
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

53

Modeling the Evaluation Criteria for Security Patterns in
Web Service Discovery

V.Prasath
K.C.E.T, Department of IT

S.Kumarapuram, Cuddalore
India 607109.

ABSTRACT
Current trends in performing business-to-business transactions
and enterprise application integration have been extended to the

use of web service. With web services being accepted and

deployed in both research and industrial areas, the security related

issues become important. Web services security has attracted the

attention of researchers in the area of security due to the proven
fact that most attacks to businesses and organizations exploit web

service vulnerabilities. The main goal of this research is to

achieve security concept of the web service can be summarized to

this single value. In this paper, we evaluate common security

patterns with respect to the STRIDE model of attacks by
examining the attacks performed in different web services system.

In order to evaluate security we introduce a new measure for the

computation of a security rating of web service based on STRIDE

test case model such that the security concept of the system can be

summarized to single value. The overall severity for the risk that
can expressed in measurable way.

Categories and Subject Descriptors

D.3.3 [Information Systems Applications]: Metrics-security

measures

General Terms

Security

Keywords

Risk analysis • Stride • WSSecurity • Security rating •Web service
discovery

1. INTRODUCTION
Web services are one of the most p romising technologies for
building distributed systems that has the potential of becoming the

core of a new Web-based middleware platform, providing

interoperability between computational services. In this specific

context security is very important feature. Nowadays, many

companies and organizations implement their core business and
application services over Internet. Thus, the ability to efficiently

and effectively select and integrate inter-organizational and

heterogeneous services on the Web at runtime is an important step

towards the development of the web service applications [1].

Web services communication is based upon the Simple Object
Access Protocol (SOAP). SOAP is an XML-based information

packaging definition which can be used for exchanging structured

and typed information between peers in a distributed environment,

relying on Internet transport protocols such as HTTP. Because

SOAP is standards based, it also provides interoperability in
heterogeneous environments. A large number of web services are

being developed as an emerging standard to construct distributed

applications in the web. Service requesters have access to a choice

of descriptions to various services that provide similar service

functionality. Automation of dynamic web service discovery is

made viable by expression of domain specific knowledge [2] [4].

Today’s systems, and the enterprises in which they reside, are so
complex that even the most capable risk measurement tools are

unlikely to yield risk values that are much better than rough

indications of relative risk which, we should quickly add, is often

quite good enough in many situations. The problem is that the

value of risk, whatever it turns out to be, is likely to be surrounded
by a fairly large but unknown amount of uncertainty. This can

create a dilemma for the decision-maker who must then decide

whether to invest in further safeguards, which will undoubtedly

reduce the overall risk but could be both expensive and

unnecessary, or to collect more evidence to reduce the amount of
uncertainty surrounding the risk calculation [3].The high

importance of web services security to the process of ensuring

some level of security to real systems has been evident since it has

been discovered that most attacks may exploit web vulnerabilit ies

[5, 6, 7]. These vulnerabilities stem from web service are poorly
designed and developed. Therefore, the incorporation of a level of

security already at the design phase is desirable.

If multiple Web services provide the same functionality, then

a security requirement can be used as a secondary criterion for

service selection. Security is a set of non-functional attributes like
confidentiality, integrity, availability. The current Universal

Description, Discovery and Integration (UDDI) registries only

support Web services discovery based on the functional aspects of

services [8]. The problem, therefore, is firstly to accommodate the

security information in the UDDI, and secondly to guarantee some
extent of authenticity of the published information. Security

information published by the service providers may not always be

accurate and up-to-date. To validate security promises made by

providers, we propose a new system to rate the various security

attributes of the Web services they use. These ratings are then
published to provide new customers with valuable information

that can be used for services selection. We concentrate here on

one key issue, providing security for web services in dynamic

nature. To realize the potential risks which can arise if proper

counter measures are not implemented, it is important to be able
to determine the security capabilities of web services in order to

ensure that the system is protected against such risks. To do this,

some type of security evaluation framework is needed, such that

this framework can be used to summarize all implemented

concepts to a handy rating [9].
We try to practically examine the resistance to STRIDE

attacks of a small subset of security patterns that are commonly

used in web service applications. To perform this evaluation, we

have to built a system with web services security testing patterns

and using them to study systems under known categories of
attacks to web service applications [10] and determine which

aspects of security are enhanced through the use of each security

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

54

pattern for web service system. To study these systems under

known attacks, we have used different testing methodology

approaches based on the SOAP Sonar for web service penetration
testing tool [11] that aim to evaluate web service security in terms

of security vulnerabilities. Finally, based on our findings we

determined to what extent each security pattern protects us from

each category of STRIDE [7] attacks. Based on the fact that we

can not quantify in strict terms the security of a system [6] levels
of security ranging from absolutely low to absolutely high have

been used in the analysis instead of exact numbers. The

experimental evaluation shows that each security pattern protects

us from different categories of attacks and therefore a smart

combination of these security patterns, based on the resistance of
each pattern to each category of attack, can lead to systems that

are secure enough already from their design. This paper will

describe a testing methodology for web services security and

outline a process that can be adopted to evaluate web services

security can be summarized to single value. We define security as
a measure of vulnerabilities in the accuracy of a risk or security

measurement. In order to render the definition useable, we believe

it is necessary to associate the terms in the definition with a

measurement scale that represents the security of a system as a

value between 0 (secure) and 1 (insecure).

