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ABSTRACT 
DNA microarrays have proved to be one of the vital breakthrough 

technologies for exploring the patterns of gene expression on a 

global scale. The differential measured gene-expression levels 

depend largely on the probe intensities extracted during microarray 

image processing. Various noises introduced during the experiment 

and the imaging process can drastically influence the accuracy of 

results. Microarray image denoising is one of the challenging pre-

processing steps in microarray image analysis. In this paper, we 

propose denoising of microarray images using the independent 

component analysis (ICA). The idea of ICA i.e. finding the linear 

representation of nongaussian data so that the components are 

independent (or atleast as independent as possible) is exploited for 

denoising microarray images. Through examples, it is shown that 

the proposed approach is highly effective as compared to the 

conventional discrete wavelet transform and statistical methods.   

Keywords 
Denoising, independent component analysis, microarray image, 

shrinkage function, white Gaussian noise. 

 

1. INTRODUCTION 

Microarray technology has created a great impact in bioinformatics 

over the last decade by its unprecedented capacity to monitor the 

expression levels of thousands of genes simultaneously. This 

technique has evolved multifold from its introduction [22] and has 

now become a high-throughput technology to simultaneously 

measure ribonucleic acid (RNA) abundances of tens of thousands 

of messenger ribonucleic acids (mRNA).   

Microarray experimental procedure involves a number of error-

prone steps which introduce high noise in the resulting data. 

Microarray images when corrupted with noise may drastically 

affect the resulting gene-expression profile. Hence, denoising of 

microarray image is a challenging task in the preprocessing step of 

microarray data analysis. Traditionally, the noise introduced is 

estimated using statistical methods, which include analysis of 

variance by Kerr [16], ratio distribution by Chen [3] and 

Ermolaeva [8], Gamma distribution by Newton [19], empirical 

Bayes model by Lonnstedt and Speed [17], and Bayesian 

Estimation of Array Measurements (BEAM) by Dror [7]. These 

methods mainly estimate the measurement error, such as 

preparation of the sample, cross hybridization, and fluctuation of 

fluorescence value from gene to gene. Recently, thresholding 

techniques [5] for image enhancement have become more popular 

for eliminating such noise and ensure better gene-expression. 

Unfortunately, the performance of most of these methods depends 

on various factors such as, the type of soft/hard thresholding [6] 

used (e.g. OracleShrink, VisuShrink, SureShrink, BayesShrink), 

the correct estimation and fine adjustment of the threshold 

parameter. Moreover, the thresholding in wavelet domain needs to 

be applied for each of the several decomposition levels. Hence, a 

new method without the above mentioned constraints and which 

depends exclusively on the image characteristics is in demand. 

In this paper, we propose an approach based on the independent 

component analysis [4][15] to eliminate the inherent noise in 

microarray images. ICA is a statistical technique in which the 

observed random data are linearly transformed into components 

that are maximally independent from each other.  

2. MICROARRAY EXPERIMENT 

Microarrays are grids of thousands of different single-stranded 

DNA molecules immobilized on a surface to serve as probes. Two 

 

Figure 1.   Schematic diagram of microarray experiment. 
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major kinds of arrays are those using synthesized oligonucleotides 

and those arrays using spotted cDNAs (complementary-DNA 

molecules). The basic procedure is shown in Figure 1, where RNA 

is first extracted from cells and converted to single-stranded cDNA. 

Then florescent labels are attached to the different cDNAs, 

allowing the single stranded cDNAs to hybridize to their 

complimentary probes on the microarray. The resulting fluor-

tagged hybrids are detected via excitation of the attached fluors and 

image formation using a scanning confocal microscope. Relative 

RNA abundance is measured via measurement of signal intensity 

from the attached fluors. This intensity is obtained by image 

processing. The resulting microarray image intensities are subject 

to statistical analysis with particular attention to the detection of 

high or low expressing genes, expression based phenotype 

classification and the discovery of multivariate inter-gene 

predictive relationships. Thus, microarrays have revolutionized 

molecular biology research and genomic clinical diagnosis. 

Since the florescent tags (e.g., the red fluorescent dye Cy5 and the 

green fluorescent dye Cy3), are attached to the cDNA strands that 

hybridize, the corresponding spots on the array will fluoresce when 

provided fluorescence excitation energy and be detected at the level 

of emitted light. This yields a 16-bit tagged digital image 

corresponding to each colour and the intensities of the combined 

image reflect levels of measured fluorescence, which in turn reflect 

mRNA abundances. Figure 1 also shows an example of the 

microarray image. Microarray images are usually not perfect and 

are corrupted with noise that interferes in the measurement of gene-

expression levels. The noise in the images originates from different 

sources during the course of experiment, such as photon noise, 

electronic noise, laser light reflection, dust on the slide, and so on. 

