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ABSTRACT 

Fuzzy Logic with PID control (IFLC) has been applied for various 

applications which provide better performances compared to 

independent FLC, and PID. Although expert-system-based 

solutions are effective in controlling the processes. Design Fuzzy 

logic controller has traditionally been achieved through a process 

of trial and error. Such approach cannot obtain optimized FLC; 

more formal methods of knowledge base optimization are 

required. Genetic Algorithms (GAs) provide such a method to 

optimize the FLC parameters to globally optimum. In this paper, 

the FLC and the PID controller is optimally designed using the 

genetic algorithm. The effectiveness of the proposed approach 

(GAIFLC) is compared to a previous IFLC designed based on trial 

and error method and conventional PID controller for a three tank 

system. The simulation results of the proposed approach provide a 

satisfactory response in all means. 

 

Keywords 
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1. INTRODUCTION 
Proportional-integral-derivative (PID) controller has been the 

most popular control loop feedback mechanism since 1950s, and 

has been extensively used in controlling industrial process. Many 

industrial process systems may not be as readily described 

mathematically due to the complexity of the components of the 

plant and the interaction between them. Although PID controller 

is used widely, the design of the controller is based on their 

precise mathematical models, which are usually very difficult to 

achieve owing to the complexity, nonlinearity, time varying and 

incomplete characteristics of the existing practical systems.[1]  

Emerging intelligent techniques have been developed and 

extensively used to improve or to replace conventional control 

techniques, because these techniques do not require a precise 

model. One of the intelligent techniques, fuzzy logic developed by 

Lotfi A. Zadeh [2], is applied for controller design in many 

applications. The variety of fuzzy control applications indicates 

that this technique is becoming an important tool for complex 

processes [3]. Fuzzy control is a promising new way to face  

 

complex process control problems and the tendency is to increase 

their range of applicability in industrial processes [4],[5]. 

 

IFLC has been applied for various applications which provides 

better performances compared to independent FLC and PID[6], 

[7], [8]. Although expert-system-based solutions are effective in 

controlling the processes, this methodology has inherent 

limitations since it is designed to mimic a human operator with 

inherent decision-making limitations . its is very difficult to 

design a FLC based on trial and error method for IFLC [6]. Based 

on the knowledge and experience gained about the process the 

FLC is designed for the process [7], Heuristic knowledge is 

applied to define fuzzy membership functions and rules [8]. All 

this FLC are designed by the expert who has a through knowledge 

about the process and the Knowledge base differ expert to expert.   

 

In the absence of such knowledge, a common approach is to 

optimize these FLC parameters through a process of trial and error 

[9]. This approach becomes impractical for systems having 

significant numbers of inputs since the rule-base size grows 

exponentially and consequently the number of rule combinations 

becomes significantly large [10]. The use of Genetic Algorithms 

(GA) in this regard can provide such a solution [11], [12], 

[13].Genetic Algorithms (GAs) [14] are robust, numerical search 

methods that mimic the process of natural selection. Although not 

guaranteed to absolutely find the true global optima in a defined 

search space. Genetic fuzzy systems are capable of dealing with 

the curse of dimensionality for complex problems with high 

dimensionality [15]. 

 

In this paper, the integrated FLC and  PID  was optimally 

designed using the genetic algorithm (GAIFLC) The effectiveness 

of the proposed approach is compared to a previous IFLC 

designed based on Heuristic knowledge and conventional PID 

controller. The simulations results are presented. 

2. GAIFLC 
The scheme consists of a conventional PID control with the FLC 

both optimized by the Genetic Algorithm (GAIFLC). Figure 1 

illustrate the control structure of the proposed work. The Fuzzy 

uses the command input ym and the plant output yp to generate a 

suprivisory  command output  y1m described by the following 

equations. 
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Figure 1 Control Structureof GAIFLC 
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In the above, e(k) is the tracking error between the command 

input ym(k)  and the plant output yp (k), and ∆e(k) is the change in 
the tracking error. The term F[e(k), ∆e(k)] is a nonlinear mapping 

of e(k) and ∆e(k) based on fuzzy logic described below. The term  

γ(k) =  F[e(k), ∆e(k)] represents correction term so that the 

compensated command signal y1m(k) is simply the sum of the 

external command signal ym(k) and γ(k). The correction term is 

based on the error e(k) and ∆e(k). The compensated command 

signal y1m(k) is applied to a conventional PID controller as shown 

in figure 1. The equations determining the PID controller are as 

follows. 

