
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 10

99

Parallel Algorithm for Sorting a Signed Permutation by

Reversals on MOT Interconnection Network

Amritanjali
Department of Computer Science and Engineering

Birla Institute of Technology
Mesra, Ranchi, India – 835215.

G. Sahoo
Department of Information Technology

Birla Institute of Technology
Mesra, Ranchi, India – 835215.

ABSTRACT
The problem of sorting a signed permutation by reversals is

inspired and motivated by comparative genomics. Following the

first polynomial time solution of this problem, several

improvements have been published on the subject. The currently

fastest algorithms is defined by the sequence augmentation

sorting algorithm using balanced binary tree with running time

O(n3/2√log n). We give a parallel implementation of the sequence

augmentation sorting algorithm on the Mesh of trees architecture.

Categories and Subject Descriptors
C.1.2[Processor Architectures]: Multiple Data Stream

Architectures – Interconnection Architectures

G.1.0 [Numerical Analysis]: General – parallel algorithms

General Terms
Algorithms

Keywords
Genome rearrangements, Sorting by reversals, Interconnection

network, Time complexity.

1.INTRODUCTION
With new techniques for sequencing the entire genome of

organisms, biology is rapidly moving towards a data-intensive

computational science. The great challenge we face now is how

to process this huge amount of data and extract from it relevant

biological information. One way to structure this information is

by comparative genomics, where we analyze data coming from

distinct species and learn from the similarities and differences in

related genomes. In this area, very large DNA molecules are

investigated with respect to the relative order of genes in them.

This is motivated from an observation that closely related species

mostly have homologous genes but the genes occur in different

orders. The order of genes in the genomes of species can change

during evolution and can provide information about their

phylogenetic relationship. An interesting method to infer the

phylogenetic relationship from the gene orders is to use different

types of rearrangement operations and to find possible

rearrangement scenarios using these operations. One of the most

common rearrangement operations is reversals, which reverse the

order of a subset of neighbored genes. Reversals are by far the

best studied gene order rearrangement operations. In comparative

genomics, algorithms that sort permutations by reversals are

often used to propose evolutionary scenarios of large-scale

genomic mutations between species.

In this context, unichromosomal genomes are usually encoded as

signed permutations, in which each element represents a gene

and the sign determines the orientation of the gene. The problem

of sorting signed permutations by reversals can be stated as:

given two chromosomes, represented as sequences of genomic

segments, find a parsimonious sequence of reversals that

transforms a chromosome into the other one. The first polynomial

algorithm was given by Hannenhalli and Pevzner [6], and took

O(n4) time. After many subsequent improvements on the running

time currently, the best known algorithm for this problem runs in

O(n3/2√log n) time [10].

Sorting a signed permutation π by reversals involves two

successive procedures on what is called the overlap graph of π.

The first one consists in transforming the overlap graph such that

all its connected components become oriented. This can be done

in linear time [2]. The computational bottleneck of the sorting by

reversals problem occurs in the second procedure: sorting the

oriented components. The complexity of sorting the oriented

components is determined by the time necessary to detect and

choose an oriented arc, and apply the corresponding reversal to

the permutation. With a classical data structure, using for

instance a vector array to represent the current permutation, this

is easily achievable in linear time. As a consequence, the

algorithm, as well as any algorithm for sorting by reversals that

has to apply a reversal at each step, will run in O(n2). In [7],

Kaplan and Verbin described a clever data structure which

allows to choose an oriented arc and apply the corresponding

reversal in sublinear time. Eric Tannier, Anne Bergeron, Marie-

France Sagot [10] used the same data structure, just adding some

flags in order to be able to choose an oriented arc in a specific

subset of the arcs, making it possible to apply a reversal and

maintain the data structure in time O(√n log n) resulting in

overall O(n3/2√log n) time complexity.

