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ABSTRACT 

As technology scales down, timing verification of digital 

integrated circuits becomes an extremely difficult task due to 

statistical variations in the gate and wire delays. Statistical timing 

analysis techniques are being developed to tackle this problem. 

The variations of critical dimensions in modern VLSI 

technologies lead to variability in interconnect performance that 

must be fully accounted for the timing verification. However, 

handling a multitude of inter-die/intra-die variations and assessing 

their impacts on circuit performances can dramatically complicate 

the timing analysis. For optimizations like physical synthesis and 

static timing analysis, efficient interconnect delay and slew 

computation is critical. Slew indicates the rate of change of 

input/output signals. Slew rate determines the ability of a device 

to handle the varying signals. Determination of slew rate to a good 

proximity is thus very much essential for efficient design of high 

speed CMOS integrated circuits as the increase in waveform slew 

directly enhances the delay of the interconnections. This work 

presents an accurate and efficient model to compute the slew 

metric of on-chip interconnect of high speed CMOS circuits. Our 

slew metric assumption is based on the Gamma Distribution 

Function. The gamma distribution is used to characterize the 

normalized homogeneous portion of the step response. For a 

generalized RC interconnect model, the stability of the Gamma 

Distribution model is guaranteed. The better accuracy is proved 

by comparing our approach with the established methods and 

SPICE results. It is shown that our approach could result in the 

error in slew calculation as low as 2% with lower value of driver 

resistance when compared with the SPICE results. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids – Simulation; 

General Terms 
Algorithms, Design, Theory 

Keywords 
Moment Matching, On-Chip Interconnect, Probability 

Distribution Function, Slew calculation, Gamma Distribution, 

VLSI.  

1. INTRODUCTION 
Complex integrated systems on a single chip require 

communication between several components on the chip. Wires, 

buses or complex networks are used to transmit signals between 

subsystems. Interconnect delay computation is a critical task, 

which may be executed millions of times during floorplannig, 

placement, routing etc. So efficient, highly accurate and closed-

form delay and slew metrics are very important for IC designs. 

Modern chip designs contain an overwhelmingly large number of 

interconnects that must be analyzed efficiently. As such, 

efficiency of interconnect analysis is critical in a statistical timing 

flow. The advances in technology that result in scaled, multi-level 

interconnects may address the wire ability problem, but in the 

process create problems with signal integrity and interconnect 

delay. Elmore [1] proposed the impulse response of a linear 

circuit as a probability distribution function (PDF), using the 

mean of the impulse response to approximate the 50% delay of 

the circuit, which is the median of the impulse response under the 

probability interpretation under a step excitation. The Elmore 

delay metric has been incredibly popular because it is simple, 

closed-form, and easy to evaluate. However with development of 

the technology, interconnect delay is becoming comparable in 

value to cell delay or even dominates it, so in order to analyze the 

high speed VLSI circuit a priory, much more accurate 

interconnect delay and slew metrics are desired. AWE [5] can 

approach towards SPICE-like accuracy by computing and 

matching   higher order moments of the impulse response, but 

AWE does not provide any closed-form formula, in particular it 

involves finding a solution of a non-linear equation. So a new 

delay metric is desired which should be highly accurate but also 

simple and closed-form. 

As the technology is shrinking towards the ultra deep sub 

micrometer regime and transistor density in the chip is increasing, 

the length of the interconnect is getting longer [3]. So, efficient 

and accurate computation of slew metric is crucial for enhancing 

the switching speed of nano devices. In the nanotechnology age, 

as ultra deep sub-micron effects continue to wreak havoc on the 

integrity of the signal, so efficient and accurate computation of the 

slew metric has become critical. 

