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ABSTRACT  
In this paper we describe Cryptography by using Karatsuba 
multipliers and ASCII codes implementing through coordinate 
geometry for data encryption and decryption with its code in 
matlab. Elliptic curve cryptography is an asymmetric key 
cryptography. It includes (i) public key generation on the elliptic 
curve and its declaration for data encryption and (ii) private key 
generation and its use in data decryption depended on the points 
on two dimensional elliptical curve. We also discuss the 
implementation of  ECC on binary field. An overview of ECC 
implementation on two dimensional representation of ASCII 
codes with coordinate systems and data encryption through 
Elgamal Encryption technique has been discussed. Karatsuba 
multiplier is a fast process to solve the Elliptic curve cryptography 
problems. Here we have applied Karatsuba multiplier for point 
multiplication. Much attention has been given  on the 
mathematical implementation of elliptic curves  through 
Karatsuba multiplier. For cryptographic purposes, specifically 
results of  the group formed by an elliptic curve over a finite field 

E(F2
m
), and showing how this can form public key cryptographic 

systems for use in both encryption and key exchange.  Finally we 
describe how to encrypt and decrypt the data with the ASCII 
codes through Karatsuba multiplier and its implimentation 
through matlab. 

Categories and Subject Descriptors 
E.3.[Data Encryption]: Public key cryptosystems,Elliptic curve 
cryptography,Karatsuba multiplication,ASCII table. 

 
General Terms:Algorithm,Security,field 

 

Keywords:Cryptography,Field,Encryption,Decryption, ASCII. 
 

1.INTRODUCTION 

 In ECC a 160-bit key  provides the same security   as compared 
to the traditional crypto system  RSA[6]  with a 1024-bit key, thus 
lowers the computer power. Therefore,ECC offers considerably 
greater security for a given key size.Consequently, a key with 
smaller size makes it possible a much more compact  
implementations for a given level of security,  
 
which means faster cryptographic operations, running on smaller 
chips or more compact software. After using Karatsuba multiplier 
(multiplication and addition) [2]fastest cryptographic operational 
speed should be gained. Further, there are extremely efficient,  

 
compact hardware implementations are available for ECC 
exponentiation operations, offering potential reductions in 
implementation footprint even beyond those due to the smaller 
key length alone. Elliptic curve cryptography is not only emerged 
as an attractive public key crypto-system for mobile/wireless 
environments but also provides bandwidth savings. The use of 
elliptic curve in cryptography was proposed by Miller and 
Koblitz. Elliptic curve cryptography is not easy to understand by 
attacker. So not  easy  to  break. The choice of the type of elliptic 
curve is dependent on its domain parameters, the finite field 
representation, elliptic curve algorithms for field arithmetic[4] as 
well as elliptic curve arithmetic. The optimum selection of these 
parameters also depends on the security conditions under 
consideration. There are several research papers in this subject 
available in the literature covering different areas like hardware 
and software implementations. In the above respect it can be 
mentioned here that one can define encryption points as ei and ej 
by a specified algorithm but it is not yet possible for the case of 
plain text. In this paper we have discussed about the encryption 

and decryption with Elliptical curves  E(F2
m
) and  an attempt has 

been made to represent  plaintext in two dimensional form with 
the help of an ASCII code table so that Elgamal encryption 
technique[9] can be used for the  said ECC. Karatsuba 
multiplication methods have been used for less complexity and 
fast process. It can be mentioned here that ECC produces both 

private key and public key.   Private key is known as secret key. 
In symmetric key cryptography single key uses for both 
encryption and decryption. In asymmetric key algorithm it 
however uses only for decryption of encrypted message. In 
asymmetric key cryptography, public key is used for message 
encryption and  widely distributed for public. Elliptic curve 
cryptography is asymmetric key cryptography by nature. For the 
completeness of the paper, the description and use of the elliptic 
curves with Karatsuba multiplier[2][3] and  ASCII codes is given 
in few of the subsequent section. In section 6 we describe  the 
methodology  of encryption for plaintext followed by conclusion 
in the last section and in section 7 coding in matlab. 
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                                   (Fig-1) (ASCII  table for 128 characters) 
 