In this paper we propose O(n log n) parallel algorithm to sort a

permutation of length n on the MOT (2m) interconnection

network [4] where 2m-1 < n ≤ 2m. This paper is organized as

follows: we have formalized the sorting by reversal problem in

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 10

100

section 2. Section 3 gives a brief introduction of the MOT

interconnection network. We give details of parallel

implementation of sorting by reversal algorithm on MOT

interconnection network in section 4. We summarize our results

in Section 5.

2.PROBLEM FORMALIZATION
For the purpose of sorting we identify the genes with the integers

1, . . . , n, with a plus or minus sign to indicate their direction.

The order and direction of genomic markers will be represented

by a signed permutation of {1, . . . , n}.

To simplify exposition, we adopt the usual extension which

consists in adding π0 = 0, and πn+1 = n + 1 to the permutation. We

usually denote a signed permutation by simply writing (0 π1 . . .

πn n+1). The identity permutation (0 1 . . . n+1) is denoted by I.

The inverse permutation π−1 of π is the (signed) permutation such

that π · π−1 = I.

The reversal of the interval [i, j] , 1 ≤ i, j ≤ n, i ≠ j is the signed

permutation ρ i,j = (0 . . . i − 1 − j . . . − i j + 1 . . . n + 1). Note

that π · ρi,j is the permutation obtained from π by reversing the

order and flipping the signs of the elements in the interval [i, j]:

 π.ρi,j = (π0 … πi-1 –πj … -πi πj+1 … πn+1).

If ρ1,…,ρk is a sequence of reversals, we say that it sorts a

permutation π.ρ1…ρk = I.

To each πi , 0 ≤ i ≤ n+1, are associated two points, named πi
- and

πi
+ , except for 0 and n + 1, for which we define only the points

0+ and (n + 1)− respectively.

An arc(πi, πj) is drawn between the points πi
+and πj

- where 0 ≤ i,j

≤ n and | πj | = | πi | + 1 (see Figure 1). Thus, there are n + 1 arcs

and each point is the endpoint of a unique arc. Such arcs will be

referred to as the arcs of π. Two arcs are said to overlap if the

intervals they span (that is the set of points between the

endpoints in the given order) intersect but none is contained in

the other. If an arc is not overlapping with any other arc then it is

said to be isolated. The arc(πi, πj) is said to be oriented if πi and πj

have different signs, otherwise unoriented.

 0 2 -3 1 4

 0+ 2- 2+ 3+ 3- 1- 1+ 4-

 ● ● ● ● ● ● ● ●

Figure 1. a signed permutation (0 2 -3 1 4) with associated

points and arcs

3.MESH OF TREES ARCHITECTURE
 The mesh of trees is a hybrid interconnection network based on

arrays and trees. It owns two advantages of small diameter and

large bisection width and is known as the fastest network when

considered solely in terms of speed.

A two-dimensional 2n×2n mesh of trees consists of 2n×2n grid of

nodes where there is a 2n-leaf complete binary tree on each row

and each column. For convenience MOT(2n) to denote a 2n×2n

mesh of trees. The trees built on rows and columns are called

row trees and column trees, respectively. The leaf nodes are

labeled by a pair of integers (i,j); i is the row index and j is the

column index. For example MOT(4) is depicted in Figure 3,

where each square represents a leaf node and each darkened

circle represents a root node. There are 3×22n-2n+1 nodes

contained in MOT(2n). The diameter and bisection width of

MOT(2n) are 4n and 2n,respectively. denotes the row tree with

leaf nodes denoted as (d,0),(d,1), …,(d,(2n-1)) and by denotes

the column tree with leaf nodes (0,d), (1,d), …, , ((2n-1),d)

where 0 ≤ d ≤ 2n-1. Each leaf-node is the intersection of a row

tree and a column tree. So a leaf node (i,j) will be at the

intersection of and , i.e. it is the jth leaf node of tree and

ith leaf node of tree .