In this paper we present a closed form slew metrics based on the 

Gamma distribution. Matching the circuit characteristics to that of 

the parameters of gamma distribution function produces an 

explicit closed form expression for slew calculation. Our approach 

is different with respect to the proposals made in [1] [12] in that 

our slew calculation does not require any look-up table. We have 

proposed the slew metric, GSM (Gamma Slew Metric) using the 

first two moments of the impulse response. The effectiveness and 

accuracy of the Gamma metric is justified on nets from an 

industrial design. We have compared with [13] which is based on 

Weibull distribution and found that our new approach is more 
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accurate in capturing and estimating the slew metric for RC global 

interconnect. 

2. BASIC THEORY 
2.1 Moments of a Linear Circuit Response  

Applying a Taylor series expansion of 
ste− about s = 0 yields [7], 
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From (2) and (3), the transfer function H (s) can be expressed as:

  

( ) ...~~~~ 3

3

2

210 ++++= smsmsmmsH   (3) 

2.2 Central Moments  
Similar to moments, central moments are distribution theory 

concepts. Following Elmore’s distribution function analogy, we 

can use them to explain the properties of Elmore delay 

approximation.                                        

Consider the moment definition given in again: 
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The mean of the impulse response is given by [7] [12],  
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It is straightforward to show that the first few central moments can 

be expressed in terms of circuit moments as follows [6]: 
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Unlike the moments of the impulse response, the central moments 

have geometrical interpretations: 

0µ  is the area under the curve. It is generally unity, or else a 

simple scaling factor is applied. 

2µ    is the variance of the distribution which measures the spread 

or the dispersion of the curve from the center. A larger variance 

reflects a larger spread of the curve. 

3µ  is a measure of the skewness of the distribution; for a 

unimodal function its sign determines whether the mode (global 

maximum) is to the left or to the right of the expected value 

(mean). Its magnitude is a measure of the distance between the 

mode and the mean. 

2.3 Higher Central Moments in RC Tress  
The second and third central moments are always positive for RC 

tree impulse responses [6]. The positiveness of the second order 

central moment is obvious from its definition 
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The impulse response, ( )th , at any node in an RC tree is always 

positive. Hence the second central moment 
2µ  is always positive. 

2.4 Moments of Probability Density Function  
A probability function is a real valued set function where the 

domain is a subset of the sample space, S, and the range is a real 

number in the interval [0, 1]. Generally, a function { }*rP  should 

satisfy the three Kolmogorov axioms [8] (A), or equivalent 

conditions, in order to be considered as a probability function: 
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The distribution function of a continuous random variable T 

denoted by FT (t) provides the value of  { }tTPr ≤  for any real 

number ∞≤≤∞− t . The associated probability density function 

(PDF), denoted by fT (t) is the derivative of the distribution 

function with respect to t, thus 
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The median, t (0.5) , is defined by: 
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Whereas, the expected value or mean, )(tE of a continuous 

random variable T with distribution )(tfT  is: 
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The mean is also the first moment of the distribution (or PDF). In 

general, the ith moment mi of the distribution is: 
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Figure-1 summarizes these distribution definitions. Note that we 

use ' ' to distinguish between the probability moments m1, m2 and 

circuit moments 
21
~,~ mm    

 

 

2.5 Relation between Probability Density 
Functions and Circuit Response 

Any function f(t) can be treated as a probability density function if 

it is defined in the range [a, b] and satisfies [12] 
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If f (t) is equal to zero outside of the range [a, b], we can replace 

the integration limits in (13) with ∞− and∞ . Elmore [1] was 

the first to apply moments for delay approximation of a limited 

class of circuit responses by observing that the impulse response 

of a circuit can be treated as a probability density function. He 

used this observation to justify the approximation of the 50% 

point of a monotonic step response (the median point of the 

impulse response) by the first moment (mean of the impulse 

response). It was shown that the impulse response corresponding 

to an RC tree is unimodal with positive skew [6]. From this it 

follows that the mode is less than the median which is less than 

the mean and vice versa [8-9]: 

i.e. (Skew > 0) if and only if (mode <median < mean) 

Especially for the interconnects associated with deep submicron 

technologies, more than one moment is needed to capture the 

waveform shape-characteristics. 