2. RELATED WORK
Web service providers must assure their clients confidentiality,

integrity and availability over a trusted relationship that may be
asynchronous and that may involve multiple business partners.

There has been no work on a formalised security testing

methodology specifically targeted at web services. However, a

testing framework aimed at standard web applications exists and

provides a very informative starting point.
Several authors conducted performance evaluation studies of

WS-Security. In [12] and also [13] the authors compare the

performance of WS-Security operations and choices of signature

and encryption algorithms to non-secure messages using various

message sizes and complexities. WS-Security provides end-to-end
security properties (integrity, confidentiality, and authentication)

through open XML standards. End-to-end message security

assures the participation of non-secure transport intermediaries in

message exchanges, which is a key advantage for Web-based

systems and service-oriented architectures. However, point-to-
point message security based on TLS (Transport Layer Security)

is known to significantly outperform WS-Security.

The security characteristics of web service based systems

depend on those of the individual web services (WS) involved and

the way in which they are related to each other. In p rinciple, the
security characteristics of WS or systems can be expressed in

security properties that are published and available to external

parties. Since SOAP itself does not provide secure transmission

protocol for messages, it brings high risks to both sides of the

message exchanger. Although traditional security technologies
such as SSL and HTTPS can partially resolve this problem by

encrypting messages transferred between two points [1], these

point-to-point transport-layer security technologies cannot insure

end-to-end security along the entire path from client to a web

service in a complicated multi-tiers distributed system.
Furthermore, these point-to-point security technologies are all

based on a specific transport protocol/layer, such as TCP/IP for

SSL and HTTP for HTTPS. Since SOAP is a transport -

independent messaging protocol for web services, the capacity

and application of web services would be limited if its security

relies on these transport dependent technologies. As a result,

OASIS developed Web Services Security (WSS) specification

[14] to provide message-level protection between two ends
(clients and web services) through message integrity, message

confidentiality and message authentications. WSS makes use of

SOAP’s composable and extendab le architecture by embedding

security-related information (security token, signatures etc.) in the

SOAP header without affecting the data stored in the SOAP’s
body (but maybe encrypted/signed). This design allows WSS to

integrate with SOAP as a plug-in and still retain SOAP’s

composability and extensibility for other purposes. Today more

and more web services products are beginning to support the WSS

standard [15][16]. While WSS enhances the security of web
services, people may be concerned with its performance

overheads. The overheads can come from: (a) extra CPU times to

process WSS-related elements; (b) longer networking times to

transport larger SOAP messages due to additional WSS contents

[17][18][19]. Although many application security testing
principles can be generically applied to web services, particular

aspects of the technology such as its reliance upon XML and web

services specific standards require closer attention that is not

provided by other testing methodologies. Thus, a comprehensive

framework for evaluating the security of web service
implementations.

With web services being accepted and deployed in both

research and industrial areas, the security related issues become

important. The demand for web services and applications in

cyberspace is hindered by security concerns that are raised by
corporate service providers and service users. There are concerns

about the trustworthiness of the web services from both sides of

the spectrum. Testing web services security is a critical step

towards enhancing their trustworthiness. To address these issues,

we propose a comprehensive framework for specifying security
requirements for web services. In this paper, we introduce a new

measure for the computation of a security rating of web services

based on ws-security test case model such that the security

concept of the system can be summarized to single value. These

security concepts are used in the measure computation to get the
security rating of the web services based on STRIDE

methodology.

3. WEB SERVICES TECHNOLOGIES
Web service architecture involves many layered and interrelated

technologies. There are many ways to visualize these

technologies, just as there are many ways to build and use Web

services. Figure1 below provides one illustration of some of these

technology families. In this section we describe some of those
technologies that seem critical and the role they fill in relation to

this architecture. This is a necessarily bottom-up perspective,

since, in this section, we are looking at Web services from the

perspective of tools which can be used to design, build and deploy

Web services. The technologies that we consider here, in relation
to the Architecture, are XML, SOAP, and WSDL. However, there

are many other technologies that may be useful.