Figure 2: MOT (4)

4.PROPOSED PARALLEL ALGORITHM
Let we have to sort a signed permutation π of extended length n

(n is two plus the actual number of elements in the original

permutation).The only operation that we have used is the reversal

operation. We present our parallel algorithm for sorting the

permutation π on MOT(2m) where m ≥ log n. If m = log n then

we have MOT(n) with n row trees and n column trees where

each tree is a complete binary tree having n leaf nodes. If m > log

n (when n is not power of two) then only first n leaf nodes of n

leftmost column trees and n bottommost row trees will be used.

4.1Initialization
The elements of the permutation π are distributed to the root

nodes of all the trees such that root node of ith row/column tree

has (i+1)th element of the permutation π, where 0 ≤ i ≤ n-1. Now

the value stored in the root node of each tree is broadcasted to all

its leaf nodes. Each leaf node (i,j) has two data, Rij and Cij. The

value broadcasted by the root node of the ith row tree is stored in

Rij and the value broadcasted by the root node of the j th column

tree is stored in Cij where 0 ≤ i, j ≤ n-1. Figure 3 shows

initialization of the leaf nodes of MOT (4) for the permutation (0

2 -1 3).

(3,0) (3,1) (3,2) (3,3)

(2,0) (2,2) (2,3)

(1,0) (1,1) (1,2) (1,3)

(2,1)

(0,0) (0,1) (0,2) (0,3)

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 10

101

4.2Parallel Sorting by Reversal Algorithm
In this we are giving the parallel algorithm that sorts a

permutation of extended length n using MOT(n) interconnection

network.

4.2.1Main Algorithm
The main sorting algorithm (Algorithm 1) is using two auxiliary

algorithms, Algorithm 2 for finding neighbors of each element of

the current permutation and Algorithm 3 for carrying out

reversals of elements in a given interval.

Algorithm1

Input: the elements of the permutation are initially distributed as

described above (see subsection 4.1). The lists S1 and S2 in the

root node of the column tree T0 are initialized as null.

Output: the sorted elements are present in Ri0, 0≤ i ≤ n-1, in the

leaf nodes of the column tree T0. They are also present in, C0j, 0≤

j ≤ n-1, in the leaf nodes of the row tree T0. Root node of the

column tree T0 contains the sequence of reversal intervals in the

combined list S1S2.

The above output is obtained by applying the following steps-

Step 1. Find the set of arcs using the neighbor finding algorithm

(Algorithm 2 described in subsubsection 4.2.2).

Step 2. For 0 ≤ i ≤ n-2 and 0≤ j ≤ n-1, the leaf node (i,0) of the

column tree T0 sends its arc along with the oriented and

isolated flags to its parent node. The parent node sets it

oriented flag as false if none of the arcs are oriented. If all

the arcs are isolated then it sets isolated flag as true.

Otherwise, if there is an oriented arc which is not isolated

then it sets oriented flag as true and isolated as false and

also saves that arc. However, if all the oriented arcs are

isolated then it will set oriented as true and isolated as true

(i.e. there is no oriented arc which is not isolated). Now

the parent nodes send their flags to their parent nodes.

The arc is also sent if oriented=true and isolated=false for

that arc. The new parent node compute their flags using

the same rule as described above and the process is

repeated until the parent node is the root node.

Step 3. The root node of the column tree T0 checks its oriented and

isolated flags.

a. If (oriented = false & isolated = true) then go to

step 5.

b. If (oriented = true & isolated = true) then remove the

last reversal interval (low, high) from the list S1 and

add it to S2.

c. Otherwise, the root node of the column tree T0

computes the reversal interval for the oriented arc ((i,

πi), (j, πj)), received from one of its child nodes, as

follows:

i. If i<j then l:=i and h:=j else l=j and h:=i.

ii. If (πl < 0 & |πl| < πh) or (πl ≥0 & πl > |πh|) then

low = l and high = h-1 else low = l+1 and

high = h.

iii. It adds the reversal interval (low, high) to the

list s1.

Step 4. Use the parallel reversal algorithm (Algorithm 3 described

in subsubsection 4.2.3) to perform the reversal in the

interval (low, high). Go to step 1.

Step 5. Root node of the column tree T0 output the sequence S1S2.

