
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 11

12

Graphical Driver Development Kit (GDDK) for Linux

Kumar Anik
Indian Institute of Information

Technology, Allahabad (Amethi
Campus) India

ABSTRACT
GDDK is a tool to help users build a driver in an organized and a

lesser burdened way than how they do that natively. It helps by

framing a procedure that comes common out of developing

various drivers. The tools contains all function definitions of the

kernel source, but the user is expected know how to use those

functions in the GDDK and how to use them to solve his

purpose, as the tool is supposed to provide only a convenient way

for developing the driver, and hence doesn't do any wonders by

creating drivers itself. The tool offers a wizard for users which

can help them to make a driver on preconfigured templates as

well as a UI where she can choose from innumerable

functionalities of the kernel to develop one of her own.

The toolkit should not be misjudged as an AI kind of framework

where only a little information from the user can develop a driver

for any device. User must know each and everything about the

device, about the functionalities as well as mechanism of the

device to develop a driver. The toolkit helps in a way that it saves

user's time to develop a driver as well as it can help user to build

it in a systematic approach so that useless ambiguities are

avoided.

Categories and Subject Descriptors
D.4.0 [Unix and Network Development]: Device Drivers

development for linux.

General Terms
Documentation, Design, Experimentation, Standardization,

Theory.

Keywords
GDDK, DDK, Linux drivers. Device drivers.

1. INTRODUCTION
Currently devices drivers for Linux are all developed by

understanding some details of the kernel and then developing a

module which becomes a part of the kernel and acts as a driver.

The process in itself requires a detailed amount of knowledge of

kernel and its properties. Thus the driver code as a consequential

outcome, becomes something which can be understood by only

developers and not daily or end users who are Linux newbies.

Moreover the code complexities, dispatch modules and kernel

parameters in themselves are something which a non developer

has to think twice about before developing a driver for herself.

New devices are getting developed everyday out of which most

are non commercial “home-made” devices. Now those with a

lack of in depth kernel programming face a trouble developing

drivers for their devices. It is for that purpose, this Linux Driver

GDK comes into picture. This GDDK is proposed as a tool for

end user to develop drivers for various devices where a user

doesn't need to know hardcore programming as a prerequisite.

The GDDK proposes an architecture where user can very easily

be able to retrieve various drivers informations preloaded like the

major and minor numbers for devices, their mount points in /dev

and /etc. Instead of writing a code a user can make use of a

flowchart or various graphical symbols to create a logical

representation of the driver code and the GDDK can develop or

generate the corresponding c code for the driver. The modules

which are the composition of the driver can be clubbed with the

GDDK without compiling them individually. The complexity of

the code for driver , thus doesn't need to be concerned of by the

end user anymore since the API itself helps the user to to build a

driver with nothing but a graphical tool.

2. DRIVER DEVELOPMENT : CURRENT

SCENE

2.1 Classification of Drivers

2.1.1 Char Drivers:

These drivers are those which feature stream reading and writing

and implement at least open, close, read and write system calls.

It is quite similar to a simple file apart from the fact that one just

cannot access all back and forth regions of a device through this

sort of driver unlike file. This kind of driver allows only

sequential operations.

2.1.2 Block Drivers:

These drivers provide a block access to the devices i.e. device

can be communicated with a block of data not just a sequential

stream access. Normally any number of bytes can be transferred

by the driver to the device.

2.1.3 Network Drivers:

As the name suggests these drivers follow the network layer

abstraction of the TCP-IP or OSI model where communication

with the device is done in form of packets. These kind of drivers

are mostly not mapped on file-system.

2.1.4 Class Driver:

These drivers are the one most popular and are presently used in

nearly all devices now a days. These drivers hold the property

Dr. Pavan Chakroborty
Assistant Professor

Indian Institute of Information
Technology, Allahabad (Amethi Campus).

India

Abhishek Sharma
Indian Institute of Information

Technology, Allahabad (Amethi Campus).
India

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 11

13

that they can operate a large number of different devices of a

broadly similar type. The most common example is USB

interface which is widely preferred in many devices.

