
Static Analysis To Model & Measure OO Paradigms
Satwinder Singh

Lecturer
Dept. Computer Science Engineering, Baba

Banda Singh Bahadur Engg. College,
Fatehgarh Sahib-140407

Email: satwindercse@gmail.com

K.S. Kahlon
Professor

Dept. Computer Science Engineering,
Guru Nanak dev University Amritsar-14 001 3

Email: karanvkahlon@yahoo.com

ABSTRACT
 Object oriented development has proved its worth in today’s
system because its design and development is better, reliable and
easier to access than the traditional methodologies. Due to updated
requirements and lack of documentation in old systems has
provided a motivation to revamp the systems. Rebuilding or
redesigning the same system is highly expensive. To overcome this
problem reverse engineering of the system is used as most suitable
alternative. Field of reverse engineering is expanding its horizon
day by day; it requires reusability not only at code level but also at
higher level which can measure the analysis results and original
system. Reverse engineering, strategy has been developed to
analyse and modeling the OO files by designing the translator. It
models and measures the OO by using traditional metrics and new
encapsulation metrics (Public Factor (PuF) & Private Factor (PrF))
essential for developing the good software. In this work we tried to
refine metrics especially for object-oriented programming and set
of these metrics has been defined.
Keywords: Static analysis, Public Factor, Private
Factor, AHF, MHF.

1. INTRODUCTION
Donald Firesmith in his book Dictionary of Object Technology
(SIGS Books, 1995), defined analysis as "the development
activity consisting of the discovery, modeling, specification and
evaluation of requirements," while OO analysis is “the discovery,
analysis and specification of requirements in terms of objects with
identity that encapsulate properties and operations, message
passing, classes, inheritance, polymorphism and dynamic
binding”. Generally, OO methodologists seem to agree that OOA
objects are the objects in a problem space. More specifically, an
OOA object has been defined as an abstraction of something in
the problem domain
Analysis of a system can be done statically and dynamically. Both
the static and dynamic analyses are important to understand the
system. Static analysis is the process of analyzing software
without executing it where as dynamic analysis is the method of
analyzing the runtime behaviour of a software system.
Modeling is not a simple process and one should know
beforehand about the difference between the programming and
modeling. Initial model of the program describes the essential
properties which are required to analyze the correctness of the

program. This correctness cannot be analyzed only from the text
or specifications based on modeling but it requires some specific
metrics.
This paper describes static analysis model of OO program file for
beginner programmers. It is designed for both tutorial and
assessment purposes. The key features of the analysis are its
configurability and extensibility. Analyses can be configured to
suit different types of exercises. In addition, the complexity of
analysis is measured by different Object Oriented metrics. Among
them some are predefined and two new metrics are defined to
measure encapsulation.
This paper is divided in following sections; Section II gives the
review of literature. Section III gives the Translator Design which
does the static analysis of the OO file. Section IV discusses the
OO System Metrics. In next section results of analysis and
measurements are discussed and paper ends with conclusion and
future work.

2 REVIEW OF LITERATURE
According to Nghi Truong et al[2] the static analysis framework
consists of two analyses: Software engineering metrics and
structural similarity. The first evaluates the quality and the second
examines the similarity in structure of student programs compared
with model solution. The analyses were performed on XML
marked-up AST representations of programs. Feedback to
students includes comments about the quality and structure of
their programs. Overall, the framework had four limitations. First,
the chosen technique only works with small or “fill in the gap”
type programming exercises to minimize the implementation
variation in structural similarity analysis. Second, the framework
was able to analyse only well formed gaps. Third, the framework
did not implement semantic analysis; however, with its extensible
architecture, additional analyses could be plugged in easily. Last,
the framework only analyses syntactically correct programs. All
gaps need to be completed in order to carry out the analysis with
multiple dependent gaps exercises.
Martin [17] presents the case that simply using objects to model
an application was insufficient to gain robust, maintainable and
reusable designs. That there was other attributes of a design that
were required and these were based upon a pattern of
interdependencies between the subsystems of the design that
support communications within the design, isolate reusable
elements from non-reusable elements, and block the propagation
of change due to maintenance. Moreover, this paper presents a set
of metrics that could be easily applied to a design, and that
measures the conformance of that design to the desired pattern of
dependencies. Metrics provide information to the designers
regarding the ability of their design to survive change, or to be
reused.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’10, March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03…$10.00.