2.1ASCII codes 
Before ASCII was developed, the encodings in use included 26 
alphabetic characters, 10 numerical digits, and from 11 to 25 
special graphic symbols. More than 64 codes were required in 
ASCII. ASCII codes (Fig-1) represent as text in computers, 
communications equipment, and other devices that work with text. 
Most modern character encodings which support  many more 
characters than did the original have a historical basis in ASCII. 
ASCII[12] developed from telegraphic codes and its first 
commercial use was as a seven-bit tele printer code promoted by 
Bell data services. Work on ASCII formally began October 6, 
1960 with the first meeting of the ASA X3.2 subcommittee. The 
first edition of the standard was published in 1963, a major 
revision in 1967, and the most recent update in 1986. Compared 
to earlier telegraph codes, the proposed Bell code and ASCII were 
both ordered for more convenient sorting (i.e., alphabetization) of 
lists, and added features for devices other than teleprinters. Some 
ASCII features, including the "ESCape sequence", were due to 
Robert Bemer. ASCII includes definitions for 128 characters: 33 
are non-printing, mostly obsolete control characters that affect 
how text is processed; 94 are printable characters (the space is not 
printable). The ASCII character encoding or a compatible 
extension is used on nearly all common computers, especially 
personal computers and workstations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
The representation of each and every character is with the seven 
bits (b7 to b1),e.g. the representation of A is 
(1000001)=65,similarly other characters are coded  like  this.  

 

2.2. ASCII table for two dimensional 

coordinate representation: 
Input and output devices that communicate with people and the 
computer are usually involved in the transfer of alphanumeric 
information to and from the device and the computer.It uses seven 
bits to code 128 characters shown as the above table. In case of 
ASCII code cryptography the arrangement of the characters are 
distinct from the table(Fig-1.2).According to this each and every 
ASCII code have two dimensional coordinate 
representation[10][11] with eight bits .That is (b4  to  b1) for X-
coordinate and  (b4  to  b1)   for   Y-coordinate. Now the 
representation of  B is (0010,0100),and for encryption we can add 
this with  the point which is lying on the elliptic curve. Similarly 
we can represent another characters. It’s clear that coordinate 
representation is different than ASCII representation. With these 
representation characters can be taken different points of elliptic 
curve for data encryption with the  following algorithms in 
section-6. 

    b4 0 0 0 0 0 0 0 0 

    b3 0 0 0 0 1 1 1 1 

    b2 0 0 1 1 0 0 1 1 

    b1 0 1 0 1 0 1 0 1 

b4 b3 b2 b1  0 1 2 3 4 5 6 7 

0 0 0 0 0 NUL DLE SP 0 @ P ‘ p 

0 0 0 1 1 SOH DC1 ! 1 A Q a q 

0 0 1 0 2 STX DC2 “ 2 B R b r 

0 0 1 1 3 ETX DC3 # 3 C S c s 

0 1 0 0 4 EOT DC4 $ 4 D T d t 

0 1 0 1 5 EQN NAK % 5 E U e u 

0 1 1 0 6 ACK SYN & 6 F V f v 

0 1 1 1 7 BEL ETB ‘ 7 G W g w 

1 0 0 0 8 BS CAN ( 8 H X h x 

1 0 0 1 9 HT EM ) 9 I Y i y 

1 0 1 0 10 LF SUB * : J Z j z 

1 0 1 1 11 VT ESC + ; K [ k { 

1 1 0 0 12 FF FS , < L \ l | 

1 1 0 1 13 CR GS - = M ] m } 

1 1 1 0 14 SO RS . > N ^ n ~ 

1 1 1 1 15 SI US / ? O  o DEL 
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3.1Elliptic Curve Arithmetic 
Elliptic curve cryptography  is based on binary field     
arithmetic[1]. Note that elliptic curves are not ellipses. They are 
so named  because of the fact that ellipses are formed by quadratic 
curves. Elliptic curves are always cubic and have a relationship to 
elliptic integrals in mathematics[4][5] where the elliptic integral 
can be used to determine the arc length of an ellipse. An elliptic   
curve in its “standard form” is described by 
 

y
2
 = x

3
 + ax + b                          …....(1.1) 