2.2 Working of a Driver

Device drivers act as a medium through which the Linux API

interacts with the devices. Multiple drivers can be associated

with a single device as shown in the figure. Moreover, In Linux,

drivers are actually loaded as modules into a running kernel. The

kernel is the binding of element of devices and their software

abstractions i.e drivers. So it is the first liability to take a peep

into the kernel.

2.2.1 Sectioning the kernel:

The kernel is the core of an operating system. It acts as a layer of

software over all pieces of hardware. But that is not the only

limited functionality of a kernel i.e. to just act as an abstraction

layer. It handles the requests of various processes and has to deal

with interrupts as well as process management. When to assign

resources and how much to be assigned and all other details are

to taken care of by the kernel itself. So in other words the task of

a kernel cannot be be designated by a single functionality.

Although distinction between different kernel tasks cannot be

marked precisely yet it can be categorized in these general

terminologies:

a) Process Management – Control of processes, when to kill

some process or to assign resources to some process is a

functionality of the kernel.

b) File System – Kernel has to look over this software abstraction

where a whole deal of information is managed in an architecture

which we know as a file-system.

c) Memory Management – Virtual Memory management for

processes on top of real memory is implemented in this

functionality.

d) Device Management – To map all the devices and load their

functionalities at runtime is the responsibility of this area.

e) Networking – Since networking operations are not specific to a

purpose all the packets can be asynchronous so it is the

responsibility of the kernel to manage them.

2.2.2 Visualizing the kernel:

To simplify things instead of making each and everything be

familiar to kernel, it is better to show some familiarity to the user

and some to kernel. It means that kernel can hide all the internal

details of the working and provide user with something she

understands. That's the reason it implements to different address

spaces – User Space and Kernel Space. While a user can issue a

request whether or not it should be granted is up to the kernel. So

it can take that request to the kernel space and grant more

privileges to that request and fulfill it. So apart form ease,

security is also provided. The following diagram can represent

this issue clearly:

2.2.3 Role of a Driver in the kernel:

To make a flexible driver for Linux it must hold the property of

providing mechanism “what capabilities are to be provided” and

not policy “how those capabilities can be used”. Now apart from

providing the software abstraction layer around the device a

driver is also supposed to provide security. It might be possible

that two different processes are trying two access the same

device, in that case the driver must be able to handle the

situation properly. Similarly there are other issues of buffer

overloading, address space registration, concurrency etc. All

these issues are to taken by the driver itself otherwise the device

or the kernel or both may be prone to harm.

2.3 Making an actual Driver:
Now that we have seen all about a general driver we ought to

know about the current method developers use to make a driver.

Before we take any further step, it is to be notified that the

instructions(in terms of hex-codes) of the device need to be

present with the user before-hand. These hex-codes refer to

particular instructions of the device , according to the device

specification of course! If the manual is not provided by the

device manufacturers then this instructions set can be usually

generated by the common procedure of Reverse Engineering,

known to most of the driver developers.

Now that we have the instruction set ready, we need to know

how a kernel interacts with a particular device. A kernel actually

makes use of two different numbers to point to a device –

MAJOR_NUMBER and MINOR_NUMBER. The former one

tells about the driver being used for a particular device and the

latter one actually points to the exact device. One can preview

these numbers by typing “ls -l” in /dev directory. The two

contiguous columns of decimal numbers are Major and Minor

respectively.

For any category of drivers there is one common methodology

used for implementation : OPEN, READ, WRITE, IOCTL,

CLOSE. Lets discuss them one by one.

OPEN – In this portion of the code drivers needs to open the

device for any thing like reading or writing from or to the device.

It requires information about the file(device file we are talking

about) which is held in inode and file descriptor.

READ & WRITE – These methods require similar kind of

informations about the device i.e. file descriptor , pointer to a

buffer where the data shall be first placed, the number of quanta Illustration 1: Image Source:

http://www.ibm.com/developerworks/linux/library/l-linux-

kernel/figure2.jpg

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 11

14

of data to be written and the offset of the file from where to start

writing.

IOCTL – This is only used when special type of functionalities

are required form the device. The ioctl system call helps

communication with the device in a better way. As parameters it

takes the file descriptor, request number and the data pointer in

input.

CLOSE / RELEASE – This chunk of code takes all the resources

away from the device (when not in need of course !). It

deallocates anything OPEN allocated and shuts down the device

on the last close.