)()()( 11 kykyke pm −=               (5) 

)1()()( 111 −−=∆ kekeke        (7) 
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The quantity e1(k) is the supervised  tracking error of the supervised 

command input y1m (k) and the plant output yp(k), and ∆e
1(k) is the 

change in the supervised tracking error. The control u(k) is applied 

as input of the plant. The purpose of the IFLC is to modify the 

command signal to compensate for overshoots and undershoots 

present in the output response when the process has unknown 

nonlinearities. Such nonlinearities can result in significant 

overshoots and undershoots if a conventional PID control scheme is 

used. The FLC and PID tuning values is optimized by GA based on 

the minimization of Integral Square error (ISE) of the closed loop 

response.   

 

3. FUZZY LOGIC CONTROLLER  
The implementation of the fuzzy logic based term is u(t) = F[e(t), 

∆e(t)]. In the description standard terminology is used to form 

fuzzy set theory, for a treatment of fuzzy sets, e(t), and ∆e(t) as 

inputs to the map F, and u(t) as the output. Associated with the 

map, F is a collection of linguistic values L={ NB, NS, ZO, PS, 

PB} that represent the term set for the input and output variables 

of F. In this case seven linguistic values are used. The meaning of 

each linguistic value in the term set L should be clear from its 

mnemonic; for example, NB stands for negative big, NS for 

negative small, ZO for zero and likewise for the positive (P) 

linguistic value. Associated with the term set L is a collection of 

membership functions. µ = { µNB, µNS, µZO, µPS, µPB } Each 

membership function (MF) is a map from the real line to the 

interval [-1 +1 ]. In this application the MF used is the (triangular 

or trapezoidal type). The height of the MF in this case is one, 

which occurs at the points optimized by GA. The realization of 

the function F[e(t), ∆e(t)] deals with the setting of linguistic 

values. This consists of scaling the inputs e(t) and ∆e(t) 

appropriately and then converting them into fuzzy sets. The 

symbol Ce is the scaling constant for the input e(t) and the symbol 

Cde is the scaling constant for the input ∆e(t). For each linguistic 

value l∈ L, assign a pair of numbers ne(l) and  ∆e(l) to the inputs 

e(t) and ∆e(t) with the associated membership function {ne(l) = µl 

(Ce  e(t ) ), n∆e(l) = µl (Cde  ∆e(t)) }. The numbers ne(l) and 

n∆e(l), l∈ L are used in the computation of  F[e(t ), ∆e(t)] [6]. As 

soon as fuzzy inference is applied to each rule, the activation level 

for all output variable (MFs) are obtained, and the defuzzification 

procedure takes place. In order to compute the final control 

action, u(t), the most commonly used method is the center of area 

[6]. The result is the center of area of the profile described by the 

membership functions, limited in the respective activation level. 

Equation (18) shows the defuzzified output 

∫
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duu

duuu
u

c

c

)(

)(

µ

µ
    (10) 

Where 
∗u is the defuzzified value,  

and ∫ denotes an algebraic integration 

 

4. GENETIC ALGORITHM 
Genetic algorithms (GA) are usually used as optimization 

techniques. It has been shown that GA also perform well with 

multimodal functions (i.e., functions which have multiple local 

optima). Genetic algorithms work with a set of artificial elements 

(binary strings, e.g., 0101010101), called a population. An 

individual (string) is referred to as a chromosome, and a single bit 

in the string is called a gene. A new population (called offspring) 

is generated by the application of genetic operators to the 

chromosomes in the old population (called parents).  Each 

iteration of the genetic operation is referred to as a generation. A 
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fitness function, specifically, the function to be minimized, is used 

to evaluate the fitness of an individual. One of the important 

purposes of the GA is to reserve the better schemata, i.e. the 

patterns of certain genes, so that the offspring may have better 

fitness than their parents. Consequently, the value of the fitness 

function increases from generation to generation. In most genetic 

algorithms, mutation is a random-work mechanism to avoid the 

problem of being trapped in a local optimum. Theoretically, a 

global optimal solution can be found [16]. The basic operations of 

a simple genetic algorithm, i.e. reproduction, crossover and 

mutation, are described below. 