 

For the polynomial  x
3
 + ax + b, the discriminant can be given as   

 

D = - (4a
3
 + 27b

2
)            ……..(1.2)  

 
This discriminant  must  not become  zero for an elliptic curve 

polynomial x
3
 + ax + b to possess three distinct  roots.If  the 

discriminant is zero, that  would imply that  two or more roots 
have coalesced, giving the curves in singular form.  It is not safe 
to use singular curves for cryptography as they are easy to crack. 
Due to this reason  we generally take non-singular curves for data 
encryption.  
 Let P(xp,yp) and Q(xq,yq) be the two points on the curve of 

Eq.(1.1).Then the point additions P + Q , as well as point 

doubling P + P are two operations defined on elliptic curve E 

which can geometrically be represented by tangent and chord 
operation. By applying the point addition and doubling operation 

we can multiply a scalar k with a point P, such that kP = Q, 

where k is a scalar. Given P and Q, it is computationally 

infeasible to obtain k. If k is sufficiently large, k is the discrete 

logarithm of Q to the base P. Hence the main operation involved 

in ECC is related to the point multiplication i.e. multiplication of a 

scalar  k with any point P on the curve to obtain another point Q 

on the curve. 

 

3.2.Elliptic Curves over F
2

m :  

What makes the binary finite fields more convenient for hardware 

implementations is that the elements of GF(2
m
) can be 

represented by m-bit binary code words. The addition operation in 

GF(2
m
) is like the XOR operation on bit fields. 

 

That is x + x = 0    for all      x ∈ GF(2
m
).  

 

This implies that a finite field of form GF(2
m
) is of characteristic 

2. The equation of the elliptic curve on a binary field F2
m
 is  

 

y
2 
+ xy = x

3
 + ax

2
 + b, where b ≠ 0.  

 

Here the elements of the finite field are integers of length at most 

m bits. These numbers can be considered as a binary polynomial 

of degree m – 1.In binary polynomial the coefficients can only be 

0 or 1.The addition of two points on a curve over is F2
m
 defined 

as 

                     
(x1,y1) + (x2,y2) = (x3,y3) 

 

Where 

 

(x3,y3) = (α
2
 + α + x1+x2 +a , α(x1+x3)+x3+y1) 

     ………(1.3) 

Where  

    

α = (y1+y2)/(x1+x2) 

 

4.1.Polynomial Arithmetic :   

Elliptic curve over field F2
m
  [7]involves arithmetic of integer of 

length m bits. These numbers can be considered as binary 

polynomial of degree m – 1. The binary string  
(a m-1

 ... a1 a0) can be expressed as polynomial   

A(x) = ∑
−

=

1

0

i

i xa
m

i

= a
m-1

x
m-1

 + a
m-2

x
m-2

+ ...+ a
2
x
2
+a

1
x + 

a
0
  

 
where ai = 0 or 1.  

For e.g., a  4 bit number 11012 can be represented by poly- 

nomial as x
3
 + x

2
 + 1.Similar to the modulus p on modular 

arithmetic, there is an irreducible polynomial of degree m in 

polynomial arithmetic. If in any operation the degree of 

polynomial is greater than or equal to m, the result is reduced to a 

degree less than m using irreducible polynomial also called as 

reduction polynomial. In binary polynomial the coefficients of the 

polynomial can be either 0 or 1. If in any operation the coefficient 

becomes greater than 1, it can be reduced to 0 or 1 by modulo 2 

operation on the coefficient. All the operations below are defined 

in field F2
4
 are on irreducible polynomial f(x) = x

4
 + x + 1. Since 

m = 4 the operation involves polynomial of degree 3 or lesser. 