These five major chunks of code are in every driver no matter

what the genre of that driver is. These function calls are to be

defined by the user and when it has been done, the file

operations structure (where all the information about the device

file to be delivered to the kernel is stored) is set according to

these functions.

In Linux before anything else device registration is necessary

which is done in the initialization function of the driver. So as

soon as the driver runs the initialization function is executed in

the beginning and the device is registered and along with it we

initialize the file operations structure as well but we don't set the

member values of the structure. As soon as the above functions

are(READ , WRITE etc.) are all set we define them as the file

operations member through pointer passing.

Now that all the driver code is developed, its high time we look

over the issues of implementing our driver. First things first,

there exists no c code in this world which works on its own. It

needs to be compiled. For this task, in the kernel versions beyond

2.4.x, a makefile needs to be written which contains some

specifications about the kernel versions, source directory, the

device files to be generated in /dev(Note this. This is done

through a function named “mknod” which creates a task specific

node in the /dev directory. After running the makefile the

executable is generated. Then the comes the final part of

implementation which is terned as inserting the driver into to the

running kernel. Its the virtue of the kernel that it provides a pre-

built function for this task which is “insmod”. It takes the driver

binary as input and then inserts it into the running kernel.

With this a driver is developed in its complete form apart from

other details like version defining, exporting symbols etc(For

further details, see the references in the end)

3. THE GDDK

Where does GDDK come into picture?

Now, knowing about a device driver, a user, specifically a device

manufacturer, decides to make a driver for her device. She needs

to (i) refer to a table of hex-codes which guides the information

exchange between the kernel and the device; (ii) identify the

header files (e.g. linux/module.h, sys/types.h) required; (iii)

write the code of mandatory kernel functions (viz. open, read,

write, release, IOCTL), and her own customized functions,

structures or variables, if required; (iv) identify and initialize the

members of file descriptors (which are actually structures); (v)

initializes the driver by registering the device with the operating

system; (vi) make the member functions of 'file_operations'

structure point to its mandatory kernel functions definitions; (vii)

compiling the final code after completion; and finally insert the

module into the kernel. Now, let us look at how the GDDK helps

in his procedure.

3.1Sequencing the whole procedure.

The toolkit provides an organized sequential procedure that

maintains the integrity of the code it writes. It does so in the

given following fashion.

(i) The wizard of the toolkit makes the final code readable

by defining macros to these hex-codes belonging to the

particular device.

(ii) It shows the hierarchal listing of the header files and

their corresponding functions, hence enabling the user

to easily identify the header files she requires for

implementing the functions in her code. For example, if

she needs kmalloc() function to be implemented in her

code, she can easily know the library 'linux/slab.h', in

which the specified function is defined.

(iii) It provides an editor window to write the code of

various mandatory kernel functions, i.e. separate places

to provide the code for read, write functions etc. This

way the process of writing the code becomes

convenient. Further, the toolkit provides specifications

where the require routines are to be placed within these

functions. This is done by placing comments in the

current editor window displayed to the user.

return_value read (struct file* fil_p, struct inode* nod_p)

{

/************************** PLACE YOUR FILE

DESCRIPTOR INFORMATION HERE

***************************/

 /************************** PLACE THE

INITIALIZATION OF THE BUFFER AND THE FILE OFFSET

VALUES HERE

***************************/

 /************************** PLACE THE

INFORMATION TO BE SENT TO THE DEVICE HERE

*************************/

 /**************************

...

 **************************/ }

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 11

15

Moreover, it provides an option to add new customized functions,

structures and variables through a blank editor window (the ones

without the comments mentioned above).

(iv) The toolkit asks for the values of the mandatory file

descriptor members and gives an option to add others

as well.

(v) Owing to the fixed nature of the initialization function,

most of the code for this part is automatically

generated, with a few amendments to be done by the

user herself.

(vi) For this and the next parts of the procedure, the user

has the time to sit and relax as all the work is

automatically accomplished by the GDDK itself. It

includes making the member functions of the

'file_operations' structure to point to their respective

definitions, generating the makefile with options set by

the user such as adding device nodes (e.g. 'mknode

/dev/js0'),manipulating scripts etc., compiling and

finally inserting the module into the running kernel.