Hence, it is crucial to denoise the resultant image for accurate gene-

expression profiling.  

Precautionary methods to reduce the noise source include using 

clean glass slide and using a higher laser power rather than higher 

PMT voltages. However, these are not adequate for the required 

image qualities and an enhanced software procedure embedded 

within the process in a much better alternative.  

3. INDIPENDENT COMPONENT 

ANALYSIS (ICA) 

ICA is similar to the blind source separation technique [1], where 

sources are to be found out based solely on the mixtures of the 

sources available. Although, this problem appears to be practically 

unsolvable, ICA provides solution of this problem. However, to 

perform ICA, one needs to have information about the sources. 

This puts a limitation on the use of ICA. Nevertheless, in image 

processing it is very useful, as all the natural images contain similar 

statistical information. As such, a set of noise free images can be 

used for the training phase of ICA. The transform obtained from 

ICA can then be employed for denoising any noisy image. Natural 

noise free images can be obtained effortlessly from any of the 

numerous freely available image databases such as [20].   

3.1 Definition of ICA 

Let x = [x1, x2, x3, …, xm] be a linear mixture vector with m linear 

mixtures of n independent sources, s = [s1, s2, s3, …, sn]. The 

relation between mixture vector x and the source vector s can be 

mathematically expressed as 

  xj = Aj1s1 + Aj2s2 + Aj3s3 + … + Ajnsn,      for j = 1, 2, …, m, (1) 

where A is called the mixing matrix of size ( )m n× , and each 

column A1, A2, …, An is called as basis function. As such, the basis 

functions project the independent sources to produce the linear 

mixtures. Thus, (1) can be expressed mathematically as 

                                       x = As.                                               (2) 

The above statistical model in (2) is called as independent 

component analysis or the ICA model [23]. Figure 2 depicts the 

block diagram of ICA where s has two elements. Mixtures obtained 

from s are fed to ICA as inputs, and the objective is to find the 

individual sources. The independent/source components s are also 

called ‘latent variables’, as they are not directly observed. Mixing 

matrix A is also not known. Only, mixture vector x is available, 

from which A and s are to be estimated.  

ICA starts with a simple assumption that elements of vector s are 

statistically independent. The distributions of elements of s 

although unknown, are assumed to be non-gaussian, as ICA works 

only for non-gaussian distributions. Furthermore, for the sake of 

simplicity, mixing matrix A is assumed to be a square matrix. The 

objective of ICA is to find a matrix W, which when multiplied with 

observed mixture vector x, should output the source vector s i.e.  

                                        s = Wx.                                             (3) 

W is referred to as separation matrix and its inverse results in 

mixing matrix A. Thus, ICA results in individual elements or 

sources of s. However, the sources need not be in the same order. 

There are numerous ways of finding matrix W, but in this work 

fixed- point FastICA algorithm [9] is used.   

3.2 Fixed-Point FastICA 
There are numerous ways of finding matrix W. Bell and Sejnowski 

have proposed a neural learning algorithm based on gradient based 

approach [1][2]. However, gradient based methods have a 

drawback, that the type of the sources to be found out should be 

known. In general, the gradient based methods have poor 

convergence properties. As a remedy to this, A. Hyvärinen and E. 

Oja have proposed a new fast-point algorithm [11][15]. This 

algorithm is employed in this work and is briefly discussed below. 

Sample data obtained from noise free images, say x is first 

whitened and is fed to FastICA. The Algorithm is as follows [12]: 

1. Choose an initial (random or identity) weight vector w. 

2. Let w+ = E{xg(wTx)} - E{g′(wTx)} w 

3. Let w = w+ / ||w+|| 

4. If not converged, go back to 2. 

There is a spectrum of nonlinearities or contrast functions g offered 
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Figure 2.   Block diagram of ICA for two sources is shown. 
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by FastICA like ‘pow3’, ‘tanh’, ‘gauss’, ‘skew’, etc. Suitable 

nonlinearity can be used depending on the nature of the problem. 

Kurtosis [23], explained later on, is applied on each vector and the 

vectors are ordered correspondingly. Matrix W is formed from 

these vectors based on the requisite of size.    

4. PROPOSED APPROACH  

Proposed approach works in two phases, namely, training phase, 

and denoising phase. Training phase is carried out only once to find 

the sparse matrix W, and it can then be used to any number of noisy 

images for denoising. Both these phases, shown in Figure 3, are 

described below. 

4.1 Training Phase 
Training phase of the approach consists of three main steps, 

namely, database creation, ICA and kurtosis computation, and 

finally estimation of sparse matrix W. 

 

4.1.1 Database Creation  
For the purpose of database creation, selective images, from a 

freely available image database [20] are taken. These images are 

put together to create the database as shown in Figure 3. Natural 

images are selected for creation of the database, since the 

independent components of natural scenes are edge filters [2]. 