 

4.2Irreducible polynomial 
A polynomial [5][8] f(x) is known as to  be irreducible  if  we 
can’t write f(x)=h(x).g(x) .For any polynomials h(x) ,g(x) of 
degree  strictly  less  than the degree of  f(x) . An  irreducible 

polynomial of degree m over F2
m 

should satisfy these necessary  

conditions. 
*The constant term a0 = 1 

*There is an odd number (≥3)of nonzero terms , otherwise ,f(x) 
whose number of nonzero terms is even has a factor (x+1). 
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*There must be at least one term of odd degree otherwise ,f(x) of 
all even powers is a square of a polynomial of degree(m/2).If in 
any polynomial arithmetic operation the resultant polynomial is 
having degree greater than or equal to m,  
it is reduced to a polynomial of degree less than m by the 
irreducible polynomial .NIST recommended curve 

m∈{113,131,163,193,233,239,283,409,571}with the following 
irreducible functions. 
 

 F2113     f(x) = x
113

 + x
9
 + 1 

 F2131     f(x) = x
131

 + x
8
 +x

3
+x

2
+1 

 F2163     f(x) = x
163

 + x
7
 +x

6
+x

3
+1 

 F2193     f(x) = x
193

 + x
15

 +1 

 F2233   f(x) = x
233

 + x
74

 +1 

 F2239    f(x) = x
239

 + x
36

 +1 

 F2283     f(x) = x
283

 + x
12

 +x
7
+x

5
+1 

 F2409    f(x) = x
409

 + x
87

+1 

 F2571    f(x) = x
571

 + x
10

 +x
5
+x

2
+1 

Any irreducible polynomial can be taken for Cryptography By 

Karatsuba Multiplier and ASCII Codes according to its  key 
length. 

 

5.Karatsuba-Ofman Method: 
Karatsuba-Ofman’s algorithm[2][3]is considered one of the 
fastest ways to multiply long integers. Karatsuba-Ofman’s 
algorithm is based on a divide-and-conquer strategy. A 
multiplication of a 2n-digit integer is reduced to two n-digits 
multiplications, one(n+1)-digits multiplication, two n-digits 
subtractions, two left-shift operations, two n-digits additions and 
two 2n-digits additions. 
Let X and Y be the binary representation of two long integers: 

 
 

X   = ∑
−

=

1

0

k

i

xi2
i     and    Y =  ∑

−

=

1

0

k

i

 yi2
i 

 

Now compute  the product of X and Y. For this the operands X 
can be divided into two parts XH, and XL   .Similarly Y can be 
divided into two parts YH ,and YL. Let k = 2n then  

 

X =    2n ∑
−

=

1

0

n

i

xi+n2
 i       + ∑

−

=

1

0

n

i

xi2
i      =      XH 2n  +   XL 

 

 

Y =    2n ∑
−

=

1

0

n

i

yi+n2
 i       + ∑

−

=

1

0

n

i

yi2
i      =      YH 2n + YL 

 
The product is computed as  
P  =  ( XH 2n  +  XL )   (YH2n  + YL

  ) = 2
2n (XH YH)  + 2n ( XH YL+ 

XL YH
 )  + X

L YL = 22n  XH YH   + XL YL  + ( ( XH + XL) (YH +YL ) 

- XH YH - XL YL) 2n 

 
If     P1 = XH YH    
        P2 = XL YL   

and P3 = ( XH + XL) (YH +YL ) then the product is 
   P =  22n P1 + P2 + 2n (P3-P1-P2) 

The Karatsuba Ofman’s algorithm is based on 2n bits 
multiplication can be reduced to three n bits multiplications as 
P1,P2,P3.Where the function size Size(X) returns the number of 
bits of X. The function H(X) returns the higher part of the X. 
Function L(X) returns the lower half of the X. Rightshift(X,n) 
returns X2n and one bit multiplication(X,Y) returns XY when both 
X and Y are formed by a single bit. 
 