4.2.2Neighbor Finding Algorithm
We say that πj is neighbor of πi iff |πi| +1 = |πj|, 0 ≤ i ≤ n-2, 1 ≤ j

≤ n-1. That is there is an arc between πi & πj, which we denote as

arc ((i, πi), (j, πj)).The arc ((i, πi), (j, πj)) is said to be oriented if

πi & πj have opposite signs otherwise it is unoriented. According

to the definition of the isolated arc given in section 2, we can say

that arc ((i, πi), (j, πj)) is isolated if both πi & πj are negative and

j-i =1or if both πi & πj are positive and i-j=1. Each row tree Ti

except Tn-1 uses the neighbor finding algorithm to find its

neighbor tree Tj such that |πi| +1 = |πj|. We have dropped the

superscript for the row as only row trees are participating in this

algorithm.

Algorithm 2

Input: Rij contains the element πi and Cij contains element πj of

the input permutation π in the leaf node (i,j), 0 ≤ i, j ≤ n-1.

Output: The leftmost leaf node of each row except Tn-1 tree has

an arc ((i,πi),(j,πj)) along with isolated and oriented flags to

indicate if the arc is isolated or oriented respectively.

The corresponding algorithm is defined as-

For 0 ≤ i ≤ n-2, 0≤ j ≤ n-1 do in parallel

Step 1. Leaf nodes of each row tree Ti (except Tn-1) compare

contents of Rij and Cij, where and i ≠ j. If a leaf node

finds | πi | + 1 = | πj |, then it sends arc ((i, πi), (j, πj)) to

the leftmost leaf node. Obviously, this will be true for

only one leaf node of a tree.

Step 2. Each leaf node (i,0) of the column tree T0 sets the

oriented flag as true if πi & πj have opposite signs

otherwise false. Also isolated flag is set as true if both πi

& πj are negative and j-i =1or if both πi & πj are positive

and i-j=1 otherwise false.

4.2.3Parallel Reversal Algorithm
Each row tree in the reversal interval (low, high) compute their

partner row tree with which it has to exchange its element after

reversing its sign. This change in the permutation is also

reflected in the respective columns in the reversal interval.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 10

102

Algorithm 3

Input: A reversal interval (low, high) in the root node of tree Tn+2.

The corresponding algorithm is defined as-

For low ≤ k ≤ high do in parallel

Step 1. Root node of each row tree Tk computes its reversal

partner p as p = low + high – k, if low ≠ high. If low =

high then k = p = low (or high).

Step 2. Root node of each row tree Tk broadcasts the value stored

in Ckp to all its leaf nodes after reversing its sign.

Step 3. Root node of each column tree Tk simultaneously

broadcasts the value of stored in Rkk to all its leaf nodes.

To sort an input permutation (0 2 -1 3) using parallel sorting by

reversal algorithm we need MOT(4) interconnection network,as

there are 4 elements in the permutation. First the MOT(4) is

initialized with the elements of the permutation as shown in

figure 3.

Figure 3. Initializing leaf nodes of MOT (4) for the input

permutation (0 2 -1 3)

Then steps 1 - 4 of the main algorithm are repeated until the

termination condition is satisfied. Execution of the neighbor

finding algorithm (Algorithm 2) is shown in the Figure 4.

Next the root node of the column tree T0 selects one of the

oriented arcs received from its leaf nodes. In this case arc ((2,-

1),(1,2)) and arc ((0,0),(2,-1)) are oriented. Let the root node

selects arc ((0,0),(2,-1)) then it computes the reversal interval for

the arc-

low = (i+1) =1 and

high = (j) = 2

The reversal interval (low,high) is added to list S1 and the

parallel reversal algorithm (Algorithm 3) is used to reverse the

elements in the reversal interval.