 

4.1  Chromosome representation 
Most GAs search the global optimal solutions through the natural 

genetics and the evolution theory on a population. Each individual 

coded as a binary string in the population is called a string or 

chromosome. A new generation of GAs is evolved from the 

existing population. In applying the technique of GAs to solve the 

problems on hand, a string scheme is employed to encode the 

candidate solutions (chromosomes) in the form of symbolic 

strings. 

 

4.2 Fitness function 
The original GA and its many counterparts, collectively known as 

GAs, are computational procedures which mimic the natural 

process of evolution. The survival of the fittest principle leads to 

improvements in the species. Since GAs are heuristic procedures, 

they are not guaranteed to find the optimum, but they are able to 

find very good solutions for a wide range of problems. A fitness 

function (or objective function) is used to determine the fitness of 

each candidate solution. A fitness value is assigned to each 

individual in the population. 

 

 Integral of absolute error is a better all-round performance 

indicator of control system response where overshoot, settling and 

rise times are the main performance considerations [11]. The IAE 

was therefore used as a measure of performance. 

∫=
t

dtteIAE
0

)(
     (11) 

In Controller Design problems IAE has to minimized, hence the 

objective function J is set as mentioned in equation (12) 

 

51 == ×= SPSP IAEIAEJ               (12) 

4.3 Selection 
The selection process is centered upon the specified cost function. 

The selection scheme is used to draw chromosomes from the 

evaluated population into the next generation. Tournament 

selection is one of many methods of selection in genetic 

algorithms. Tournament selection involves running several 

"tournaments" among a few individuals chosen at random from 

the population. The winner of each tournament (the one with the 

best fitness) is selected for crossover. Selection pressure is easily 

adjusted by changing the tournament size. If the tournament size 

is larger, weak individuals have a smaller chance to be selected 

[17]. Deterministic tournament selection selects the best 

individual (when p=1) in any tournament. A      1-way tournament 

(k=1) selection is equivalent to random selection. The chosen 

individual can be removed from the population that the selection 

is made from if desired, otherwise individuals can be selected 

more than once for the next generation 

 

4.4 Crossover 
Crossover provides a mechanism for individual strings to 

exchange information via a probabilistic process. Once the 

reproduction operator is applied, the members in the mating pool 

are allowed to mate with one another. First, the genetic codes of 

the two parents are mixed by exchanging the bits of codes 

following the crossover point. For example, consider two parent 

strings where the crossover point is 5 (i.e., the fifth bit in the 

string) 

P1 = 10101|010;  P2 = 01111|100; 

The separator symbol ‘‘|” indicates the crossover site. The 

resulting offspring have the following: 

P01 = 10101|100;  P02 = 10101|010: 

 

4.5  Mutation 
In each iteration, every gene is subject to a random change, with 

the probability of the pre-assigned mutation rate. In the case of 

binary-coding, the mutation operator changes a bit from 0 to 1, or 

vice versa. All in all, the mutation operation introduces new genes 

into the population, so as to avoid the problem of being trapped in 

local optima. Offspring are generated from the parents until the 

size of the new population is equal to that of the old population. 

This evolutionary procedure continues until the fitness reaches the 

desired specifications. 

 

5. ENCODING (GAIFLC) 

Although fuzzy logic allows the creation of simple control 

algorithms, the tuning of the fuzzy controller for a particular 

application is a difficult task and one needs a more sophisticated 

procedure than that used for a conventional controller. This is due 

to the large number of parameters that are used to de fine the MFs 

and the inference mechanisms. Several methods have been 

developed for tuning fuzzy controllers. These involve adjustment 

of the MF [18] and/or scaling factors [19] and dynamically 

changing the defuzzification Procedure. Therefore, the approach 

needs as many variables as there are rules to get an optimal rule 

base. The advantage of the approach reported in the present paper 

is that it takes only three variables to optimize the rule base 

geometry, two variables to optimize the membership function and 

three scaling variables. 

 

5.1 Encoding Rule Base  
To design an optimal rule base A simple geometric approach is 

followed to modify the rule base as mentioned in [20]. For this the 

initial assumptions made were as follows; 

 

� The magnitude of the output control action is consistent with 

the magnitude of the input values. (i.e. in general, extreme 

input values (premise) result in extreme output values 

(consequent), mid-range input values in mid-range output 

values and small/zero input values in small/zero output 

values. 