Saini et al [23] has developed the Encapsulation Factor metrics to
measure only the Privacy and unity but did not touch the protected

and public behavior of the class. So to overcome this problem we
tried to describe a new set of metrics to measure the public and
protected behavior of members of a class.
Magnus Andersson et al [8] reported software metrics those can
be used to determine the object-oriented design quality of a
software system. An experimental study was conducted as an
attempt to validate each metric and to understand them. They
formulated the strategies on how analysis of source code with
metrics could be integrated in an ongoing software development.
Moreover they have explained how metrics could be used as a
practical aid in code and architecture investigations on already
developed systems. Metrics do have a practical application and up
to some extent represents software systems design quality, such
as: complexity of methods/classes, package structure design and
the level of abstraction in a system. Andersson et al did not
measure vital design issues such as polymorphism and
encapsulation. Some of the metrics represent few aspects of the
design quality of the system.
Software metrics is the only mode to measure the quality of the
program. Mengel and Yerramilli, [4] Leach and Mengel [3] have
analysed Halstead metrics (Halstead, 1977), McCabe cyclomatic
complexity [5] and number of coupling instances. Berry and
Meekings [6] style guide line were common and useful static
metrics for measuring the programs of computer science
applications. However, they were often used for marking and
detection purposes rather than for teaching design and writing
good quality programs. Good software design concept is so
subjective that empirical studies are necessary to clarify which
measure and describe good design [18-22].

3. TRANSLATOR DESIGN
3.1 Static Analysis
Static analysis is the process of examining source code without
executing the program. This leads to the need of methodologies
that support reusability not only at the code level but also at
higher (semantic) levels, in order to minimize the effort of
proving correctness of the analyses. Aims to adopt static analysis
of the system are [13]:
1. The conceptual simplicity and soundness of this technique
2. The design of abstract interpreters which has already been
successfully developed for other language paradigms
The Static analysis can briefly be described by the following three
steps [1, 7].
1. Define a concrete (operational) semantics, i.e., a formal
representation of concrete execution states and of
the transition rules corresponding to statement executions. This
step, of course, is language-dependent.
2. Define an abstract semantics, i.e. a non-standard domain whose
elements represent sets of concrete execution states, and a suite of
abstract operations that safely approximate the corresponding
concrete ones.
3. Define a generic algorithm, parameterized on the abstract
domain that computes a (post-) fix point of the abstract semantics,
thus yielding safe information about concrete program executions.

3.2 Logical Design
Logical design gives the conceptual view of the solution. Source
file (addnero.cpp) used for parsing was coded in C++. Following
four components of parsed file are modeled:
1. Packages 3. Methods
2. Variables 4. Classes

1. Packages: Model includes the list of in build and user build
packages or header files used in source file.
2 Variables: Variables declared in the source file listed in our
model with data type of each variable and are represented with
their respective notations in Table1.
3 Methods: Translator list the user defined functions which were
declared in source file. It also lists the return type of methods in
notated form. Notations used for each return type key word was
same as in declaring variables. Variables declared in each
function definition was listed and its data type was notated as per
Table1.

TABLE 1: Notation for Variables and Functions
S. No. Data Type Notation
1. Int $
2 Int* $*
3 Long $
4 Short $
5 Float @
6 Float* @*
7 Float** @*
8 Double @
9 Char &
10 Char* &*
11 Char** &*
12 Void 0
13 Bool !

4 Class: Model includes items encapsulated in class e.g. data
member, member functions and inherited classes. It also includes
the scope (Notations as per Table 2.) of each data member and
member function. Data type and return type of data member or
member functions respectively are notated as per Table 1. which
are followed by their names.