This result of the whole automation can be altered as

well.

Hence, the DDK toolkit helps in developing a driver in a more

convenient, easier and more importantly, in a lesser bug-prone

fashion.

3.2 GDDK for learning

The toolkit provides a help section that can assist a beginner to

write driver for her device by providing her with basic examples

of char, block, network and class drivers. These basic examples

will not only provide a way to get hands on for the toolkit , but

also serve the purpose of laying the foundation for driver

development.

3.3 Recommendation for Future Research

The further development on this path can be viewed as the

implementation of the following

(i) to add more and more AI into the driver making

process, comforting the user even more.

(ii) to add the capability in the tool to generate the

distribution packages (.deb,.rpm etc)of the drivers

developed, for various Linux distributions.

(iii) The lack of instruction set of the device might pose an

additional requirement of availability of a non-linux

system (Windows etc.) for the process of reverse

engineering described. Somehow, this can be

eliminated.

4. ACKNOWLEDGMENTS
Our thanks to our college Indian Institute of Information

Technology, Allahabad, Amethi Campus (India) for providing the

platform to do the research.

5. REFERENCES

[1] Alessandro Rubini. Book: Linux device drivers, 1998

[2] Corbet, Jonathan. Rubini, Alessandro. Kroah-Hartman,Greg.

Book: Linux device drivers, 3rd Ed., 2005

[3] Kroah-Hartman, Greg.2001. Kernel korner: How to write a

Linux usb device driver. Specialized Systems Consultants,

Inc. Seattle, WA, USA, 1075-3583.

http://portal.acm.org/citation.cfm?id=509852.509856&coll=

portal&dl=ACM&CFID=51722142&CFTOKEN=94078685

[4] Matia, Fernando. Kernel Corner: Writing a Linux Driver.

ACM Linux Journal, 22(April 1998), 1075-3583.

http://portal.acm.org/citation.cfm?id=327338.327360&jmp=

cit&coll=portal&dl=ACM&CFID=51722142&CFTOKEN=9

4078685#CIT

[5] Rusling D A, The Linux Kernel,

http://www.tldp.org/LDP/tlk/tlk.html, 1999

[6] Tsegaye,Melekam. Foss,Richard . 2004.A comparison of the

Linux and Windows device driver architectures. ACM

SIGOPS Operating Systems Review . ACM New York, NY,

USA. DOI http://doi.acm.org/10.1145/991130.991132

[7] Wang,Shaojie. Malik, Sharad.Bergamaschi,Reinaldo A.

2003. Modeling and Integration of Peripheral Devices in

Embedded Systems. In Design, Automation, and Test in

Europe, Proceedings of the conference on Design,

Automation and Test in Europe. IEEE Computer Society

Washington, DC, USA, 1530-1591, 0-7695-1870-2.

http://portal.acm.org/citation.cfm?id=789083.1022717&jmp

=cit&coll=portal&dl=ACM&CFID=51722142&CFTOKEN

=94078685#CIT

http://doi.acm.org/10.1145/332040.332491
http://doi.acm.org/10.1145/332040.332491
http://portal.acm.org/citation.cfm?id=327338.327360&jmp=cit&coll=portal&dl=ACM&CFID=51722142&CFTOKEN=94078685#CIT
http://portal.acm.org/citation.cfm?id=327338.327360&jmp=cit&coll=portal&dl=ACM&CFID=51722142&CFTOKEN=94078685#CIT
http://portal.acm.org/citation.cfm?id=327338.327360&jmp=cit&coll=portal&dl=ACM&CFID=51722142&CFTOKEN=94078685#CIT
http://doi.acm.org/10.1145/964696.964697
http://portal.acm.org/citation.cfm?id=789083.1022717&jmp=cit&coll=portal&dl=ACM&CFID=51722142&CFTOKEN=94078685#CIT
http://portal.acm.org/citation.cfm?id=789083.1022717&jmp=cit&coll=portal&dl=ACM&CFID=51722142&CFTOKEN=94078685#CIT
http://portal.acm.org/citation.cfm?id=789083.1022717&jmp=cit&coll=portal&dl=ACM&CFID=51722142&CFTOKEN=94078685#CIT

