
©2010 International Journal of Computer Applications (0975 – 8887)  

Volume 1 – No. 10 

64 

 

A Novel and Efficient Approach for RC Delay Evaluation of 

On-chip VLSI Interconnect under Current Mode Signaling 

Technique 

  
R.  Kar 

VLSI Laboratory 
Department of ECE 
NIT Durgapur-713209  

 

 
                     

 

K.Ramakrishna 
Reddy 

VLSI Laboratory 
Department of ECE 
NIT Durgapur-713209 

 

 
  

Ashis K. Mal 
VLSI Laboratory 

Department of ECE 
NIT Durgapur-713209 

 

 
 
 

A.K.Bhattacharjee 
VLSI Laboratory 

Department of ECE 
NIT Durgapur-713209 

 

ABSTRACT 

Current-mode signaling significantly increases the bandwidth of 

on-chip interconnects compared to voltage mode signaling and 

reduces the overall propagation delay. A delay formula for current 

mode is necessary for estimation of delay and bandwidth for VLSI 

systems. In this paper, closed-form expression of delay model 

based on the effective lumped element resistance and capacitance 

approximation of distributed RC lines are presented. A new 

closed-form solution of delay under step input excitation is 

developed. The usefulness of this solution is that both resistive 

and capacitive load termination is accurately modeled for use in 

current mode signaling. Comparison of simulation results with 

other established models justifies the accuracy of our approach. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids – Simulation; 

General Terms 
Algorithms, Design, Theory 

Keywords 
Current mode signaling, On-chip Interconnect, Moment 

matching, MNA Analysis, Delay Calculation. 

1. INTRODUCTION 
The continuous miniaturization of integrated circuits has opened 

the path towards System-on-Chip realizations. Process shrinking 

into the nanometer regime improves transistor performance while 

the delay of global interconnects, connecting circuit blocks 

separated by a long distance, significantly increases. Signaling 

across long global on-chip interconnects is rapidly becoming a 

performance limiter due to reverse interconnect scaling trends. As 

an alternative to traditional voltage mode (VM) signaling, 

signaling techniques based on current-mode (CM) signaling 

allows for high-speed data transmission due to the improvement 

in interconnection bandwidth. Various techniques based on 

simulations and/or analytical closed-form formulations have been  

proposed to model delay in interconnects [1-3] using the VM 

signaling concept .Current mode signal transporting techniques  

 

may provide an attractive solution to some of the challenges 

caused by aggressive   Interconnect scaling.         

 A useful closed-form delay analysis of current mode signaling for 

RC interconnects was presented in [4]. However, the analysis 

assumes the output response is a linear-ramp signal and does not 

include transient effects due to a step or fast edge rates inputs. In 

this work, we present an analytical model based on the closed-

form formulation of the effective resistance and capacitance of a 

driven distributed RC line with arbitrary termination. [10] is 

based on this model and by satisfying the boundary conditions, a 

new closed-form single exponent approximation of 

interconnection delay under step input excitation is derived for 

arbitrary load terminations. It is shown that the accuracy of this 

work is the same as Sakurai's voltage mode formulation [5], 

extended herein to accommodate current-mode type circuits. 

        The closed-form delay expression presented in this paper 

provides fast delay estimation at only a first order complexity. The 

model is derived using recurring MNA (Modified Nodal Analysis) 

to obtain the equivalent resistance and capacitance. 

2. RC DELAY FORMULATION FOR 
CURRENT MODE SIGNALLING 
2.1 Basic Theory 

Long global interconnects can be modeled by distributed RC 

transmission lines as long as the overall line resistance dominates 

the response (i.e. R>>jwL). From a signaling point of view, both 

voltage and current mode drivers can be approximated by a 

voltage source and a linear resistance. Current-mode receivers, on 

the other hand, provide a low impedance node at the receiver 

whereas voltage-mode receivers present a high impedance 

capacitive termination. RL and CL are determined from the 

receiver circuit topologies 

      A generalized model for a driven distributed RC line is 

shown in Figure 1(a). The diver is modeled as a voltage source 

with output resistance RS. For the sake of generality the output of 

the line is terminated with a resistor RL, and load capacitance CL. 

For voltage-mode signaling, the termination resistance RL is 

infinite and the output voltage is seen across CL. In current mode 

signaling, the terminating resistance  RL is finite. 
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2.2 MNA for Closed form Derivation  
Moment-Matching Methods [6-7] can be used to derive a 

first-order network with effective lumped element parameters for 

voltage and current mode signaling. It is well understood that a 

lumped, linear, time-invariant circuit such as that of a generalized 

distributed RC line shown in Figure 1, can be conveniently 

expressed in terms of state equations by using the modified nodal 

admittance matrix (MNA) representation [8][9]. The generalized 

output equation can be expressed in the Laplace domain as: 

[ ] ( )[ ] ( )sbssCG =⋅+ X    (1) 

Where G and C are the nodal conductance and capacitance 

matrices, respectively as shown in Figure 1. X is vector of node 

voltages and b(s) is the input source excitation. 
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Gu is the segment conductance of the distributed 

transmission line and GL is the load conductance. GE=l/(Rs+Ru); 

where Rs is the source resistance. 

The vector of node voltages of X is expanded into a Taylor 

series to obtain the moments M in (2), where the subscript of Mq 

indicates the order of the moments. By equating the moments of 

same order on both sides of (2), a final recursive relationship is 

obtained to derive the moment as shown in (3). 