TABLE 2: Scope Notations of Variables and Functions
S. No. Scope Notation
1. Public -
2 Private +
3 Protected #

4. OBJECT ORIENTED METRICS
ANALYSIS
Software Metrics have become essential in software engineering
for several reasons; two of them are (i) for quality assessment (ii)
for reengineering. In forward engineering they are being used to
measure software quality and to estimate cost and effort of
software projects [16]. In the field of software evolution, metrics
can be used for identifying stable or unstable parts of software
systems and for identifying possibilities of application of re-
factorings [14]. Moreover they measure the quality related to the
structure of evolving software systems. In the area of software
reengineering and reverse engineering [15], metrics are being
used for assessing the quality and complexity of software systems.
Metrics improve basic understanding and providing clues about
sensitive parts of software systems.
Software metrics is a well-known quantitative approach used to
measure software quality. This analysis is based on software
complexity metrics and good programming practice guide lines, to
assess the quality in the form of complexity of program. Apart of
some new metrics which are proposed in this paper some
predesigned metrics are also used to evaluate and measure the
program at class level. It includes the following:

1. Information Hiding Factor
2. Inheritance Factor
3. Encapsulation Factor
4. Weighted Class Complexity Factor
5. No. of Ancestor Count
Each of these metrics represents the basic paradigm of OO system
such as encapsulation (Information Hiding Factor, Public Factor,
Private Factor), Inheritance (Class Inheritance Factor), Message
passing (No. of Ancestor Count) and Classes (Weighted Class
Complexity Factor). In all the above metrics (except NAC)
numerator in the formula represents the actual value where as
denominator represent the maximum value it can hold. So that’s
why these are named as a “Factor” and its values are ranged
between 0 & 1.
4.1 Information Hiding Factor
Information hiding factor is the measurement of hidden factor of
encapsulation at attribute level and method level. The set of two
OO MOOD metrics [11] to measure this are as follow:
4.1.1 Attribute Hiding Factor (AHF): The Attribute Hiding
Factor measures the hidden data members in classes. The hidden
factor of a class is the percentage of the total classes from which
the data members are not visible. Attributes should be ‘hidden’
within a class if they are kept from being not to be accessed by
other objects (by being declared as a private).The Attribute
Hiding Factor is a fractional measurement. The numerator is the
sum of the private data members defined in all classes. The
denominator is the total number of data members defined in the
program. Large value of AHF shows good programming practice
and design.

4.1.2 Method Hiding Factor: The Method Hiding Factor
measures the hidden methods in classes. The Hiding factor of a
method is the percentage of the total classes from which the
methods are hidden.
The Method Hiding Factor is a fraction measurement where the
numerator is the sum of the private methods defined in all classes
and denominator is the total number of methods defined in the
program.
Methods should be encapsulated (hidden) within a class and not
available for use to other objects. Method hiding increases
reusability in other applications and decreases complexity. If there
is a need to change the functionality of a particular method,
corrective actions will have to be taken in all the objects accessing
that method, if the method is not hidden. Thus hiding methods
also reduces modifications to the code [16]. Large value of MHF
shows good programming practice and design.

()

1 1

1

(1 ())

()

d iM CT C

m i
i m

n

d i
i

V M
M H F

M C

= =

=

−
=
∑ ∑

∑

()

1 1

1

(1 ())

()

d iA CT C

m i
i m

n

d i
i

V A
A H F

A C

= =

=

−
=
∑ ∑

∑

4.2 Inheritance Factor:
Inheritance decreases complexity by reducing the number of
operations and operators, but this abstraction of objects can make
maintenance and design difficult. The need for this metrics factor
is as follow

Suppose two methods with same names are defined in two
different classes. When a call to child class function has been
made then it will clearly inherit the behaviour defined in super
class. In this case coding have not to be rewritten again, it is re-
used. This will affects both the 'Method Inheritance Factor (MIF)
& Polymorphism Factor (POF) metrics. A system consist of the
two classes defined above would return a value of 0 for MIF,
which shows that there is no inheritance, which is misleading
which is an anomaly.
Definitions for MIF[11] and AIF[11] are inconsistent with the 0-1
scale. The methods available in a child class, Ma(Child Class) are
not inheritable (within the system). The value of denominator in
the definition of MIF does not give the max value of inheritance
but it represents value of any system greater than 1 logically it
can’t. It is required to fix the inconsistency in MIF and AIF to
measure the inheritance factor. So for this purpose some class
level metrics should be developed as because inheritance is the
class level OO paradigm. So to remove these anomalies following
definition of Class Inheritance Factor (CIF) has been proposed
[12] where numerator includes the total number of ancestor count
(AC) of class Ci and denominator includes the maximum possible
inheritance in the program.