3.1 XML
XML solves a key technology requirement that appears in many

places. By offering a standard, flexible and inherently extensible

data format, XML significantly reduces the burden of deploying

the many technologies needed to ensure the success of Web
services. The important aspects of XML, for the purposes of this

Architecture, are the core syntax itself, the concepts of the XML

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

55

Infoset [XML Infoset], XML Schema and XML Namespaces.

XML Infoset is not a data format per se, but a formal set of

information items and their associated properties that comprise an
abstract description of an XML document. The XML Infoset

specification provides for a consistent and rigorous set of

definitions for use in other specifications that need to refer to the

information in a well-formed XML document. Serialization of the

XML Infoset definitions of information may be expressed using
XML. However, this is not an inherent requirement of the

architecture. The flexibility in choice of serialization format(s)

allows for broader interoperability between agents in the system.

3.2 SOAP
SOAP 1.2 provides a standard, extensible, compostable

framework for packaging and exchanging XML Messages. In the

context of this architecture, SOAP 1.2 also provides a convenient

mechanism for referencing capabilities. SOAP 1.2 defines an
XML-based messaging framework: a processing model and an

extensibility model. SOAP messages can be carried by a variety

of network protocols; such as HTTP, SMTP, FTP, RMI/IIOP, or a

proprietary messaging protocol. SOAP 1.2 defines three optional

components: a set of encoding rules for expressing instances of
application-defined data types, a convention for representing

remote procedure calls (RPC) and responses, and a set of rules for

using SOAP with HTTP/1.1. While SOAP Version 1.2 doesn’t

define "SOAP" as an acronym anymore, there are two expansions

of the term that reflect these different ways in which the
technology can be interpreted:

1)Service Oriented Architecture Protocol: In the general case, a

SOAP message represents the information needed to invoke a

service or reflect the results of a service invocation, and contains

the information specified in the service interface definition.
2) Simple Object Access Protocol: When using the optional

SOAP RPC Representation, a SOAP message represents a method

invocation on a remote object, and the serialization of in the

argument list of that method that must be moved from the local

environment to the remote environment.

Figure 1. Web Service Technologies

3.3 UDDI
Universal Description, Discovery and Integration (UDDI) is a

platform-independent, XML-based registry for businesses
worldwide to list themselves on the Internet. UDDI is an open

industry initiative, sponsored by OASIS, enabling businesses to

publish service listings and discover each other and define how

the services or software applications interact over the Internet. A
UDDI business registration consists of three components:

White Pages — address, contact, and known identifiers

Yellow Pages — industrial categorizations based on

standard taxonomies

Green Pages — technical information about services exposed
by the business

UDDI was originally proposed as a core Web service standard. It

is designed to be interrogated by SOAP messages and to provide

access to Web Services Description Language documents

describing the protocol bindings and message formats required to
interact with the web services listed in its directory.

3.4 WSDL
WSDL 2.0 is a language for describing Web services. WSDL
describes Web services starting with the messages that are

exchanged between the requester and provider agents. The

messages themselves are described abstractly and then bound to a

concrete network protocol and message format. Web service

definitions can be mapped to any implementation language,
platform, object model, or messaging system. Simple extensions

to existing Internet infrastructure can implement Web services for

interaction via browsers or directly within an application. The

application could be implemented using COM, JMS, CORBA,

COBOL, or any number of proprietary integration solutions. As
long as both the sender and receiver agree on the service

description, the implementations behind the Web services can be

anything.

3.5 SSL/HTTPS
Secure Sockets Layer (SSL) was developed by Netscape and is

now used by all web servers and browsers as tool for

authentication and encryption. It runs ―on top of‖ TCP/IP but

―underneath‖ transports such as HTTP and LDAP [12]. HTTP is
run over SSL to create what is commonly called ―HTTPS‖.

Normally, HTTPS is used to validate the identity of the server to

the client (via a chain of trusted certificates), and provides end-to-

end encryption for the HTTP protocol. HTTPS can also provide

client authentication, but HTTP basic authentication (explanation
directly below) is normally used for that. HTTPS is often used to

provide confidentiality (via strong encryption) for web services,

but it’s not a complete solution to the problem.

3.6 HTTP BASIC AUTHENTICATION
Basic authentication is often used to provide userid/password

authorization to web resources. All web servers provide a means

for protecting resources using basic authentication. Using this

technique, the web server checks to see if the user has sent
authentication credentials when trying to access a protected

resource. If the user has not logged in (indicated by the presence

of base-64 encoded credentials in the HTTP header), he is

challenged with a login dialog. Basic authentication is not

considered strong authentication, because it’s trivial to unencode
the username and password (Base64 encoding is not considered

encryption, because there’s no secret key). HTTP digest

authentication is also available, and is more secure than basic

authentication, but it is not widely used, and support in browsers

is inconsistent.