Figure 4. Step 1 of the main algorithm for the input

permutation (0 2 -1 3)

Row trees T1 and T2 are in the reversal interval. Each of them

compute their reversal partner (for k=1, p is 2 and for k=2, p is

1). Now the row tree T1 broadcasts the value –C12 and the row

tree T2 broadcasts the value –C21 resulting in:

R10 = R11 = R12 = R13 = -C12 = 1 and R20 = R21 = R22 = R23 = -C21

= -2.

Next the column trees T1 and T2 broadcasts the value in R11 and

in R22 respectively, resulting in: C01 = C11 = C21 = C31 = R11 = 1

and C02 = C12 = C22 = C32 = R22 = -2.

The new distribution of the elements is shown in Figure 5.

Figure 5. Contents of leaf nodes of MOT(4) after first

iteration

In the next iteration the two oriented arcs are ((1,1),(2,-2)) and

((2,-2),(3,3)). For any of these arc reversal interval is low=2 and

high=2. So, k=p=low or high=2.

Therefore, the row tree T2 broadcast the value –C22 resulting in:

R20 = R21 = R22 = R23 = -C22 = 2. Then the column tree T2

broadcasts the value R22 to all its leaf nodes,

((2,-1),(1,2))

oriented=true

isolated=false

R22=-1

C22=-1

R23=-1

C23=3

((1,2),(3,3))

oriented=false

isolated=false

R11=2

C11=2

R12=2

C12=-1

R13=2

C13=3

((0,0),(2,-1))

oriented=true

isolated=false

R01=0

C01=2

R02=0

C02=-1

R03=0

C03=3

R21=-1

C21=2

R30=3

C30=0

R31=3

C31=2

R32=3

C32=-1

R33=3

C33=3

R20=-1

C20=0

R22=-1

C22=-1

R23=-1

C23=3

R10=2

C10=0

R11=2

C11=2

R12=2

C12=-1

R13=2

C13=3

R21=-1

C21=2

R00=0

C00=0

R01=0

C01=2

R02=0

C02=-1

R03=0

C03=3

R30=3

C30=0

R31=3

C31=1

R32=3

C32=-2

R33=3

C33=3

R20=-2

C20=0

R22=-2

C22=-2

R23=-2

C23=3

R10=1

C10=0

R11=1

C11=1

R12=1

C12=-2

R13=1

C13=0

R21=-2

C21=1

R00=0

C00=0

R01=0

C01=1

R02=0

C02=-2

R03=0

C03=3

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 10

103

C02 = C12 = C22 = C32 = R22 = 2 (see Figure 6).

In step 3 of third iteration it is found that none of the arcs are

oriented and all the arcs are isolated. The main algorithm

(Algorithm 1) terminates after executing step 5. Now the

elements in the Ri0, 0≤ i ≤ n-1, of the leaf nodes of the column

tree T0 (see Figure 6) are the elements of the input permutation

sorted in ascending order. These sorted elements also present in

the Ci0, 0 ≤ i ≤ n-1, of the leaf nodes of the row tree T0. The

optimal sequence of reversals is present in the list S1S2.

Figure 6. Contents of leaf nodes of MOT (4) after second

iteration

5.DISCUSSION AND CONCLUSION
In the parallel sorting by reversal algorithm a reversal is applied

only once unless it is an unsafe reversal [10]. If the reversal is

unsafe it is reapplied. Hence, the complexity is determined by

the time required for finding neighbors, detecting and selecting

an oriented arc, and applying the corresponding reversal to the

permutation. In the MOT(n) interconnection network data

broadcast operation needs O(log n) time [4]. The input

permutation π is can be sorted on MOT(2m) ,where 2m-1 < n ≤ 2m.