Algorithm: 

Step1:P = M(X,Y) 

 If (Size(X) = 1) Then M= One Bit Multiplier(X, Y) 

Else  

Step-2:P1 := MUL(H(X), H(Y));  

Step3: P2 := MUL(L (X), L (Y)); 

Step4: P3 := MUL(H (X)+L(X), H(Y)+L(Y)); 

Step5: P := Right Shift (P1, Size(X))  +  Right Shift       (P3-P1-
P2,Size(X)/2) + P2 

  Endif 

  Step6: Reduce P with irreducible polynomial 

 

6.Algorithm for encryption and decryption:  

 

Algoritm 1: 
Step 1. Use an appropriate data structure to store the text to be  
encrypted. 
 
Step 2. Read the table in row-major form and  find the character 
stored in that position. 
 
Step 3. Note the row and column values. 
Step 4.  Assign these values  to the same character  in all  
positions it appears. 
 
Now, we define an analogous algorithm due to ElGamal[10]  for 
encprypting the required text as follows:     

 

Algorithm 2:              

Step1.Select E(a,b)with an elliptic curve over GF(p) or  GF(2
m
). 

Step2.  Select a point on the curve  ei= (xi,yi). 

Step3.  Select g 
Step4.  Calculate ej= (xj,yj) = g * ei  

Step5.  Announce ei ,ej as public key and keep “g” as a private 

key. 

Step6.  {Encryption} 

Now select h a number in plaintext P with the coordinate from the 

Table and calculate pair of points on the text as ciphertext.    
  Step7.  Ci= h * ei  

             Cj = (xpi,ypj)  + h * ej 
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Step8.  {Decryption} 
           After receiving ciphertext Ci and Cj calculate  

P(plain text) with the private key g . 
(xpi,ypj)  = Cj  - ( g * Ci)  [Here the (-)sign means adding with 

inverse.] 

Step9.  Read the characters from the co-ordinates(xpi,ypj)   
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(Fig-1.3)(Karatsuba Multiplication) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 
Fig-2 Hardware diagram for Karatsuba multiplication 

 

7.Matlab coding for Cryptography by ASCII 

code with Karatsuba multiplier  

 

7.1The Matlab code for ASCII Table 
Below is the Matlab code for ASCII table.ASCII.m 

 

ASCIItable = [{'NUL'},{[0 0]};  

 {'SOH'},{[1 0]}; 