1
()

* (1) / 2

T C

i
i

A C C
C IF

T C T C
==

−

∑
{TC: Total Classes}

4.3 Encapsulation Metrics
Encapsulation means that “all that is seen of an object is its
interface, namely the operations that can perform on the object
[9]." As information hiding and encapsulation are different
concepts because encapsulation is consist of two concepts i.e.
integrity and visibility. So separate metrics is required which can
measure both the above concept. As MHF & AHF are considered
to be a measure of encapsulation but it only measures the
visibility of class member functions & data members separately.
As encapsulation is the measure of a unity and integrity of
attributes and methods visibility. In this work we are measuring
both parameters (unity and integrity) together. So to remove this
anomaly following two metrics has been proposed (i) Public
Factor and (ii) Private Factor.
4.3.1 Public Factor (PuF): This proposed metrics count the
measure of encapsulation as it is the measure which counts the
composite scope of methods and attributes. In this proper metric
effort has been made to count the public factor. The range of this
factor is from 0 to 1. PuF=0 when there are no methods and
attributes of Public Scope. PuF= 1 when there no methods and
attributes are defined under Private Scope. Visibility of any
member under protected scope is counted as :

Vi= DC (Ci)/(TC-1)
(note: DC(Ci) = descendants of Curent Class Ci and TC= Total
Clasess) . Where Vi=1 for Public Members and Vi=0 for Private
Members

1 1

1

(()*) (P ()*)

()

TC TC

i i i i
i i

TC

ti ti
i

Pu A V u M V
PuF

A M

= =

=

+
=

+

∑ ∑

∑

Pu(Ai)= Public Attributes in Class i
Pu(Mi)= Public Methods in Class i
Vi= Visibility Factor
Ati=No. of total Attribute declared in
class i

4.3.2. Private Factor (PrF): This metrics has been proposed to
count the measure of encapsulation as it is the measure which
counts the composite visibility and integrity scope of methods and
attributes. In this proper metric effort has been made to count the

5. RESULT AND DISCUSSION private factor. The range of this factor is from 0 to 1. PrF=0 when
there are no methods and attributes of Private Scope. PrF= 1 when
there no methods and attributes are defined under Public Scope.

1 1

1

(Pr() * (1)) (Pr() * (1))
Pr

()

TC TC

i i i
i i

TC

ti ti
i

iA V M
F

A M

= =

=

− + −
=

+

∑ ∑

∑

V

This model will help to understand the problem well by knowing
the complexity of the problem by measuring the various OO
paradigms. The above model will also help to analyse the
structure of OO language files. This model will not be distracted

4.4 Weighted Class Complexity Factor (WCCF)

Pr(Ai)= Private Attributes in Class i
Pr(Mi)= Private Methods in Class i
Vi= Visibility Factor
Ati=No. of total Attribute declared in class i
Mti=No. of total Methods declared in class i

Fig. 1. Translator Working Model
the user but it made a task simple. Model gives a detail picture of
a file as how many variables are included in global part, in a
particular function or in a class. It also includes the information of
relationship between different classes by measuring the
encapsulation metrics. Previously most of the work has been
done to simply analyse the file it does not include the
relationships of a particular variables. Translator gives a model of
the files which revealed the complexity and analyse it. Block
model of a class as shown in Figure 2, encapsulates variables and
functions is an easy way to design efficient program. This model
help in better understanding of source program by presenting the
code file in simple text mode and analyse it with the help of
metrics. The programmer’s effort of manual checking and
analysation of complexity has been reduced(by metrication) with
this model. Metrics has been designed to measure the system,
because of expectation of different quality product as well as
productivity gain. Translator produced model has implemented
the various previously designed metrics and an effort has been
made to design a new set of metrics(PuF & PrF) for measuring
encapsulation of class. Metrics or measurements are the key foster
for reuse or re-engineering analysis model. These metrics examine
the analysis model with intent of predicting the complexity of
resultant system. Complexity here is an indicator of design
complexity. Fig. 1, 2& 3 show the result of above discussion. Fig.
1 shows that OO file (addnero.cpp, this is a student program to
implement the addition of a neros) is parsed into translator and
two (Text modeled file & Metrics File) new files are generated.
Figure 2 shows text model result of C++ file, firstly it shows the
list of header files then some global functions declarations. After
that various attributes and methods in a ‘andnero’ class are listed
under private and public scope as per notations assigned above. It
also shows the ancestor classes of ‘andnero’ class which is blank.
After the class definition, each function definition is given which
includes the variables declared in it with their notated data types.
Whereas Fig 3 shows the result of metrics measured of the parsed
file. So, can the above metrics be used, will measure the design
quality of OO? In respect to this question, results shows that it
reflect some aspect of design quality by giving OO static analysis
model, methods/class level and encapsulation measurement.