3. PROPERTIES OF GAMMA 
DISTRIBUTION FUNCTION 
Elmore’s original delay approximation is based on the analogy 

between non-negative impulse responses and probability density 

functions. In theory, Elmore’s distribution interpretation can be 

extended beyond simply estimating the median by the mean if 

higher order moments can be used to characterize a representative 

distribution function. Once characterized, the delay can be 

approximated via closed form expression or table lookup of the 

median value for the representative distribution family. One 

proposal was to use a gamma distribution function [4]. The 

gamma distribution is a reasonably good representation of RC tree 

impulse responses since it provides good “coverage” of bell 

shaped curves which are bounded on the left and exponentially 

decaying to the right [10]. The Gamma distribution is depicted in 

Figure (2) [11]. The probability density function of gamma 

distribution )(, tg nλ , is a function of one variable t and two 

parameters λ  and n (positive real numbers) [11] 
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Where, )(xΓ is the gamma function defined as: 
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Now consider an impulse response h (t) and assume that it is 

approximated with a gamma probability density function 

)()( , tgth nλ=                (15) 

Then the transfer function is given by: 
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The s-domain model denoted by (17) may be interpreted as a 

unique pole with a real number order. Notice that when n  = 1, 
the gamma distribution model naturally degrades to the dominant 

pole model. However, the existence of the parameter n  increases 
the degree of freedom of the model. The first few moments of the 

transfer function can be expressed easily in terms of the 

parameters n  and  λ [2]. 
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Since the gamma function has only two variables, it can be 

uniquely characterized by fitting it with two moments [2], [11].  

For example, using the second and third equations, the parameters 

Figure 1. A Probability density function ( left) and 
corresponding distribution function ( right) 

 

Figure 2. The Gamma Distribution Function 
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λ and n  can be obtained from the first and second order circuit 
moments as: 
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In terms of the second central moment becomes 
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Recall that both 1m−  (the Elmore delay) and 2µ  are positive 

numbers for RC trees. Therefore the impulse response 

approximation with the parameters is always stable. 

In the approximation above, we have used the first two moments. 

However, at least three moments are generally required to capture 

essential waveform response characteristics. Therefore, to match 

the third moment and capture the skewness of the distribution, we 

add a third variable ∆, to include one more degree of freedom. We 

shift the gamma function ∆ by to approximate the impulse 

response: 

( ) )(, ∆−= tgth nλ     (20) 

Thus the transfer function becomes 
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and its moments are given by, 
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with 10 =m . We now have three unknowns, λ , n and ∆ in 

three equations. It can be shown that this equation. 

system can also be expressed in terms of 1m and second and third 

central moments, 2µ and 3µ . 
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Note that the second and third order central moments 2µ  and 

3µ  are independent of the shift∆ . λ  and n  are the measures 

of variance and skewness of the waveform, respectively, and they 

are not affected by the time shift. This results,  
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We now find an expression for the step response, y (t), which is 

the integral of the impulse response, 
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After some algebraic manipulation we obtain, 
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Where P (n, x) is the incomplete gamma function. 
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Where )(nΓ  is the gamma function. Note that P (n, t) is zero at t = 

0 and monotonically increases to one. Hence, to calculate the 

delay at a particular percentage point we only need to find the 

value of x such that 

α=),( xnP  

Where )( ∆−= tx λ . Then with a simple scaling and shifting, 

the delay is obtained: 

∆+=
λα
x

t      (30) 

3.1 Calculation of Parameters of the Gamma 
Distribution function 

Since gamma has only two parameters λ and n matching two 

moments would completely characterize this model. Hence Mean 

of the Gamma function is given by 

1m
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Variance of the Gamma function is given by 
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From (31) and (32),  
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In terms of the second central moment becomes [from (19)] 
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Recall that both 1m−  (the Elmore delay) and 2µ  are positive 

numbers for RC trees. Therefore the impulse response 

approximation with the parameters is always stable. 