Processes

Discovery,Aggregation,Choreography

hihfiugit

D

 D

Descriptions
Web Services Descriptions(WSDL)

h Messages

Soap Extensions
Realability,Correlation,Transactions

…

SOAP

S

E
C
U

R
I
T
Y

M
A
N
A
G
E
M
E
N
T

COMMUNICATIONS
HTTP,SMTP,FTP,JMS,IIOP ,…….

B
a
se T

ech
n

o
lo

g
ies X

M
L

,D
T

D
,S

ch
em

a

 S

e T

e c h

n

o

l o

g

i e s X
M

L
,D

T

D

S

c h

em
a

B
a

se
 T

ec
h

n
o

lo
g

ie
s,X

M
L

,D
T

D
,S

c
h

e
m

a

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

56

3.7 SAML
It may not be obvious at first, but one key aspect of web services

is the concept of single sign-on. The idea is that once the user has

authenticated once, an application (or another web service) can

forward that user’s credentials to another web service and request

action on the user’s behalf. For this to work, we need a method
for encoding the ―assertion‖ by one application that it has

authenticated the user’s credentials, allowing it to pass those

credentials securely. An assertion is a declaration of facts

(statements) about a subject (according to some SAML authority).

Figure 2. XML for Access Control Lists (XACL)

Assertions can also be digitally signed, to prove that they came

from a trusted source. In addition, we need the ability to describe
what parts of an application the user is authorized to access.

SAML enables applications (web services) to exchange identity

and entitlement information with each other. SAML works by

exchanging ―assertions‖, which confirm information about a

user’s authorization, authentication, or other information. These
assertions are usually time-bound, and describe events that have

already occurred, such as, ―This user has been successfully

authenticated‖, or ―This application is authorized to take this

action.‖ Here’s an example SAML authentication assertion, taken

directly from.

3.8 XACL
XACL allows you to hide or expose certain portions of an XML

document from users, based on their roles. The idea is simple, in

addition to the XML document you want to protect, define an
extra document that references the original, and constrains access

by role.

4. EVALUATION OF RISK CERTAINTY
There are many different approaches to risk analysis. Our

approach presented here is based on these standard methodologies

and is customized for web services security testing methodology

based on STRIDE attacks [22]. In this paper a new measure for

the security of web services will be presented. For example [20],
[Weippl, 2005] proposes to list the important assets and the

possible risks in a first step. In the second step, integers between 1

and 10 have to be assigned to these risks and assets. For every pair

of asset and risk, one integer represents the probability that a

security risk gets real and a second integer describes the impact of
such a security threat to the asset. For combining the integers to

get the value of protecting the assets against such a security threat.

In our approach, a catalogue for relevant criteria for testing to be

considered will be presented, and second, the computation of a

security rating by considering the concept tested against the

security criteria will be given based on STRIDE attacks. For

introducing a rating corresponding to the security level of some

criteria, we give a first try to evaluate the criteria. There are a
number of factors that can help us to find raring. The set of factors

involved in identifying risk based on threat, vulnerabilities and

technical impact. Each factor has a set of options, and each option

has a likelihood rating from 0 to 3 associated with it. We will use

these numbers later to estimate the overall likelihood. The first
step is to identify a security risk that needs to be rated. Once

identified a potential risk, and want to figure out how serious it is,

in order to estimate the "likelihood". At the highest level, this is a

rough measure of how likely this particular vulnerability is to be

uncovered and exploited by an attacker. Generally, identifying
whether the likelihood is low (1), medium (2), or high (3) is

sufficient.

5. EVALUATION OF SYSTEM UNDER

STRIDE PATTERN
Aim of this paper is to introduce a new measure of computation
for the security of web services. For this purpose the implemented

criteria as mentioned below have to be considered and integrated

into the calculation according to their security strength. Before we

can state some formula for the calculation process, we have to

introduce the factors needed for it. STRIDE is an acronym for a
process developed by the Microsoft Application Consulting and

Engineering Team to represent various methods by which an

adversary may attack a system. Threats are often classified

according to their type. Threat types are often associated with

specific security mechanisms and can therefore be quickly
mitigated. One form of classification is known as the STRIDE

model. To create a catalogue of security criteria, we consider a

model for security services, as given by a combination of the

services presented in [Voydock/Kent, 1983] and [ISO, 1989] [21].

These security services that must be enforced in order to create a
secure environment are listed in the following:

Spoofing: In this attack, adversaries falsely represent

themselves as valid user entities. For example, having obtained

the login of a system administrator, the attacker gains access to

system data, giving them free rein to execute further attacks.
Tampering: Using this method of attack, an adversary

successfully modifies or deletes data within the system. An

example would be when an adversary gains access to the system

database and deletes all the client records.