WCCF measures the complexity of an individual class. A class
with more member functions than its peers is considered to be
more complex and therefore more error prone [21]. More is the
number of methods in a class; the greater is impact on children
since children inherit all the visible methods defined in a class.
Classes with large numbers of methods are limiting the possibility
of reuse of data members and functions. So this reasoning shows
that class should have the less number of data members for
reusability. But recent study differ from the above study, in the
way like, smaller methods over fewer, larger methods to reduce
complexity, it increases the readability, and improving the
understanding of system [20]. So, the result come out to be is, a
large inheritance tree but this is not advisable. Often, the WCCF
calculation considers complexity and the count of the number of
methods applies a weighted complexity factor [17]. But classes
are not only composed of methods it also includes the attributes.
So we can’t ignore the attributes while calculating the weighted
complexity factor. A new definition of WCCF is as follow:

() ()

()
1

n n

i i

M AW C C F T C
A M

i

+
=

+∑
=

 { 0 } n TC≤ ≤

Numerator includes the sum of methods and attributes of a
particular class and denominator includes the summation of all the
attributes and methods declared in the classes.
4.5 Ancestor Count
This metric measurement gives the potential effect on the class by
the ancestor classes. Inheritance is used to spread the
implementation of the entity on different classes. By this way
Inheritance diversifies the complexity of a class to different
classes. Ancestor count measure gives us the depth of inheritance
by counting number of steps from the class node. More number of
ancestor count make use of more methods and classes and so, the
greater the complexity is, more is the count, more is the
reusability, since inheritance is an example of reuse. More count
may also be a case of misuse of subclassing. More classes need
more testing of methods in a class and give the potential influence
of other classes in present class.

Figure 2. C++ Example

C++ Sample Program Static Analysis Result
#include<iostream.h>
#include<conio.h>
#include<stdlib.h>
void reversevideo(int,int, char);
void normalvideo(int, int, char);
class andnero
{int k;
public: int ap[20],n,m[20];
int i,j,k,li; int arr[20][20];
void box(int x1, int y1, int x2, int y2);
void addn();
void read();
private: int f;};
void andnero::box(int x1, int y1, int x2, int
y2)
{for (int col = x1; col < x2; col++)
 {gotoxy(col, y1); cprintf("%c", 196);
 gotoxy(col, y2); cprintf("%c", 196);}
for (int row = y1; row < y2; row++)
{gotoxy(x1,row); cprintf("%c", 179);
gotoxy(x2,row); cprintf("%c", 179);}
gotoxy(x1, y1); cprintf("%c", 218);
gotoxy(x1, y2); cprintf("%c", 192);
gotoxy(x2, y1); cprintf("%c", 191);
gotoxy(x2, y2); cprintf("%c", 217);}
void andnero::read()
{ cout<<"enter the no of layer"; cin>> n;
for (i=0;i<n;i++)
{ cout<<" enter t no.of cell in"<<i+1<<"th
layer"; cin>>m[i]; }
for (i=0;i<m[0];i++)
{cout<<" enter the input to"<<i<<"th cell";
cin>>ap[i];}
for (i=0;i<n;i++)
 { for(j=0;j<m[i];j++)
 { cout<<"input the weight";cin>>arr[i][j];}
}}
void andnero::addn()
{int s=0; read();
int mul[20][20],acin[20][20]; i=1;
 for(j=0;j<m[i];j++)
{ mul[i][j]=0; while(s<m[0])// && k <
m[i-1])
{ mul[i][j]=mul[i][j] + ap[s] * arr[i-1][s];//[k];
 s=s+1; } }
cout<<"\n\n result is = "<< mul[i][j];
 s=0;//k=0;
cout<<"\nenter the limit"; cin>>li;
 { if (mul[i][j]>=li)
 acin[i][j] = 1; else acin[i][j] = 0;
 cout<<"result="<<a; cin[i][j]; } }
 int res[20][20];
 for (i=2;i<n+1;i++)
 { for (j=0;j<m[i];j++)
 {res[i][j]=0; while(s < m[i-1])
{res[i][j]=res[i][j]+acin[i-1][s]*arr[i-1][s];
s=s+1;}
cout<<"\n\n result is="<<res[i][j]; s=0;
cout<<"\n enter the limit"; cin>>li;