4. PROPOSED CLOSED FORM SLEW 
METRIC 

The step response of an RC circuit is a cumulative density 

function (CDF) [7]. The RC response is considered as a single-

pole exponential waveform and can be modeled as  

0  ,   1)( >−=
−

teth

t

λ , If h (t) satisfies the following 

conditions: 

1)(,0)(     and  1)(0 =
∞→

=
−∞→

≤≤ tf
t

Lim
tf

t

Lim
th

          (34) 

Now, let TLO and THI be 10% and 90% delay points, respectively. 

Matching to these points to the CDF yields 
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From equations (35) & (36), we have 
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Using equations (37) and (38), we define the gamma slew metric 

(we call this metric as GSM) as 

λ1976.2=−= LOHI TTGSM    (39) 

Using equation (39), we can write the closed form expression of 

the slew metric in terms of first two circuit moments as 
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From the above derived equation (40) for the Slew Metric for the 

on-chip interconnect using Gamma Distribution Function; we see 

that the Slew Metric function is a simple function of the two first 

circuit moments. This is our proposed closed form slew model. 

 

5. EXPERIMENTAL RESULTS 
In order to verify the efficiency of our model, we have extracted 

208 routed nets containing 1026 sinks from an industrial ASIC 

design in 0.18 µm technology. We choose the nets so that the 

maximum sink delay is at least 10 ps and the delay ratio between 

closet and furthest sinks in the net is less than 0.2. It ensures that 

each net has at least one near end sink. We classify the 1026 sinks 

into the following three categories: 

513 far-end sinks have delay greater or equal to 75% of the 

maximum delay to the furthest sink in the net. 

342 mid-end sinks which have delay between 25% and 75% of the 

maximum delay and, 

171 near-end sinks which have delay less than or equal to 25% of 

the maximum delay.  

For each sink we compute the slew using SPICE simulator. We 

compare our slew metric with [1], [12] and [13]. We call these 

metrics as EDS, BakS and WbS, respectively. The comparison of 

our slew metric (GSM) with BakS, WbS and EDS is shown in 

Table I-IV. From the results shown in table I-IV, we find that our 

proposed model provides the best slew estimation compared to 

other approaches and results an average error of less than 2% for 

lower value of driver resistance and an average 6% for higher 

value of driver resistance. 

 

 

 

 

sinks BaKS EDS WbS GSM 

Near 17.25 143.23 15.34 11.54 

Mid 12.3 31.2 7.87 6.59 

Far 9.45 16.6 6.78 5.69 

Total 10.35 29.4 7.23 5.98 

 

 

 

 

 

sinks BaKS EDS WbS GSM 

Near 65.45 786.13 43.72 39.34 

Mid 11.76 24.27 4.65 3.91 

Far 9.23 11.23 2.831 1.987 

Total 9.23 11.23 2.831 1.987 

Table 1. Average (%) relative error with Diver resistance = 
0Ω 

Table 2. Average (%) relative error with Diver 
resistance = 100Ω 
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sinks BaKS EDS WbS GSM 

Near 44.25 615.1 27.38 19.63 

Mid 7.832 23.62 4.59 3.79 

Far 6.96 10.30 3.1 2.78 

Total 6.96 10.30 3.1 2.78 

 

 

sinks BaKS EDS WbS GSM 

Near 18.3 98.9 15.66 12.32 

Mid 10.23 26.56 7.67 6.71 

Far 7.12 78.65 6.98 5.91 

Total 10.54 78.65 6.98 5.86 

 

6. CONCLUSION 
We have proposed Gamma Distribution function based closed 

form Slew Metric model for the RC trees that is a simple function 

of two moments of impulse response. Our model has Elmore 

delay as upper bound but with significantly less error. The novelty 

of our approach is justified by the calculated slew from the 

experiments performed on the industrial nets. For a generalized 

RC interconnect model the stability of the homogeneous Gamma 

Distribution model is guaranteed. 
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Table 3.  % standard deviation with driver 
resistance =0Ω 

Table 4.  % standard deviation with driver resistance 
=100Ω 