Repudiation: This method identifies whether or not an
adversary can attack a system without detection or evidence that

the attack occurred. An example would be an adversary who

performs a "tampering with data" attack without leaving any trail

indicating that the data had been compromised.

Information Disclosure: In this attack method, an adversary
gains access to data not within their trust level. Such data may

include system information that may facilitate further attacks.

Denial of Service: Using this method of attack, an adversary

causes a system to be unavailable for valid user entities. An

example would be an adversary who executes a shutdown
command to a file server.

Elevation of Privilege: This type of attack increases the

adversary's system trust level, permitting additional attacks. An

example would be an adversary who enters a system as an

anonymous user entity but is able to obtain the trust level of a
system administrator.

Issuing

Authority

SAML
ASSERTIO N

Creates

Assertion

SAML Assertion

Response

SAML Request

SOAP

HTTP

Relaying
Party

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

57

In order to evaluate web services security under known

attacks we have used SOAP Sonar [11] web services penetration

testing tool. Bringing this approaches to find attacks that found
the major security flaws of the web service application, meaning

the three Sub-system Parameters, two SQL Injection, three

authentication exchange tampering and three replay attacks Minor

application errors that pose no threat to security not found by the

static approach, were found by SOAP Sonar [11].
Additionally, the threat attacks found in the remaining web

services were fewer in comparison to the second application and

first one. The higher number of security flaws in the first

application was much more prominent in the set of high risk

flaws. The previous analysis of the results shows that proper use
of the security patterns leads to the remediation of all major

security flaws. These flaws that remain even after the use of

security patterns exist because existing security patterns do not

confront these kind of problems. The intercepting validator

pattern, when used for all input, including session variables that
are not input by the user but still posted, protects from Sub-system

Parameters ,SQL Injection, authentication exchange tampering

and replay attacks. Therefore, it offers high protection against

Tampering with Data and Information Disclosure attacks.

The STRIDE model has been adopted for the purpose of
threat modelling in this paper. The following is a generic STRIDE

threat classification for web services which should be tailored for

the domain of the specific web service being tested. Each threat is

identified with a reference number and contains a description,

possible architecture entry points and a list of assets that may be
impacted. STRIDE is a very simple approach to threat

identification. The terms/phrases it represents, along with an

explanation of each, are listed in [22] Table 1. At each trust

boundary (TB), apply the STRIDE model by asking whether one

or more of the threat types represented to apply. Because of its
simplicity, its use tends to result in one or missed threats per TB.

Table 1. Stride Pattern

6. CATEGORIZE AND PRIORITIZE

THREATS
In an organization where threat and vulnerability management is

governed by solid risk management principles, the following

formula is typically used to assign a risk score to a threat:

Risk = Probability of Occurrence x Business Impact

There are a number of ways, both qualitative and quantitative, to

apply this formula. For the purposes of our threat assessment

model, I’m going to use STRIDE. STRIDE is a classification
scheme for characterizing known threats according to the kinds of

exploit that are used (or motivation of the attacker). At this stage

we have a list of threats that apply to the application. In the final

step of the process, you rate threats based on the risks they pose.

This allows you to address the threats that present the most risk
first, and then resolve the other threats. In fact, it may not be

economically viable to address all of the identified threats, and

you may decide to ignore some because of the chance of them

occurring is small and the damage that would result if they did is

minimal.

Risk = No. of Inbound Attacks + No.of OutBound Attacks

Total no. of Assests

This formula indicates that the risk posed by a particular threat is
equal to the probability of the threat occurring multiplied by the

damage potential, which indicates the consequences to your

system if an attack were to occur. You can use a 1–3 scale for

probability where 1 represents a threat that is very unlikely to

occur and 3 represents a near certainty. Using this approach, the
risk posed by a threat with a low likelihood of occurring but with

high damage potential is equal to the risk posed by a threat .For

example, if InBound =3 and OutBound =1 for replay attacks,

then Risk = 3 * 1 = 3. If Overall=3 then risk rating that occur in

the value in the scale be high. This approach results in a scale of
1–3, and you can divide the scale into three bands to gen erate a

High, Medium, or Low risk rating.

Table 2. Test Case Threat Mapping

Sl.
N

o

Parameter Asset Threat Description Meas

urem

ent

1 Wsdl
Scanning

Information
gathering

Information
Disclosure

It describing the
functionality offered by the
web service and the
parameters required to use it.