[ ] [ ] ( )sbsMsMMsCG =+++⋅+ ...2

210  (3)   

 So,      [ ] bMG =⋅ 0
                             

And [ ] [ ] 1−⋅=⋅ qq MCMG     0>∀q         (4) 

Where Mq represents the moment vector of the transfer 

function H(s) of Figure 1(a). A general closed-form expression for 

the qth moment and the kth node voltage of X(s) is given by: 

( ) i

q

N

i inv

k

q miCikGm ⋅⋅−=∑ =+ 11 )(),   (5) 

Where N is the number of distributed segments and Ginv, is 

the inverse matrix (
1−G ) which can be expressed as (A): 
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            From the 0th and 1st moments, the distributed network 

can be approximated to the 1st order transfer function as shown in 

(6), where p is the dominant pole that determines the delay of the 

line. 
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2.3 Effective Resistance and Capacitance  

Since the pole of  ( )sĤ   is l/ (Reff Ceff), the effective 

resistance and capacitance is derived from (5), which can be 

written in closed-form as: 
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Rs and  RL  are the source and load resistance respectively.  Rt  
and  Ct  are the total resistance and capacitance calculated from the 

 
   (a) 

 
 

(b) 

Figure 1. (a) Generalized distributed RC model  (b) 
Approximate effective lumped element model 
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unit length components R and C, and total interconnect length l; 

N is the number of distributed segments. 

Thus the distributed transmission line can be effectively 

modeled by the lumped element resistance and capacitance given 

in (7-8). The generalized effective lumped element model is 

shown in Figure 1(b). For current mode signals the source voltage 

(Vs) is scaled by α. The usefulness of this model is that an 

equivalent lumped element model can predict the step response of 

an interconnect line for both current and voltage model. 

3. DELAY ANALYSIS UNDER STEP 
INPUT EXCITATION 
In Figure 2, the distributed line with 1000 segments and lumped 

element model with effective resistance and capacitance is shown. 

Since we considered single dominant pole, the effective model 

voltage response in (6-8) will cross over the distributed output 

response at approximately 62% of the normalized output voltage.  

An improved analytical approximation of the delay can be 

obtained by satisfying the boundary conditions at v0.62 and vi, with 

a single exponent, as shown in Figure 2. 
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 The new normalized expression can be given by: 

( ) ( ) RC

t

i evtV
−

+−= 11     (10) 

Where RC is the time constant of the new single exponent 

approximation function. By forcing the boundary condition at v 

(t=t0.62), the following relationship is obtained: 
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An optimum value of vi   was found iteratively which is 

approximated by: 
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L
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For an input step excitation, the final expression for current mode 

and voltage mode signal can be derived by using (7-8) (11) and 

(12). 
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Where RLT. =RL/Rt, RST= RS /RL, CLT=CL /Ct, RSL=RS /RL   the 

term RE depicts the contribution of the normalized source and 

load terminations (i.e., RST, RLT and CLT), exhibiting great 

similarity to the equations derived by Sakurai [5]. The analytical 

formula of voltage mode signal matches well with the Sakurai 

model which is determined to have an error less than 3.5% for 

a large range of parameters’. This accuracy is also maintained 

for current mode signals across a wide range of values. 

4. RESULTS OF THE DELAY RESPONSE 
AND THE EQUATION 
We computed the delay for current mode signaling using HSPICE 

simulator keeping RL =500Ω. We compare our delay with [10] 

and distributed delay response with 1000 segments. We call these 

delays as BshD and DtdD, respectively. For V=0.8 Volt and 

RL=500 Ω the results of our model are almost equal to the 

distributed response and BshD. The comparison of our delay (RD) 

with BshD and DtdD is shown in Table 1. From Table 1 we find 

that our model provides the accurate delay estimation compared to 

other approaches and results an average error of 4.7% for large 

range of parameters. Where ‘V’ represents the normalized 

threshold voltage and RC represents the product of the distributed 

unit segment. We can easily extend our result to voltage mode (By 

putting ∞=LR  and 0=SR ). If we do so, we will get the 

similar expression as that of [5]. 

 

Figure 2.  Single exponential Function 
Approximation for the step response of a 

distributed line 
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5. CONCLUSION 
A closed-form 50% delay formula for the current mode 

interconnects with a step excitation is derived. Compared to 

HSPICE simulation, the current mode RC model achieves an 

average error of 4.7% over a wide range of typical parameters. 

The usefulness of this model is that an equivalent lumped element 

model can predict the step response of an interconnect line for 

both current and voltage mode signaling. The derived expression 

along with this analysis can serve as a convenient tool for delay 

estimation without much computation during design. 
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V=0.9volt ,RL=500 Ω 
 

               Delay (ns) 

 

RC(ns) Bas D Dtd D R D 

 

      1 0.90 0.89 0.897 

 

2 1.41 1.405 1.408 

 

3 1.90 1.86 1.88 

 

4 2.35 2.29 2.33 

 

5 2.73 2.68 2.72 

 
 

V=0.8volt ,RL=500 Ω  
 

               Delay (ns) 

RC(ns) Bas D Dtd D R D 

 

      1 0.67 0.667 0.67 

 

2 1.121 1.12 1.121 

 

3 1.42 1.41 1.425 

 

4 1.67 1.66 1.67 

 

5 2.23 2.20 2.22 

 

V=0.7volt ,RL=500 Ω  
 

               Delay (ns) 

RC(ns) Bas D Dtd D R D 

 

      1 0.52 0.52 0.52 

 

2 0.867 0.87 0.868 

 

3 1.11 1.12 1.115 

 

4 1.40 1.41 1.406 

 

5 1.68 1.69 1.68 

 

Table1. Delay comparison with Distributed delay and 
[10] 

 