 if (res[i][j]>li) acin[i][j]=1; else
 acin[i][j]=0;
cout<<"\n net result is="<<acin[i][j];} } }
typedef char option[15]; char menu();
 void main()
{ char choice; andnero an;
 do {choice = menu();
 switch (choice)
 {case '1': an.addn(); break;
 case '2': an.addn(); break;
 case '3': an.addn(); break;
 case '4': an.addn(); break;
 case '5': an.addn(); break;
 case '6': an.addn(); break;
 case '7': an.addn(); break;
default : exit(0); }} while (choice != 0);}
void normalvideo(int x, int y, char *str)
{ gotoxy(x, y); cprintf("%s", str);}
void reversevideo(int x, int y, char *str)
{textcolor(RED); textbackground(WHITE);
 gotoxy(x, y); cprintf("%s", str);
 textcolor(GREEN);
textbackground(BLACK);}
char menu()
{ int i, done;
 andnero an;
option a[]={" Bubble-Sort", " Heap-sort ",
 "Selection-Sort", "Insertion-Sort",
 " Quick-sort", " Merge-sort",
 " Shell_sort", "Quit " };
an.box(20, 6, 65, 20); an.box(18, 4, 67, 22);
textcolor(5+143); gotoxy(30, 5);
textbackground(WHITE);
cprintf("S O R T I N G - M E N U");
textbackground(BLACK); textcolor(22);
for (i = 1; i < 8; i++)
 normalvideo(32, i+8, a[i]);
 reversevideo(32, 8, a[0]);
 reversevideo(32, 8, a[0]);
i = done = 0;
_setcursortype(_NOCURSOR);
 do{ int key = getch();
 switch (key)
{case 00:key = getch();
case 72: normalvideo(32, i+8, a[i]);
 i--;
 if (i == -1) i = 7;
 reversevideo(32, i+8, a[i]);
 break;
case 80: normalvideo(32, i+8, a[i]);
 i++;
 if (i == 8) i = 0;
 reversevideo(32, i+8, a[i]);break;
case 13: done = 1; }
 } while (!done);
_setcursortype(_NOCURSOR);
return(i+49);}

Packages in use are:
 1 iostream.h
 2 conio.h
 3 stdlib.h
0 reversevideo(int,int, char);
0 normalvideo(int, int, char);
Class Started andnero
Inherited Classes class andnero:
Declaration of variables and methods
andnero
Scope DataType Variables/Methods
-
 $ k
+
 $ ap[20],n,m[20]
 $ i,j,k,li
 $ arr[20][20]
 0 box(int x1, int y1,
 int x2, int y2)
 0 addn()
 0 read()
-
 $ f
 End of Class

FUNCTION DEFINATION OF box(int x1,
 int y1, int x2, int y2)

FUNCTION DEFINATION OF read()
FUNCTION DEFINATION OF addn()

 $ s=0;
 $ mul[20][20],acin[20][20];
 $ res[20][20];
 & menu();
FUNCTION DEFINATION OF main()

 & choice;

FUNCTION DEFINATION OF
normalvideo(int x, int y, char *str)

FUNCTION DEFINATION OF reversevideo(int
x,
int y, char *str)
FUNCTION DEFINATION OF
 menu()

 $ i, done;
 $ key = getch();

Metrics File
No. Of Packages3
No. Of Functions7
No. Of class Functions3
No. Of Classes1
No. Of Variables in Classes10
No. Of Public Variables in Classes8
No. Of Private Variables in Classes2
No. Of Public Functions in Classes3
No. Of Private Functions in Classes0
No. Of Variables7
No. Of Global function4