{'STX'},{[2 0]}; 
 {'ETX'},{[3 0]}; 
 {'EOT'},{[4 0]}; 
 {'EQN'},{[5 0]}; 
 {'ACK'},{[6 0]}; 
 {'BEL'},{[7 0]}; 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{'LF'},{[10 0]}; 
 {'VT'},{[11 0]}; 
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{'BS'} ,{[8 0]}; 
{'HT'} ,{[9 0]}; 
{'FF'},{[12 0]};  
 {'CR'},{[13 0]}; 
 {'SO'},{[14 0]}; 
 {'SI'},{[15 0]}; 
 {'DLE'},{[0 1]};  
 {'DC1'},{[1 1]};  
 {'DC2'},{[2 1]}; 
 {'DC3'},{[3 1]}; 
 {'DC4'},{[4 1]}; 
 {'NAK'},{[5 1]}; 
 {'SYN'},{[6 1]}; 
 {'ETB'},{[7 1]}; 
 {'CAN'},{[8 1]}; 
 {'EM'},{[9 1]}; 
 {'SUB'},{[10 1]}; 
 {'ESC'},{[11 1]}; 
 {'FS'},{[12 1]};  
 {'GS'},{[13 1]}; 
 {'RS'},{[14 1]}; 
 {'US'},{[15 1]}; 
 {'SP'},{[0 2]};  
 {'!'},{[1 2]};  
 {'"'},{[2 2]}; 
 {'#'},{[3 2]}; 
 {'$'},{[4 2]}; 
 {'%'},{[5 2]}; 
 {'&'},{[6 2]}; 
 {'`'},{[7 2]}; 
 {'('},{[8 2]}; 
 {')'},{[9 2]}; 
 {'*'},{[10 2]}; 
 {'+'},{[11 2]}; 
 {','},{[12 2]};  
 {'-'},{[13 2]}; 
 {'.'},{[14 2]}; 
 {'/'},{[15 2]}; 
 {'0'},{[0 3]};  
 {'1'},{[1 3]};  
 {'2'},{[2 3]}; 
 {'3'},{[3 3]}; 
 {'4'},{[4 3]}; 
 {'5'},{[5 3]}; 
 {'6'},{[6 3]}; 
 {'7'},{[7 3]}; 
 {'8'},{[8 3]}; 
 {'9'},{[9 3]}; 
 {':'},{[10 3]}; 
 {';'},{[11 3]}; 
 {'<'},{[12 3]};  
 {'='},{[13 3]}; 
 {'>'},{[14 3]}; 
 {'?'},{[15 3]}; 
 {'@'},{[0 4]};  
 {'A'},{[1 4]};  
 {'B'},{[2 4]}; 
 {'C'},{[3 4]}; 
 {'D'},{[4 4]}; 
 {'E'},{[5 4]}; 
 {'F'},{[6 4]}; 
 {'G'},{[7 4]}; 

 {'H'},{[8 4]}; 
 {'I'},{[9 4]}; 
 {'J'},{[10 4]}; 
 {'K'},{[11 4]}; 
 {'L'},{[12 4]};  
 {'M'},{[13 4]}; 
 {'N'},{[14 4]}; 
 {'O'},{[15 4]}; 
 {'P'},{[0 5]};  
 {'Q'},{[1 5]};  
 {'R'},{[2 5]}; 
 {'S'},{[3 5]}; 
 {'T'},{[4 5]}; 
 {'U'},{[5 5]}; 
 {'V'},{[6 5]}; 
 {'W'},{[7 5]}; 
 {'X'},{[8 5]}; 
 {'Y'},{[9 5]}; 
 {'Z'},{[10 5]}; 
 {'['},{[11 5]}; 
 {'\'},{[12 5]};  
 {']'},{[13 5]}; 
 {'^'},{[14 5]}; 
 {''},{[15 5]}; 
 {''''},{[0 6]};  
 {'a'},{[1 6]};  
 {'b'},{[2 6]}; 
 {'c'},{[3 6]}; 
 {'d'},{[4 6]}; 
 {'e'},{[5 6]}; 
 {'f'},{[6 6]}; 
 {'g'},{[7 6]}; 
 {'h'},{[8 6]}; 
 {'i'},{[9 6]}; 
 {'j'},{[10 6]}; 
 {'k'},{[11 6]}; 
 {'l'},{[12 6]};  
 {'m'},{[13 6]}; 
 {'n'},{[14 6]}; 
 {'o'},{[15 6]}; 
 {'p'},{[0 7]};  
 {'q'},{[1 7]};  
 {'r'},{[2 7]}; 
 {'s'},{[3 7]}; 
 {'t'},{[4 7]}; 
 {'u'},{[5 7]}; 
 {'v'},{[6 7]}; 
 {'w'},{[7 7]}; 
 {'x'},{[8 7]}; 
 {'y'},{[9 7]}; 
 {'z'},{[10 7]}; 
 {'{'},{[11 7]}; 
 {'|'},{[12 7]};  
 {'}'},{[13 7]}; 
 {'~'},{[14 7]}; 
 {'DEL'},{[15 7]}]; 