 

� If a large negative (positive) input generates a large negative 

(positive) response, then it is likely that slightly smaller, 
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negative (positive) inputs will necessitate a response of like 

polarity, but smaller magnitude, and so forth until a zero-

crossover point is reached at which point the polarity of the 

response changes. 

 

Using these generalizations, in conjunction with the concept of 

system symmetry, a different approach can be used which reduces 

the number of bits required for the rule -base dramatically. The 

approach is a variation of the method which involves a fixed 

coordinate system defined by the possible premise combinations. 

The consequent space is then ‘overlayed’ upon the premise 

coordinate system and is in effect partitioned into 5 regions shown 

in fig.2,  

 
Figure 2. GAFLC Rule Assigning 

 
Consequent-line angle, CA (16 angles between 0-168o (i.e. 4 bits)) 

Consequent-region spacing, CS (4-bits) Consequent-line order, 

CO (1-bit) (Defines order of consequent space partitions (i.e. NB-

NS-Z-PS-PB or PB-PS-Z-NSNB)  

A total of 9-bits are used to extract rule -bases consistent with the 

above assumptions   

 

5.2 Encoding membership function  
In the attempt to encode the FLC membership functions 

associated with the 2 inputs and 1 output, a number of 

assumptions are made in respect of the distribution of fuzzy sets 

across the universe of discourse (UOD) for each fuzzy variable. 

These assumptions are;  

 

� The UOD is symmetrical about the central, zero region for 

each variable. 

� The extreme membership functions (MF) for input variables 

should be unbounded in the respective positive and negative 

going directions. 

� The inner and central UOD-range MFs could assume either 

triangular (trimf) or trapezoidal (trapmf) shapes only, for 

input and output variables. Outer UOD-range MFs for input 

variables were unbounded z-shaped (zmf), while output 

variable extreme MFs could assume the same shape as inner 

and central range MFs (trimf or trapmf). 

� The number of fuzzy sets for the controller was fixed at 5 

(NB, NS, Z, PS PB). 

 

The MF properties altered by the GA are as follows; 

1. MF shape (triangular or trapezoidal). 

2.Degree of MF-centre shift to effect MF compression or 

expansion. 

5.3 MF Offset Field 
The optimization begins by loading a *.fis (Matlab Fuzzy file) 

into the FLC block in the MATLAB Simulink model. Each 

evaluation subsequently uses a ‘genetically-altered’ version of the 

original FLC which is defined by a MATLAB, fuzzy structure. 

For each evaluated FLC, the UOD -distributed MFs are initially 

assumed to be trapezoidal in type, thus 4 parameters are required 

by the FIS to define the position in the UOD of each of the 5 

MFs. The significance of these parameters is illustrated below in 

Figure3 & 4. 

 

 

 

 

The Matlab Fuzzy file ‘params’ field has 4 UOD position 

parameters (outer-left(OL), inner-left(IL), inner-right(IR), outer-

right(OR) ). For inner parameters (IL and IR ) equal in value, MF 

becomes triangular in shape. The offset field is used to effect a 

change of shape in the MFs. The 3-bit offset field is decoded in 

the range of [0, 0.1] and the application of the offset parameter 

modifies the shape of the MFs from triangular to trapezoidal of 

varying widths and positions. The MFs of each FLC fuzzy 

variable (e, de and u) are encoded into the GA-chromosome in 

this manner. 

 

5.4 MF Companding Field 
Application of the offset field produces MFs of different shapes 

(trimf or trapmf) and positions, but does not effect the distribution 

of the MFs, which are evenly distributed across the UOD. To 

enable evaluation of non-uniform distributed MFs, a further field 

is encoded into the GA-chromosome for each fuzzy variable, 

which is applied to the MFs to bring about compression and/or 

expansion of the associated MFs. The companding field is 

decoded to a value (CF) in the range [0.5 – 2], and is applied to 

update the MF position parameters of each MF by raising them to 

the power of CF (e.g. for the Z-MF, outer-left parameter; 
CF

oldOLnewOL OO )( )()( ⇒ ) Due to the use of a normalized 

UOD, the position parameters are shifted to different degrees by 

this operation and the net effect is that; 

IR IL 

OL OR 

Fig.3 Trapezoidal MF parameters 

IL = IR 

OL OR 

Fig 4. Trapezoidal MF Defining triangular MF 
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for CF < 1 : Z-MF is compressed, NB and NS expand 

for CF > 1 : Z-MF expands, NB and NS compress 

for CF = 1 : uniform MF distribution 

In this way, non-uniform distribution of the MFs is effected across 

the UOD.  