List of classes
andnero

No.of PUBLIC Variables in 0 Class are: 8
No.of PRIVATE Variables in 0 Class are: 2
No.of PUBLIC Functions in 0 Class are: 3
No.of PRIVATE Functions in 0 Class are: 0

 No. of Ancestor in 0 Class are: 0
Private factor: 0.153846
Public factor: 0.846154
Attribute Hiding factor: 0.2
Method Hiding factor: 0
Class Inheritence Factor: 0
Weighted Class Complexity Factor: 1

Figure3 Metrics File

6 CONCLUSION
Model proposed in this paper is performing the static analysis of
CPP file. While analysing it analyses two things first the structure
of the program file(modeling) and then it measure the quality of
the program with help of some new and traditional metrics.
 Firstly, structure of the program file was analysed by
translator by abstracting the packages used, classes and their
relationship with other classes, functions and their definition, and
variables encapsulated in functions, in classes and declared
globally. While analysing a file with translator, rules were devised
to notate the analysis of files. In this efforts were made to model
and structured an OO file so that it should be easy to understand.
 Secondly, quality of programs was analysed with the
help of metrics. In this paper effort has been made to measure the
OO paradigms by set of metrics which include some pre-defined
and new metrics. OO paradigms like inheritance was measured
by CIF and NAC, Information Hiding by MHF and AHF, Class
weight in program was measured by WCCF where as
Encapsulation and Abstraction was measured by new defined
metrics i.e. PuF and PrF. From this discussion we want to
conclude that MHF & AHF only measures the invisibility of the
system but not the integrity or unity. Which is also to be measured
along with the invisibility as per the definition of encapsulation
described above.
 This analyses model helps in the way that programmer
need not to start the work from scrap. Model gives a block model
of the files from which devised concept and quality was revealed.
If concept is known then it is very easy to redesign the program
and with quality factors (metrics) better quality software can be
designed. But concept or quality revealed is not all about the OO.
Object Oriented is much more than that. Another aspect which is
not measured is design pattern which can help to prepare a better
quality design. Another problem is it does not tell where the
problem is and how to redesign it. Question can also be raise that
is there any place for the software metrics in future? It has future
but as long as standard metrics are not devised and threshold
values are not defined. The above translator can be implemented
to other type of OO languages also, to make it universal analysis

tool. Translator has some limitations too, it does not support
multiple source files which should make it more active and it
understands well formed gaps only.
7. REFERENCES
[1] P. Cousot and R. Cousot. Abstract interpretation: A unified

lattice model for static analysis of programs by construction
or approximation of fixpoints. In Conference Record of
Fourth ACM Symposium on Programming Languages
(POPL’77), pages 238–252, Los Angeles, California, January
1977.

[2] Nghi Truong, Paul Roe, Peter Bancroft Static Analysis of

Students’ Java Programs. In Proceeding of sixth Australian
Computing Education Conference (ACE2004), Dunedin, New
Zealand. 2004

[3] Leach, R. J. 1995. Using metrics to evaluate student programs.

SIGCSE Bull. 27, 2 (Jun. 1995), 41-43. DOI=
http://doi.acm.org/10.1145/201998.202010

[4] Mengel, S. and Yerramilli, V., A Case Study Of The Static

Analysis Of the Quality Of Novice Student Programs. Proc.
Thirtieth SIGCSE technical symposium on Computer science
education, New Orleans, Louisiana, United States,13:78-82,
1999

[5] McCabe, T. J., A Complexity Measure. IEEE Transactions on

Software Engineering, 2(4): 308-320, 1976.
http://ieeexplore.ieee.org/servlet/opac?punumber=32

[6] Harrison, W. and Cook, C. R. 1986. A note on the Berry-

Meekings style metric. Commun. ACM 29, 2 (Feb. 1986),
123-125. DOI= http://doi.acm.org/10.1145/5657.5660

 [7] F. Nielson, H. R. Nielson, and C. Hankin. Principles of

Program Analysis. Springer-Verlag, 1999.