Images are selected so as to include all the possible variations of 

statistical data. 

 

4.1.2 ICA and kurtosis computation 
Variable ptr is the pointer that controls the row number of the 

sparse matrix W, where the new vector w is going to get added. 

Constant m_size decides the total number of rows required in 

matrix W. In this work, value of m_size is set to 8 as the sample 

size is (8 8)× . Thus the computation loop terminates when ptr 

reaches 9 i.e. matrix W comprises of 8 rows. Within each of the 

computational loops, a random sample is taken from the database. 

FastICA is carried out on the sample. Kurtosis k is computed for w 

found using FastICA. Vector w is added to the matrix W only if the 

value of k obtained is greater than 6. Condition k > 6 guarantees 

high sparsity of the elements.  

 

4.1.3 Estimation of sparse matrix W  
Orthogonalization of a matrix has several benefits. These benefits 

include reduction of arithmetic operations, inverse of matrix is just 

the transpose of it, errors are not amplified if multiplied by 

orthogonal matrix, magnitude of all the eigen values are 1, etc. 

Matrix W obtained is hence orthogonalized as  

 

 W = real ((WTW)-1/2) W. (4) 

 

Training phase terminates with the estimation of orthogonal matrix. 

This othogonalized matrix is then employed for denoising of noisy 

images. 

4.2 Denoising Phase 

This phase starts after completion of the training phase of the 

approach. Orthogonal sparse matrix W computed earlier is 

available at the start of this phase. This phase of the approach can 

also be described in three subsections, namely, the transition from 

spatial to ICA domain and vice-versa, the denoising step carried 

out within the ICA domain by employing the shrinkage function. 

 

4.2.1 Transition in and out of ICA domain  
Sparse matrix W obtained in the training phase needs to be applied 

in the ICA domain. Hence, the transition in and out of the ICA 

domain is crucial. In the ICA domain, W can be considered as the 

local directional filters and coefficients in ICA domain project the 

image onto localized details. Transition in the ICA domain is 

obtained by multiplying W with the image sample. Similarly, 

transition out of the ICA domain is obtained by multiplying WT 

(since, W is orthogonal W-1 = WT) with the image sample.  

 

4.2.2 Denoising 
From the noisy image, recovering the original image is an 

impossible task; however, the aim is to estimate an image better 

than the noisy one. In this work, images with the additive Gaussian 

noise are considered. Most of the densities encountered in image 

Start

Database of noise free 
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While

ptr <= m_size

Take out a random 8 x 8 

sample from the database

w = fastICA(sample)

compute kurtosis k for w

Is

k > 6

Add w as ptrth row to 
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No

Yes

No

A

W = real ((WT
W)-1/2)W

ptr = 1

m_size = 8
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Figure  3.    Flowchart of the proposed approach (a) training phase for 

estimating the sparse matrix, and (b) denoising in the microarray image. 
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denoising can be classified as; (i) mildly sparse, and (ii) strongly 

sparse [14][15]. The strongly sparse density is employed in this 

work which for any si in sample s is given by [12][13]  
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MMSE (minimum mean square estimation) of the density model 

described in (6) is not easy to obtain in a closed form [15]; 

however, MAP (maximum a posteriori) estimation can be obtained 

and is given as 
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The value of Ps (0) is approximated to be 0.707. Shrinkage function 

g employed in the ICA domain is given in (6). 

In essence, denoising phase of the proposed approach can be 

summarized as follows. A sample is taken from the image and is 

projected in ICA domain using W. The shrinkage function g is 

applied on the sample, and the sample is taken out of the ICA 

domain using WT. The process is repeated for all possible image 

samples of the noisy image.   

5. RESULTS 

The proposed approach is applied to microarray images and is also 

compared with the existing denoising approaches. The comparison 

results are presented in Figures 6 and 7 and are tabulated in tables 1 

and 2 respectively. Following are the assessment parameters [18] 

used to evaluate the performance of noise reduction.  

A. Absolute Average Difference (AAD): 
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B. Signal to Noise Ratio (SNR): 

 

2

,

2

d

,

( , )

( ( , ) ( , ))

r c

r c

I r c

SNR
I r c I r c

=
−

∑

∑
 (13) 

 

C. Peak Signal to Noise Ratio (PSNR): 

 
2

,

2

d

,

max( ( , ) )

( ( , ) ( , ))

r c

r c

R C I r c
PSNR

I r c I r c

×
=

−∑
 (14) 

 

D. Image Fidelity (IF): 

 
1
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E. Correlation Quality (CQ): 
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F. Structural Content (SC): 
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where, for an image of R×C (rows-by-columns) pixels, r means 

row, c means column, I means original image (without noise), and 

Id means denoised image. A lower AAD gives a “cleaner” image as 

Figure  4.    Database of original images is created [20]. 