Rating

2 Web Method
Enumeration

Information
gathering

Information
Disclosure

Not all implemented
methods may be published
in the WSDL document

Rating

3 Error
message
Information
Leakage

Information
gathering

Information
Disclosure

Error messages within
SOAP faults can contain
detailed platform
information and

implementation details such
as code fragments or stack
traces.

Rating

4 Numerical
Values

Fuzzing Information
Disclosure

Any value that is only as a
numerical value or is
expected to be a numerical
value.

Rating

5 Base64
Encoded
Values

Fuzzing Tampering Base64 is used to encode
binary data in order to
conform to XML
specifications.

Rating

6 Character
Strings

Fuzzing Tampering This verybroad category
general guidelines for any
data that is not of any
particularly classifiable

form.

Rating

7 General
values

Fuzzing Tampering If it is not possib le to
indentify the nature of the

values beings supplied this
category provides a general
overview of the types of
inputs that should be tested.

Rating

8 Sub system
parameter

Fuzzing Spoofing This category relates to any
values that may used to
influence output on the

Rating

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

58

client side of the application.

9 Addressing
parameters

Fuzzing Tampering System often use addressing
information to access
information directories.

Rating

10 Logging

values

Fuzzing Tampering Any value that is logged

directly to some medium has
the potential to somehow
corrupt logs or provide an
inaccurate view.

Rating

11 Sql Injection Injection Spoofing Any value that may be used
as part of an SQL query
should be tested for the
ability to change SQL

processing in some
way ,possibly causing data
disclosure.

Rating

12 Command
Injection

Injection Tampering If an internal sy stem is used
to execute existing
commands and input to these
commands is not properly
validated,it may be possible

to run commands of the
user’s choosing.

Rating

13 Lpath

Injection

Injection Spoofing If LDAP queries are
constructed directly from

user input, this may result in
significant sy stem
compromise,particularly in
the disclosure of user
credentials.

Rating

14 Xpath
Injection

Injection Information
Disclosure

The use of user supplied
input in an XPath query may
provide an attacker with the

ability to modify the query .

Rating

15 Code

Injection

Injection Elevation of
Privileges

If an validated user supplied
input is supplied to calls to

eval-type functions,
malicious commands may be
inadvertently executed by
the web service

Rating

16 Cipher

choice

Confidentia
lity

Information
Disclosure

The choice of encryption
cipher will influence the
strength of the encryption
and the ability for an
attacker to successfully

crack the encryption and
recover plaintext data

Rating

17 Encryption

Coverage

Confidentia

lity

Information

Disclosure

Encryption should be

applied overall sensitive
portions of messages to
ensure they are protected
against un authorized eaves
dropping..

Rating

18 Replay
Attacks

Integrity Spoofing A replay attack involves the
malicious use of a valid
message or set of messages
that has already been

accepted by the web service
previously .

Rating

19 Integrity

Check
Coverage

Integrity Tampering Integrity checks should be

used to protect important
data against unauthorized
modification.

Rating

20 Invalid Xml Integrity Denial of
service

WS-Security and other web
sevice security standards are
XML-based and their
implementations require
properly formed XML to

function properly .

Rating

21 Unsupported
algorithms

Integrity Tampering Verify that if unsupported
algorithms are requested or
the client claims to root

support required
algorithms,access is denied
and processing of the request
does not continue.

Rating

22 Separator
Injection

Logging Repudiation Log entries are commonly
delimitedusing a particular
separator character.

Rating

23 White Space
Injection

Logging Repudiation White space characters can
be used to modify the
appearance of log entries
when they are viewed.

Rating

24 Brute- Authenticati Elevation of These types of attacks are Rating

Force and
Dictionary
Attacks

on Privileges typically used against
password authentication
sy stems and rely on the

ability to repeatedly test
potential passwords against
the authentication service.

25 Forged
Credentials

Authenticati
on

Elevation of
Privileges

Credentials should be issued
by an authorized party and
verified by the application
when presented.

Rating

26 Missing
Credentials

Authenticati
on

Spoofing A user that fails to present
credentials should not be
allowed access and the
application should discard
their request.

Rating

27 Token

Forgery

Authorizati
on

Elevation of
privileges

As SOAP is a stateless
message-based protocol
,some mechanism must be

implemented to provide
authorization between SOAP
requests or maintain session
state.

Rating

28 Hijacking
Attacks

Authorizati
on

Tampering As SOAP is a stateless
message-based protocol,
some mechanism must be
implemented to provide

authorization between SOAP
requests or maintain session
state.

Rating

29 Parameter

Tampering

Availability Denial of

service

This broad class of attacks

refers to the modification of
SOAP request parameters in
transit between client and
server.

Rating

30 Coercive

Parsing

Availability Denial of
service

Coercive parsing is the name
given to the class of attacks
that involve supply ing illegal
or malformed SOAP

requests to the web service
in order to cause undesirable
behavior.