 

7.2 The Matlab code for Karatsubamultiplication. 

Karatsuba.m 
function r = karatsuba(p,q) 
n = length(p)-1; 
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if(n==0)  
    r=p*q;  
    return;  
end; 
k = floor((n+1)/2); 
p0 = p(1:k);  
p1 = p((k+1):(n+1)); 
q0 = q(1:k);  
q1 = q((k+1):(n+1)); 
r0 = karatsuba(p0,q0);  
r2 = karatsuba(p1,q1); 
r1 = karatsuba(add(p0,p1),add(q0,q1)); 
r1 = add(r1,-r0); r1 = add(r1,-r2); 
r = add( r0, [zeros(k,1);r1] ); 
r = add( r, [zeros(2*k,1);r2] ); 

 

7.3 The Matlab code for defining elliptic curve 

ecc.m 
Below is the matlab code for the ecc.m which performed elliptic 
curve addition over the real numbers. 
Let E be the elliptic curve y2 = x3 + Ax + B and let  
P1 = (x1, y1),P2 = (x2, y2). The m-file will then produce 
P1 + P2 = P3 = (x3, y3) 
where + is the elliptic curve addition operation over E. The user 
must input the coordinates x1, y1, x2, y2 and, if P1 = P2, also the 
parameter A.  
%---------defining elliptic curve 
p = 23; 
aconst = 1; 
bconst = 1; 
a = 1; 
b = 1; 
z =  mod(4*(a^3) + 27*(b^2),p); 
%-------- determining quadratic residues 
z23 = [1:1:p-1]; %reduced set of residues 
x = [1:1:((p-1)/2)]; 
for x = 1 : 1 : (p-1)/2 
    q23_1(x) = mod(x^2,p); 
end     
for x = 1 : 1 : (p-1)/2 
    q23_2(x) = mod((p-x)^2,p); 
end 
q23 = intersect(q23_1,q23_2);%quadratic residues 
%Defining elliptic curve points 
for i = 0 : 1 : p-1 
    y2(i+1) = mod((i^3+i+1),p); 
     
end 
%Elliptic group 
y_1 = []; 
y_2 = []; 
for i = 1 : length(y2); 
    [v,idx] = find(y2(i)==q23_1); 
    if(isempty(idx)==0) 
        y_1 = [y_1 idx]; 
        y_2 = [y_2 p-idx]; 
    else 
      y_1 = [y_1 NaN]; 
        y_2 = [y_2 NaN]; 
    end 
end 

e = []; 
j = 0; 
for i = 1 : p 
    if(y_1(i)>0) 
       j = j+1; 
       a = [i-1 y_1(i)]; 
       b = [i-1 y_2(i)]; 
       e(j,:) = [a b]; 
    end 
end 
x = round(1 + (size(e,1) - 1) * rand); 
y = gencolnum; 
xi = e(x,y); 
yi = e(x,y+1); 
ei = [xi yi];     %required elliptical curve point 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 

 

7.5This matlab code is for point multiplication 

eccmulti.m 
function EJ = pointmulti(P,G,a) 
n = floor(G/2); 
r = 2^n; 
while(r>G) 
    n = n - 1; 
    r = 2^n; 
end 
ad = G - r; 
 
if(ad > 2) 
    n1 = floor(ad/2); 
    r1 = 2^n1; 
    while(r1>ad) 
        n1 = n1 - 1; 
        r1 = 2^n1; 
    end 
    ad1 = ad - r1; 
    PP = P; 
    for i = 1 : n1 
        S = PP(1) + ( PP(2)/PP(1) ); 
        XL = (S^2) + S + a; 
        K = karatsuba((S+1),XL); 
        YL = PP(1)^2 + K; 
        PP(1) = XL; 
        PP(2) = YL; 
    end 
    if(ad1==1) 
        S = ( PP(2) +  P(2) ) / ( PP(1) + P(1) ); 
        tmpEJ(1) = S^2 + S + PP(1) + P(1) + a; 
        tmpEJ(2) = ( PP(1) + P(1) ) + ( tmpEJ(1) + PP(2) ); 
    end 
end 
 