 

5.5 Encoding PID Tuning Values 
The GA also optimize the tuning values of PID controller. The 

three fields, proportional gain KP, Integral gain KI and Derivative 

gain KD are included in the GA –chromosome each consisting of 

7- bits, which are encoded to yield the tuning values of PID block 

of the Simulink model. 

 

5.6 GA-Chromosome of FIS and PID 
Three aspects of the FLC were subject to the optimization 

procedure; (a)Rule Base, (b)Membership Functions(MF), (c) PID 

tuning values. The primary assumption made was that for a 

symmetrical system, a corresponding FLC would also exhibit 

symmetry about the set point in respect of its MFs and rule -base. 

This assumption was exploited in order to attempt to reduce the 

number of bits required to define the FLC for GA optimization. 

Table 1 illustrates the 51-bit binary GA-chromosome used to 

encode GAIFLC 

 

Table1 GA Chromosome allotment for FLC and PID Controllers 

FLC Chromosome PID Chromosome 

RB 

9bits 

1:9 

e:MF 

7 bits 

10:1

6 

∆e:MF 

7 bits 

17:23 

u:MF 

7 bits 

24:3

0 

KP 

7 bits 

31:3

7 

KI 

7 bits 

38:4

4 

KD 

7 bits 

45:5

1 

 

6. THREE TANK LEVEL SYSTEM  
 

Liquid level control has a very large application domain in 

industry. Its most representative didactical equipments are the 

tank systems, i.e. one, three [7] or four tank systems [22]. 

Moreover, the three tank system (3TS) is one of the most widely 

used laboratory system in control theory. Figure 5 show 

interacting connection of a three tank system in which Tank1 

noninteracting connection, Tank2 and Tank3 interacting 

connection. 

 

By applying the mass balance equation we get 

 

 (13) 

 

By considering:  

A1=A2=1m
2; A3=0.5m

2 and R1=R2=R3=2(m/(m3/s)),  

We get 

16124

4
)(

23 +++
=

sss
sG     (14) 

 

 

Figure 5 Three Tank Interacting System 

 

7. SIMULATION  
 

The effectiveness of the proposed control scheme has been 

assessed through simulations, The entire simulation is carried out 

in MATLAB & Simulink on a Core 2 Duo Processor 2.2 GHz, 

2GB RAM PC Environment. 

For comparing with the classical PID controller the  Zeigler-

Nichols (Z-N) tuning method is followed and for the human 

designed IFLC is taken from [7].  

 

Table2  PID tuning Values using ZN method 

 

Parameter Interacting Tank 

Kc 1.8 

Ti 3.6 

Td .9 

For Fuzzy logic controller two inputs [e, ∆e] and one output with 

seven membership function and 49 rules 

7.1 Case I 
For optimizing the Fuzzy logic and PID controller(GAIFLC) the 

GA parameters are set to 

Generation   = 250 

Population Size = 50 

Crossover rate  = 0.5 

Mutation Rate  =  0.03 

For FLC the template was set as two input one output with five 

membership function and 25 rules.And for the PID  tuning values 

the search range is set as [0 to 5] 

7.2 Case II 
For testing the GAIFLC the following settings are chosen; with 

Initial setpoint values SP = 1 and 5 and the closed loop response 

is taken for 50 sec. the servo regulation of the process is tested 

with the following set point profile shown in (15) 
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7.3  Case III 
To check the Load rejection of the GAIFLC, the load disturbances  

L is varied from 0.5 to 1 keeping set value to zero. To check the 

continuous load rejection the setpoint is kept as one and the load 

is varied for the following profile (16) 

H
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8. RESULTS AND DISCUSSIONS  

The Table 2 shows the optimized fuzzy logic control variables. It 

is observed that the performance Index is minimized to 12.42 

from 732.55 after 250  generations and the fig.12 shows the 

optimized membership functions  and table 6 shows the GA 

optimized IFLC Rule baseafter 250 generations. 