Rating

High, Medium and Low Rating

You can use a simple High, Medium, or Low scale to prioritize

threats. If a threat is rated as high, it poses a significant risk to
your application and needs to be addressed as soon as possible.

Medium threats need to be addressed, but with less urgency. You

may decide to ignore low threats depending upon how much effort

and cost is required to address the threat.

In– No. of Agent attacks

Out – No. of Masquerader attacks

1- Low 2-Medium 3-High

To evaluate web services security under known attacks we have

used SOAP Sonar web services penetration testing tool [11].

Bringing this approaches to find attacks that found the major
security flaws of the web service application threat possible to

occur. Based on the above analysis that offers us a practical

examination of attacks to web service with security patterns. We

can make conclusions about the resistance to known categories of

attacks of the security patterns under consideration.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

59

Figure 3. Criteria for Secure Web Service Discovery

Table 3. Spoofing Attacks

Table 4. Tampering Attacks

Table 5. Repudiation Attacks

Table 6. Information Disclosure Attacks

Table 7. DoS Attacks

Table 8. Elevation of privileges Attacks

Table 9. Overall Security

Web Service S T R I D E Overall Rank

Dictionary 16 11 10 13 10 15 0.46 1

GetWeather 13 16 12 17 8 21 0.54 4

MyService 14 12 17 12 12 14 0.5 2

GetJoke 12 12 14 11 19 15 0.51 3

Elevation of privileges(E)

Web Service

No. of Source Attacks

Overall

Web Method

Enumeration

Output

Values

LDAP

Injection

Format

String

Parameters

In Out In Out In Out In Out Total

Dictionary 1 3 2 2 2 1 2 2 15

GetWeather 3 3 3 3 3 2 2 2 21

MyService 1 3 2 2 2 2 1 1 14

GetJoke 1 1 3 3 0 2 2 3 15

Repudiation(R)

Web

Service

No. of Source Attacks

Overall White

space

injection

Separator

Injection

HTML

Injection

Size

Overflow

In Out In Out In Out In Out Total

Dictionary 1 2 1 2 1 1 1 1 10

GetWeather 1 1 1 1 1 2 2 3 12

MyService 2 1 3 2 3 3 1 2 17

GetJoke 2 2 2 1 2 1 3 1 14

Spoofing(S)

Web

Service

No. of Source Attacks

Overall

Sub-system

Parameters

SQ L

Injection

Xpath Injection Replay

Attacks

In Out In Out In Out In Out Total

Dictionary 1 3 2 2 1 1 3 3 16

GetWeather 2 2 2 2 2 1 1 1 13

MyService 1 1 3 3 2 2 1 1 14

GetJoke 2 2 1 1 2 1 2 1 12

Tampering(T)

Web

Service

No. of Source Attacks

Overall Numerical

Values

Code Injection Invalid XML Encryption

Coverage

In Out In Out In Out In Out Total

Dictionary 1 2 1 2 1 1 2 1 11

GetWeather 1 1 3 1 3 2 2 3 16

MyService 1 1 2 2 2 2 1 1 12

GetJoke 2 2 1 1 2 1 2 1 12

Information Disclosure(I)

Web

Service

No. of Source Attacks

Overall

Token

Forgery

Coercive

Parsing

Man in

Middle

attack

Missing

Credentials

In Out In Out In Out In Out Total

Dictionary 1 2 1 2 1 1 3 2 13

GetWeather 3 1 2 1 2 2 3 3 17

MyService 1 1 2 2 2 2 1 1 12

GetJoke 1 2 0 1 3 1 3 0 11

Denial of Service(D)

Web

Service

No. of Source Attacks

Overall

Numerical

Values

Code

Injection

Logic Flaws Parameter

Tampering

In Out In Out In Out In Out Total

Dictionary 1 2 1 2 0 1 2 1 10

GetWeather 1 1 1 1 2 0 2 0 8

MyService 1 1 2 2 2 2 1 1 12

GetJoke 2 2 1 2 3 3 3 3 19

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

60

Calculation of Risk Value based on STRIDE

Risk = No. of Inbound Attacks + No.of OutBound Attacks

Total no. of Assests

Risk (Spoofing) = {Inbound((1+2+1+3)+(1+1+1+2)+(1+1+0+2)+(1+2+2+2))}

+

{Outbound((3+2+1+3)+(2+2+1+1)+(2+2+1+1)+(3+2+1+1))}

16

 = 0.46

7. CONCLUSIONS AND FUTURE

DEVELOPMENTS

The problem with a simplistic rating system based on stride and

dread model usually will not agree on rating value [23]. To

overcome this challenges issues we proposed new type of rating
scenario based on attacks that existing under different system