PP = P; 
for i = 1 : n 
    S = PP(1) + ( PP(2)/PP(1) ); 
    XL = (S^2) + S + a; 
    K = karatsuba((S+1),XL); 
    YL = PP(1)^2 + K; 
    PP(1) = XL; 
    PP(2) = YL; 
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end 
if(ad==1) 
   S = ( PP(2) +  P(2) ) / ( PP(1) + P(1) ); 
   EJ(1) = S^2 + S + PP(1) + P(1) + a; 
   EJ(2) = ( PP(1) + P(1) ) + ( EJ(1) + PP(2) ); 
elseif(ad==2) 
   S = P(1) + ( P(2)/P(1) ); 
   XL = (S^2) + S + a; 
   K = karatsuba((S+1),XL); 
   YL = P(1)^2 + K; 
   PPP(1) = XL; 
   PPP(2) = YL; 
   S = ( PP(2) +  PPP(2) ) / ( PP(1) + PPP(1) ); 
   EJ(1) = S^2 + S + PP(1) + PPP(1) + a; 
   EJ(2) = ( PP(1) + PPP(1) ) + ( EJ(1) + PP(2) ); 
elseif(ad==0) 
    EJ(1) = PP(1); 
    EJ(2) = PP(2); 
else 
   S = ( PP(2) +  tmpEJ(2) ) / ( PP(1) + tmpEJ(1) ); 
   EJ(1) = S^2 + S + PP(1) + tmpEJ(1) + a; 
   EJ(2) = ( PP(1) + tmpEJ(1) ) + ( EJ(1) + PP(2) ); 
end 

 

7.4 This matlab code is for encryption and 

decryption 

encrydecryp.m 
g = round(1 + (10 -1) * rand);%private key 
ej = pointmulti(ei,g,aconst); 
 
load ASCIItable 
 
 
ptest = 'welcome'; %input('Enter any string :') 
 
 
temph  = []; 
for i = 1 : length(ptest) 
    for j = 1 : size(ASCIItable,1) 
        if(ptest(1,i) == ASCIItable{j,1}) 
            temph = [temph ASCIItable{j,2}]; 
        end 
    end 
end 
tempi = round(1 + (length(temph) - 1) * rand); 
h = temph(tempi); 
while(h==0) 
    tempi = round(1 + (length(temph) - 1) * rand); 
    h = temph(tempi); 
end 
ci = pointmulti(ei,h,aconst); 
cjpart = pointmulti(ej,h,aconst); 
temp  = []; 
for i = 1 : length(ptest) 
    for j = 1 : size(ASCIItable,1) 
        if(ptest(1,i) == ASCIItable{j,1}) 
            temp = [temp ; ASCIItable{j,2}]; 
        end 
    end 
end 
temp 

for i = 1 : length(ptest) 
    cji(i,:) = pointadd(temp(i,:),cjpart,aconst); 
end 
%Decryption 
for i = 1 : size(cji,1) 
    desc(i,:) = pointsub(cji,pointmulti(ci,g,aconst),aconst); 
end 
desc 

 

 

8. CONCLUSION 
We provide a brief overview of elliptic curve cryptography and 
obtain the ASCII table with Karatsuba Multiplier for fast 
encryption and decryption. The strength of encryption depends on 
its key, if we use the alphabetical table then there will be no 
impact on strength and runtime performance. Runtime will be 
faster by this process, i.e use of ASCII table will provide better 
performance .This process and its implementation have been 
developed by ourselves .Further we are developing Elliptic curve 
cryptography by ASCII codes with some fast algorithms and their 
implementation. 
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