If m > log n (when n is not power of two) then only first n leaf

nodes of n bottommost row-trees and n leftmost column trees

will be used. If m = log n then we have MOT(n) with n row trees

and n column trees where each tree is a complete binary tree

having n leaf nodes. Initialization step takes O(log n) time to

distribute the elements of the input permutation to all the leaf

nodes as decribed in section 4.1. In step 1 of the main algorithm

(Algorithm 1) the neighbor finding algorithm (Algorithm 2) is

used to find the set of arcs in the current permutation. It takes

O(1) time to compare the two values (Rij and Cij) in the leaf

nodes and O(log n) time for sending the arc to the leftmost leaf

node. In constant time the leftmost leaf nodes can set their

oriented and isolated flags. Hence, the neighbor finding

algorithm takes O(log n) time. The second step of Algorithm 1

also takes O(log n) time. Now the root node of the column tree T0

can check the flags, select an oriented arc and determine the

reversal interval in constant time. In step 4 of Algorithm 1, the

parallel reversal algorithm (Algorithm 3) is used to carry out the

reversal in a given interval. The row trees in the reversal interval

determine the index of their exchange partner in O(1) time. The

reversal is done using row/column broadcast operation in O(log

n) time. Thus, the parallel reversal algorithm takes O(log n)

time. Steps 1-4 of Algorithm 1 are repeated until all the arcs are

isolated and unoriented. In each iteration (except the last) one

reversal operation is performed. After each reversal operation at

least one (at most two) arc becomes isolated out of total (n-1)

arcs. Therefore, the time complexity of the sorting algorithm to

sort a signed permutation of length n by reversal operation is O(n

log n) on MOT(n) interconnection network. In the case where

2m-1 < n < 2m , the time complexity of the proposed parallel

algorithm will be O(n + n log n) which is also O(n log n).

6.REFERENCES
[1] Arslan, A. N. 2006. An algorithm for string edit distance

allowing substring reversals. Sixth IEEE Symposium on

BionInformatics and BioEngineering.

[2] Bader, D. A., Moret, B. M. E., Yan, M. 2001. A linear-time

algorithm for computing inversion distance between signed

permutations with an experimental study. In Proceedings of

the Workshop on Algorithms and Data Structures, 2001, pp.

365–376.

[3] Bader, M., Abouelhoda, M., Ohlebusch, E. 2008. A fast

algorithm for the multiple genome rearrangement problem

with weighted reversals and transpositions. BioMed Central

Bioinformatics .

[4] Chen, W., Chen, G., Hsu, D. F. 2000. Combinatorial

properties of Mesh of Trees. In Proceedings of the

International Symposium on Architectures, Algorithms and

Networks, 134-139.

[5] Diekmann, Y., Sagot, M., and Tannier, E. 2007. Evolution

under Reversals : Parsimony and Conservetion of Common

Intervals. IEEE/ACM Transactions on Computational

Biology and Bioinformatics, Vol. 4, No. 2.

[6] Hannenhalli, S., Pevzner, P. 1999. Transforming cabbage

into turnip (polynomial algorithm for sorting signed

permutations by reversals). J. Assoc. Comput. Mach. 46

(1999) 1–27.

[7] Kaplan, H., Verbin, E. 2003. Efficient data structures and a

new randomized approach for sorting signed per mutations

by reversals. In Proceedings of the CPM’03, Lecture Notes

in Computer Science, vol. 2676, Springer, Berlin, 170–185.

[8] Li, Z., Wang, L. and Zhang, K. 2006. Algorithmic

Approaches for Genome Rearrangement: A Review. IEEE

Transactions on Systems, Man, and Cybernetics, Vol. 36.

[9] Roy, S., Rahman, M., and Thakur, A. K. 2008. Sorting

Primitives and Genome Rearrangement in Bioinformatics: A

Unified Perspective. In Proceedings of World Academy of

Science, Engineering and Technology, Vol. 28.

[10] Tannier, E., Bergeron, A., Sagot, M. F. 2007. Advances on

sorting by reversals. Applied Discrete Mathematics Elsevier

(2007), 881– 888.

R30=3

C30=0

R31=3

C31=1

R32=3

C32=2

R33=3

C33=3

R20=2

C20=0

R22=2

C22=2

R23=2

C23=3

R10=1

C10=0

R11=1

C11=1

R12=1

C12=2

R13=1

C13=0

R21=2

C21=1

R00=0

C00=0

R01=0

C01=1

R02=0

C02=2

R03=0

C03=3