based on criteria based security patterns. In order to evaluate the

web services security under known attacks we have used STRIDE

approach. We have estimated the resistance of specific security

patterns in web services system against STRIDE attacks in
measurable way. In order to achieve this we have built a system

wit respect to security that generally applied to web service. Thus

the increasing use in the enterprise sector for the integration of

distributed systems and business critical functions dictates the

need for security assurance yet there is currently no security
testing methodology specifically adapted to applications that

implement web services. This paper will also describe a testing

methodology for web services security and outline a process that

can be adopted to evaluate web services security. Future work
includes proposing new security patterns for the security flaws

that our analysis showed that existing security patterns do not

confront, build using a mathematical model for the security of

systems under STRIDE.

8. REFERENCES
[1] Bin Xu, Tao Li, Zhifeng Gu, Gang Wu ―Quick Web Service

Discovery and Composition in SEWSIP‖, Proceedings of the
8th IEEE International Conference on E-Commerce

Technology and the 3rd IEEE International Conference on

Enterprise Computing, E-Commerce, and E-Services

(CEC/EEE’06).

[2] Garofalakis, J., Panagis, Y., Sakkopoulos, E., Tsakalidis, A.,
―Web Service Discovery Mechanisms: Looking for a Needle

in a Haystack?‖, International Workshop on Web

Engineering, 2004.

[3] Jeffrey R. Williams and George F. Jelen, ―A Practical

Approach to Measuring Assurance‖, Document Number
ATR 97043, Arca Systems, Inc., 23 April 1998.

[4] Aabhas V. Paliwal, Nabil R. Adam, Hui Xiong, Christof

Bornhövd ―Web Service Discovery via Semantic Association

Ranking and Hyperclique Pattern Discovery‖, Proceedings of

the 2006 IEEE/WIC/ACM International Conference on Web

Intelligence(WI 2006 Main Conference Proceedings)

(WI'06).

[5] J. Viega and G. McGraw, Building Secure Software, How to
Avoid Security Problems the Right Way, Addison

Wesley, 2002

[6] G. Hoglund and G. McGraw, Exploiting Software, How to

Break Code, Addison Wesley, 2004.

[7] M. Howard and D. LeBlanc, Writing Secure Code, Microsoft
Press, 2002.

[8] Vu, L., Hauswirth, M., and Aberer, K. (2005). ―QoSbased

service selection and ranking with trust and reputation

management‖. In Proc. of the Intl. conf. on Cooperative

Information Systems (CoopIS), Agia apa, Cyprus.

[9] Colin Atkinson, Philipp Bostan, Oliver Hummel and Dietmar

Stoll, ―A Practical Approach to Web Service Discovery

and Retrieval‖,IEEE International conference on Web

Services (ICWS 2007).

[10] J.Scambray and M.Shema, Hacking Exposed Web
Applications, McGrawHill, 2002

[11] http://www.softpedia.com/get/Authoring-tools/Authoring-

Related/SOAPSonar-Enterprise-Edition.shtml

[12] S. Chen, J. Zic, K. Tang, and D. Levy. Performance

evaluationand modeling of Web services security. In
Proceedings of the IEEE International Conference on Web

Services (ICWS’07), pages 431–438, 2007.

[13] H. Liu, S. Pallickara, and G. Fox. Performance of Web

services security. In 13th Annual Mardi Gras Conference,

Baton Rouge, Lousiana, USA, Feburay 2005.

[14] M. B. Juric, I. Rozman, B. Brumen, M. Colnaric, and M.

Hericko. Comparison of performance of Web services,WS-

Security, RMI, and RMI-SSL. Journal of Systems and

Software, 79(5):689–700, 2006.

[15] S. Makino, K. Tamura, T. Imamura, and Y. Nakamura.
Implementation and performance of WS-Security. Int. J.

Web Service Res., 1(1):58–72, 2004.

[16] A. Moralis, V. Pouli, M. Grammatikou, S. Papavassiliou,

V. Maglaris. Performance comparison of Web services security:

Kerberos token profile against X.509 token profile. In ICNS
’07: Proceedings of the Third International Conference on

Networking and Services, page 28, Washington,DC, USA,

2007. IEEE Computer Society.

[17] H. Liu, S. Pallickara, and G. Fox. Performance of Web

services security. In 13th Annual Mardi Gras Conference,
Baton Rouge, Lousiana, USA, Feburay 2005.

[18] Network Working Group. The Transport LayerProtocol

Version1.1 (RFC4346). Available at

http://www.faqs.org/rfcs/rfc4346.html.

[19] Oasis Consortium. WS-Security specification, 2004.
Available from www.oasis-open.org.