The fig.6 and 7  shows the closed loop response of three tank 

interacting system  with GA optimized Fuzzy logic Controller and 

PID controller for the set point 1 and 5 the output is plotted for 50 

seconds.The output response of GAIFLC shows a better 

performance than PID  controller and Human designed IFLC in 

means of rise time, overshoot and settling time. 

 

The fig.8 and 9  shows the closed loop response of three tank 

interacting system  with GA optimized IFLC for the load variation 

of .5 and 1 keeping setpoint as zero. The output is plotted for 50 

seconds. The response shows  the GAIFLC is very effective in 

load rejection and bring back the system to the set point The 

robustness of the GAIFLC is tested with continuous setpoint and 

load variations. The Figure10. Depicts Closed loop response of 

the system for various control schemes for the setpoint profile 

given in section 7.2 

The response shows the the GAIFLC is capable in maintaining the 

setpoint with minimum rise time, minimum settling time and 

minimum overshoot. Figure 11 shows the load regulation in 

which the GAIFLC shows the better performance than the other 

two controllers. Table 2 represents the comparison of the closed 

response output for set point change. The performance of the 

controllers are compared with respect to the risetime (Rt), Peak 

overshoot (Po), settling time (St) IAE, and ISE  for two different 

setpoint. The GA IFLC seems to be better in all performances. 

Table 3 represents the comparison of the closed response output 

for the load change. The proposed control scheme is performs 

better with minimum disturbance correction , IAE and ISE.   

 

Table 3 GA Optimized FLC and PID control variables

 

 
Rule base 

parameters 
Membership Parameters 

PID 

Tunning Values J 

 Ca Cs Co Ofset1 Ofset2 Ofset3 Cf1 Cf2 Cf3 KP KI KD 

1st Gen 1.55 0.8 0 0.01 0.07 0.05 0.60 0.50 0.66 3.07 2.5 3.62 957.3 

250thGen 0.67 .77 1 0.08 0.5 0.07 1.04 1.11 0.70 1.65 1.12 2.65 12.42 

 

Table 4. Performance comparison of controlled variable for setpoint change 

 

Interacting Tank (Set Point Change) 

Figure 

No 

Set 

Point 

Control Scheme % Peak 

Overshoot 

Rise 

Time 

Settling 

Time 

IAE ISE 

 1 PID 1.32 2.62 22.5 2.77 1.564 

IFLC 1.13 2.41 19.38 1.713 1.156 

GAIFLC 1.07 1.89 6.428 1.455 1.08 

 5 PID 6.61 2.56 21 13.85 39.71 

IFLC 5.63 2.38 17.5 9.552 33.21 

GAIFLC 5.20 2.31 7.8 8.54 31.65 

 

Table 5. Performance comparison of controlled variable for 

load change 

 

Interacting Tank (Load Change process outlet) 

Fig.

e No 

load Control 

Scheme 

disturbance 

correction 

IAE ISE 

 1 PID <15.97 2.75 1.55 

IFLC <11.9 1.90 1.23 

GAIFLC <6.5 1.33 1.01 

 0.5 PID <14.77 1.37 .38 

IFLC <11.35 .95 .30 

GAIFLC <6.87 .63 .22 

 

Table 6.  Optimized rule-base of GAIFLC 
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NB NB NB NS Z PB 

NS NB NB NS PS PB 

Z NB NS Z PS PB 

PS NB NS PS PB PB 
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Figure 8. Closed loop response of the system for 

various control schemes with load =.5 

Figure 9. Closed loop response of the system for 

various control schemes with load =1 

Figure.6 Closed loop response of the system for 

various control schemes with setpoint =1 

Figure 7. Closed loop response of the system for various 

control schemes with setpoint =5 
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Figure10. Closed loop response of the system for various control schemes with different setpoints 
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Figure11. Closed loop response of the system for various control schemes with different load 
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Figure 12. Optimized Membership function for error, Change 

in error and output of GAIFLC 

 

9. CONCLUSION  
Optimization of a fuzzy logic controller can prove a lengthy 

process when performed heuristically. In this work it has been 

shown that the use of genetic algorithms offers a feasible method 

for the optimization of the knowledge-base of fuzzy logic 

controllers. The proposed approach is capable of designing a 

GAIFLC with five membership function and 25 rules also a better 

control compared to human designed IFLC which have seven 

membership function and 49 rules. In real time application the 

GAIFLC tale less computational time compared to human 

designed IFLC. 
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