  

 

(a) 

 

(b) 

Figure   5.   (a) Basis functions, and (b) orthogonalized basis functions. 
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more noise is reduced; larger SNR and PSNR indicates a smaller 

difference between the original (without noise) and denoised 

image; if IF and SC spread at 1, we will obtain an image Id of better 

quality; and a larger value of CQ usually corresponds to a better 

quantitative performance [18]. 

Table 1 and Table 2 illustrate the superiority of the proposed 

approach as compared to the various other denoising techniques. 

 

 

   
 

(a) Original Image 

 

 

 

(b) Noisy Image 

 

 

 

(c) VisuShrink Soft Thresholding 

 

 

   
 

(d) VisuShrink Hard Thresholding 

 

 

(e) SureShrink 

 

(f) ICA 

 

Figure  6.   Original, noisy and the denoised microarray images, (a) Original Image, (b) Noisy Image, (c) 

VisuShrink Soft Thresholding, (d) VisuShrink Hard Thresholding, (e) SureShrink, (f) ICA. 

 

 

 
Table 1.  Values of Assessment Parameters for Various Denoising Algorithms for Figure 6(b) 

 

Denoising Method 
Assessment Parameters 

AAD SNR PSNR IF CQ SC 

Mean Filter 0.3620 1.0509 56.4140 0.0484 0.4983 0.5728 

Weiner Filter 0.3472 0.9350 55.9067 0.0695 0.5088 0.5259 

VisuShrink (Soft) 0.3444 1.1026 56.6225 0.0930 0.4703 0.6249 

VisuShrink (Hard) 0.3485 1.0828 56.5437 0.0764 0.4837 0.6005 

SureShrink 0.3485 1.0844 56.5504 0.0778 0.4994 0.5813 

BayesShrink 0.3491 1.0809 56.5634 0.0749 0.5006 0.5788 

BivariateShrink (dwt) 0.3490 1.0951 56.5930 0.0868 0.4996 0.5840 

BivariateShrink (dual tree) 0.3491 1.0977 56.6034 0.0890 0.5038 0.5797 
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ICA 0.0654 17.2040 68.5447 0.9419 0.5013 1.1812 

 

 

   
 

(a) Original Image 

 

 

 

(b) Noisy Image 

 

 

 

(c) VisuShrink Soft Thresholding 

 

 

   
 

(d) VisuShrink Hard Thresholding 

 

 

(e) SureShrink 

 

(f) ICA 

 

Figure  7.   Original, noisy and the denoised microarray images, (a) Original Image, (b) Noisy Image,                 

(c) VisuShrink Soft Thresholding, (d) VisuShrink Hard Thresholding, (e) SureShrink, (f) ICA. 

 

 

Table 2.  Values of Assessment Parameters for Various Denoising Algorithms for Figure 7(b) 

 

Denoising Method 
Assessment Parameters 

AAD SNR PSNR IF CQ SC 

Mean Filter 0.3642 1.1816 56.0664 0.1537 0.6123 0.5723 

Weiner Filter 0.3797 1.0705 55.6381 0.0659 0.6288 0.5302 

VisuShrink (Soft) 0.3649 1.1907 56.1001 0.1602 0.5752 0.6151 

VisuShrink (Hard) 0.3712 1.1577 55.9780 0.1362 0.5992 0.5800 

SureShrink 0.3705 1.1701 56.0245 0.1454 0.6179 0.5640 

BayesShrink 0.3717 1.1616 55.9927 0.1391 0.6199 0.5600 

BivariateShrink (dwt) 0.3726 1.1660 56.0092 0.1424 0.6218 0.5592 

BivariateShrink (dual tree) 0.3729 1.1714 56.0289 0.1463 0.6260 0.5564 

ICA 0.0835 14.0653 66.8236 0.9289 0.6210 1.2345 
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6. CONCLUSION 
In this paper, we have proposed using independent component 

analysis for denoising of microarray images. The simulation 

results of ICA show promising results as compared to most of 

the popular methods such as thresholding of wavelet transform 

coefficients and median based filtering.  ICA explicitly takes 

advantage of the image statistics, unlike other methods, to 

outperform in denoising of microarray images in terms of 

smoothing uniform regions, and preserving edges and features. 

Various assessment parameters used for evaluation of the 

performance of different denoising methods reveal the 

superiority of ICA technique. Unlike the existing denoising 

methods such as thresholding of wavelet transform coefficients 

and median based filtering, ICA explicitly takes advantage of the 

image statistics to outperform in denoising of microarray 

images. Using examples it is shown that ICA eliminates the 

noise without blurring edges or other sharp features of the 

original image. 
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