti (except Tn-1) compare 

contents of Rij and Cij, where and i ≠ j. If a leaf node 

finds | πi | + 1 = | πj |, then it sends arc ((i, πi), (j, πj)) to 

the leftmost leaf node. Obviously, this will be true for 

only one leaf node of a tree. 

Step 2.  Each leaf node (i,0) of the column tree T0 sets the 

oriented flag as true if πi & πj have opposite signs 

otherwise false. Also isolated flag is set as true if both πi 

& πj are negative and j-i =1or if both πi & πj are positive 

and i-j=1 otherwise false. 

4.2.3Parallel Reversal Algorithm 
Each row tree in the reversal interval (low, high) compute their 

partner row tree with which it has to exchange its element after 

reversing its sign. This change in the permutation is also 

reflected in the respective columns in the reversal interval. 
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Algorithm 3 

Input: A reversal interval (low, high) in the root node of tree Tn+2. 

The corresponding algorithm is defined as- 

For  low ≤ k ≤ high do in parallel 

Step 1. Root node of each row tree Tk computes its reversal     

partner p as p = low + high – k, if low ≠ high. If low = 

high then k = p = low (or high).  

Step 2. Root node of each row tree Tk broadcasts the value stored 

in Ckp to all its leaf nodes after reversing its sign. 

Step 3. Root node of each column tree Tk simultaneously 

broadcasts the value of stored in Rkk to all its leaf nodes. 

To sort an input permutation (0 2 -1 3) using parallel sorting by 

reversal algorithm we need MOT(4) interconnection network,as 

there are 4 elements in the permutation. First the MOT(4) is 

initialized with the elements of the permutation as shown in 

figure 3.  

  

 

 

 

 

 

 

 

Figure 3. Initializing leaf nodes of MOT (4) for the input 

permutation (0 2 -1 3) 

Then steps 1 - 4 of the main algorithm are repeated until the 

termination condition is satisfied. Execution of the neighbor 

finding algorithm (Algorithm 2) is shown in the Figure 4. 

Next the root node of the column tree T0 selects one of the 

oriented arcs received from its leaf nodes. In this case arc ((2,-

1),(1,2)) and arc ((0,0),(2,-1)) are oriented. Let the root node 

selects arc ((0,0),(2,-1)) then it computes the reversal interval for 

the arc-  

low = (i+1) =1 and 

high = (j) = 2 

The reversal interval (low,high) is added to list S1 and the 

parallel reversal algorithm (Algorithm 3) is used to reverse the 

elements in the reversal interval. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Step 1 of the main algorithm for the input 

permutation (0 2 -1 3) 

Row trees T1 and T2 are in the reversal interval. Each of them 

compute their reversal partner (for k=1, p is 2 and for k=2, p is 

1). Now the row tree T1 broadcasts the value –C12 and the row 

tree T2 broadcasts the value –C21 resulting in: 

R10 = R11 = R12 = R13 = -C12 = 1 and R20 = R21 = R22 = R23 = -C21 

= -2. 

Next the column trees T1 and T2 broadcasts the value in R11 and 

in R22 respectively, resulting in: C01 = C11 = C21 = C31 = R11 = 1 

and C02 = C12 = C22 = C32 = R22 = -2. 

The new distribution of the elements is shown in Figure 5. 

 

 

 

 

 

 

Figure 5. Contents of leaf nodes of MOT(4) after first 

iteration  

In the next iteration the two oriented arcs are ((1,1),(2,-2)) and 

((2,-2),(3,3)). For any of these arc reversal interval is low=2 and 

high=2. So, k=p=low or high=2. 

Therefore, the row tree T2 broadcast the value –C22 resulting in: 

R20 = R21 = R22 = R23 = -C22 = 2. Then the column tree T2 

broadcasts the value R22 to all its leaf nodes,  
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C02 = C12 = C22 = C32 = R22 = 2 (see Figure 6). 

In step 3 of third iteration it is found that none of the arcs are 

oriented and all the arcs are isolated. The main algorithm 

(Algorithm 1) terminates after executing step 5. Now the 

elements in the Ri0, 0≤ i ≤ n-1, of the leaf nodes of the column 

tree T0 (see Figure 6) are the elements of the input permutation 

sorted in ascending order. These sorted elements also present in 

the Ci0, 0 ≤ i ≤ n-1, of the leaf nodes of the row tree T0. The 

optimal sequence of reversals is present in the list S1S2. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Contents of leaf nodes of MOT (4) after second 

iteration  

5.DISCUSSION AND CONCLUSION  
In the parallel sorting by reversal algorithm a reversal is applied 

only once unless it is an unsafe reversal [10]. If the reversal is 

unsafe it is reapplied. Hence, the complexity is determined by 

the time required for finding neighbors, detecting and selecting 

an oriented arc, and applying the corresponding reversal to the 

permutation. In the MOT(n) interconnection network data 

broadcast operation needs O(log n) time [4]. The input 

permutation π is can be sorted on MOT(2m) ,where 2m-1 < n ≤ 2m. 

If m > log n (when n is not power of two) then only first n leaf 

nodes of n bottommost row-trees and n leftmost column trees 

will be used. If m = log n then we have MOT(n) with n row trees 

and n column trees where each tree is a complete binary tree 

having n leaf nodes. Initialization step takes O(log n) time to 

distribute the elements of the input permutation to all the leaf 

nodes as decribed in section 4.1. In step 1 of the main algorithm 

(Algorithm 1) the neighbor finding algorithm (Algorithm 2) is 

used to find the set of arcs in the current permutation.  It takes 

O(1) time to compare the two values (Rij and Cij) in the leaf 

nodes and O(log n) time for sending the arc to the leftmost leaf 

node. In constant time the leftmost leaf nodes can set their 

oriented and isolated flags. Hence, the neighbor finding 

algorithm takes O(log n ) time. The second step of Algorithm 1 

also takes O(log n) time. Now the root node of the column tree T0 

can check the flags, select an oriented arc and determine the 

reversal interval in constant time. In step 4 of Algorithm 1, the 

parallel reversal algorithm (Algorithm 3) is used to carry out the 

reversal in a given interval. The row trees in the reversal interval 

determine the index of their exchange partner in O(1) time. The 

reversal is done using row/column broadcast operation in O(log 

n) time. Thus, the parallel reversal algorithm takes O(log n) 

time. Steps 1-4 of Algorithm 1 are repeated until all the arcs are 

isolated and unoriented. In each iteration (except the last) one 

reversal operation is performed. After each reversal operation at 

least one (at most two) arc becomes isolated out of total (n-1) 

arcs. Therefore, the time complexity of the sorting algorithm to 

sort a signed permutation of length n by reversal operation is O(n 

log n) on MOT(n) interconnection network. In the case where  

2m-1 < n < 2m , the time complexity of the proposed parallel 

algorithm will be O(n + n log n) which is also O(n log n). 
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