[8] Magnus Andersson and Patrik Vestergren. Object-Oriented

Design Quality Metrics.Master Thesis, Uppasla University,
Uppsala, Sweden. 2004

[9] Jacobson, I., Christerson, M., Jonsson, P., and Overgaard, G.,

Object-Oriented Software Engineering: A Use Case Driven
Approach. Wokingham, England: Addison-Wesley, 1992.

[10] A. Milanova, A. Rountev, and Ryder B. G. Parameterized

object sensitivity for points-to and side-effect analyses for
java. In Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA 2002). ACM Press,
2002.

[11] Abreu, F. B. e., "The MOOD Metrics Set," presented at

ECOOP '95 Workshop on Metrics, 1995.

[12] Mayer, T. and Hall, T. 1999. Measuring OO Systems: A

Critical Analysis of the MOOD Metrics. In Proceedings of
the Technology of Object-Oriented Languages and Systems
(June 07 - 10, 1999). TOOLS. IEEE Computer Society,
Washington, DC, 108.

[13] Pollet, I., Charlier, B. L., and Cortesi, A. 2001. Distinctness

and Sharing Domains for Static Analysis of Java Programs.
In Proceedings of the 15th European Conference on Object-
Oriented Programming (June 18 - 22, 2001). J. L. Knudsen,
Ed. Lecture Notes In Computer Science, vol. 2072. Springer-
Verlag, London, 77-98.

http://doi.acm.org/10.1145/201998.202010
http://ieeexplore.ieee.org/servlet/opac?punumber=32
http://doi.acm.org/10.1145/5657.5660

[14] Serge Demeyer, St_ephane Ducasse, and Oscar Nierstrasz.

Finding refactorings via change metrics. In Proceedings of
OOPSLA'2000, ACM SIGPLAN Notices, pages 166-178,
2000.

[15] Chikofsky, E. J. and Cross II, J. H. 1990. Reverse

Engineering and Design Recovery: A Taxonomy. IEEE
Softw. 7, 1 (Jan. 1990), 13-17. DOI=
http://dx.doi.org/10.1109/52.43044

[16]Norman Fenton and Shari Lawrence Peeger. Software

Metrics: A Rigorous and Practical Approach. International
Thomson Computer Press, London, UK, second edition,
1996.

[17]Martin Robert, “OO Design Quality Metrics An Analysis of

Dependencies”,
http://www.objectmentor.com/resources/articles/oodmetrc.pd
f, 1994

[18] Mei-Huei Tang, Ming-Hung Kao, Mei-Hwa Chen, An

Empirical Study on Object Oriented Metrics, State University
of New York, Albany, 1999.

[19] Lionel C. Briand, John Daly, Victor Porter, Jurgen Wust, A

Comprehensive Empirical Validation of Design Measures for
Object Oriented Systems, Fifth international Software Metrics
Symposium, 20-21 Nov, 1998.

[20] Lionel C. Briand, Jurgen Wust, John W. Daly, Victor Porter,

Exploring the Relationships between Design Measures and
Software Quality in Object Oriented Systems,
http://www.sce.carleton.ca/faculty/briand/pubs/jss.pdf, 2004-
06-04.

[21] Michelle Cartwright, Martin Shepperd, An Empirical

Investigation of an Object Oriented Software System, IEEE
Transactions on Software Engineering, Vol. 26, Issue 8, pp.
786-796, 2000.

[22] Rachel Harrison, Steve J. Counsell, An Evaluation of the

MOOD Set of Object Oriented Software Metrics, Vol. 24,
Issue 6, pp. 491-496, 1998

[23] Saini, S. and Aggarwal, M. 2007. Enhancing mood metrics

using encapsulation. In Proceedings of the 8th Conference on
8th WSEAS international Conference on Automation and
information - Volume 8 (Vancouver, British Columbia,
Canada, June 19 - 21, 2007). A. Aggarwal, Ed. World
Scientific and Engineering Academy and Society (WSEAS),
Stevens Point, Wisconsin, 252-257.

[24] Khan, R. A. and Mustafa, K. 2009. Metric based testability

model for object oriented design (MTMOOD). SIGSOFT
Softw. Eng. Notes 34, 2 (Feb. 2009), 1-6. DOI=
http://doi.acm.org/10.1145/1507195.1507204

http://dx.doi.org/10.1109/52.43044

