
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

40

Moving Towards Non-Relational Databases

Uma Bhat
Usha Mittal Institute of Technology,

SNDT Women’s University,
Santacruz (W), Mumbai, 400049

 Shraddha Jadhav
Usha Mittal Institute of Technology,

SNDT Women’s University,
Santacruz (W), Mumbai, 400049

This paper is a part of the semester-long project work undertaken in the final year of B.Tech. Course. It was carried out under the aegis of

Patni Computer Systems Ltd., under the guidance of Sunil Joglekar, Senior Technical Architect, Product & Technology Initiative Group.

ABSTRACT
RDBMS has been around since long. It is the founder stone of

many application stacks. It provides the users with the best mix of

simplicity, robustness, flexibility, performance, scalability, and

compatibility. However the emergence of the cloud centric

application poses a set of challenges to the existing RDBMS

Vendors. The RDBMS are not so suitable to cater to some of the

critical requirement of these new generation applications such as

handling large set of unstructured data or providing elastic

scalability. This results in emergence of a new set of document

centric or resource centric databases which are non-relational in

nature. Promising non-relational solutions include CouchDB,

SimpleDB etc. We have explored and conducted few experiments

with some of such databases.

In the current paper we would like to highlight the salient features

of these databases. With the help of examples we would describe

how these databases differ from the conventional relational

databases. We would also discuss how they cater to the

requirement of today’s modern enterprise applications

Categories and Subject Descriptors
H.2.0 [Database Management]: Security, Integrity and

Protection

H.2.1 [Logical Design]: Data Models, Normal forms, Schema and

Sub schema

E.5 [Files]: Backup Recovery, Optimization, Searching/Sorting,

Organization/Structure

General Terms

Performance, Reliability, Security

Keywords
Non-Relational Databases, CouchDB, SimpleDB, Bigtable, Data

Integrity, RESTful JSON, Document-Oriented, Schema-free,

Map/Reduce, Replication, Tolerance, Consistency, Scalability.

1. INTRODUCTION
Database model is a theory or specification describing how a

database is structured and used. Several such models have been

suggested such as hierarchical, network, relational and non-

relational. Now-a-days, relational database models are the

dominant persistent storage technology. Inspite of this fact, it has

many shortcomings which can hinder performance levels. As

more and more applications are launched in environments that

have massive workloads such as cloud and web services, their

scalability requirements change very quickly and also grow very

large. It is difficult to manage with a relational database sitting on

a single in-house server. To overcome all these shortcomings,

vendors can opt for non relational database models.

Non-Relational databases enjoy schema-free architecture and

possess the power to manage highly unstructured data. They can

be easily deployed to multi-core or multi-server clusters serving

modularization, scalability and incremental replication. Non

relational databases being extremely scalable, offer high

availability and reliability, even while running on hardware that is

typically prone to failure, thereby challenging relational database,

where consistency, data integrity, uptime and performance are of

prime importance.

 In this paper with the help of a case study, we have attempted to

demonstrate how non - relational databases such as, Apache

CouchDB, "Cluster Of Unreliable Commodity Hardware”,

Google’s Big Table and Amazon SimpleDB would prove to be

tried, tested and trusted solutions overcoming drawbacks of

relational databases.

2. CHALLENGES WITH RELATIONAL
DATABASES

a) Performance issues are difficult to predict

While working with a shared database the performance

characteristics of database is hard to predict because each

application accesses the database in its own unique way.

b) Data integrity is difficult to ensure with shared databases

Because no single application has control over the data it is very

difficult to be sure that all applications are operating under the

same business principles.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

41

c) Operational databases require different design strategies

than reporting databases

The schemas of operational databases reflect the operational needs

of the applications that access them, often resulting in a

reasonably normalized schema with some portions of it

denormalized for performance reasons. Reporting databases are

highly denormalized with significant data redundancy within them

to support a wide range of reporting needs.

3. PROMISING NON RELATIONAL

DATABASES
Web 2.0 approaches and design patterns are becoming more

established in online applications and enterprise architecture.

Social architectures, crowdsourcing, and open supply chains are

becoming the norm in the latest software systems faster than

expected in many cases. New advances in processors,

virtualization technology, disk storage, broadband Internet access

and fast, inexpensive servers have all combined to make cloud

computing a compelling paradigm.

Unfortunately, as a result, the architectural expertise needed to

effectively leverage these ideas is often far from abundant. Non

relational databases like Apache CouchDB, Amazon’s SimpleDB

and Google’s Bigtable prove to be effective methods in

overcoming these shortcomings.

3.1 Apache CouchDB: Overview
CouchDB is an open source document-oriented database-

management system, accessible using a RESTful JavaScript

Object Notation (JSON) API. The term "Couch" is an acronym for

"Cluster Of Unreliable Commodity Hardware," reflecting the goal

of CouchDB being extremely scalable, offering high availability

and reliability, even while running on hardware that is typically

prone to failure. CouchDB was originally written in C++ but

moved

to the Erlang OTP platform for its emphasis on fault tolerance. It

is a database built for the future. CouchDB has been developed

from the ground up with Web applications as the primary focus

and has its sights on becoming the de-facto database for Web

application development.

3.1.1 Features CouchDB

a) Schema Free

CouchDB has a hand full of advantages over relational database

model and also aims at storing data in documents, which have no

schema. One document can have a field that another one does not

have. The documents in CouchDB are actual representations of

the data objects. CouchDB stores data in the JSON format. It is

language-agnostic. Data is serialized and de-serialized to and from

that format. JSON can include all the native data types in a

programming language.

b) Document Oriented Structure

Document oriented structure forms building blocks of CouchDB

database. CouchDB databases store uniquely named documents

with document ID and revision number. All data in a CouchDB

database is stored in a document, and each document can be made

up of an undefined number of fields which are not bound by size

and have unique names. Documents can have attachments which

can be of both text as well as digital format. When changes are

made to CouchDB document a new version of the entire

document called a revision is created. The document-revision

system works in much the same way as a wiki or Web-based

document management system manages revision control.

CouchDB does not feature locking mechanisms; two clients can

load and edit the same document at the same time. CouchDB

maintains data consistency by ensuring that document updates are

all or nothing — it either works or it fails.

c) Concurrent

CouchDB is written in erlang. Erlang is a functional programming

language, a virtual machine, and a set of standard libraries.

CouchDB uses Erlang because the problems that it solved for

Telecom applications are the same for the Web today. CouchDB

has an inbuilt ACID compliant datastore which is referred to as

Non–locking Multi Version Concurrency Control. Concurrent

requests can continue to be served by using versioning and it

never overwrites data. Compaction can be used to get rid of

previous revisions and to reclaim disk space thus making it crash-

resistant

d) RESTful HTTP API

CouchDB treats all stored items in the database as resources. It

offers an API as a means to retrieve data from the database. This

API is accessible via HTTP GET and POST requests, and returns

data in the form of JavaScript objects using JSON. HTTP is

understood, interoperable, scalable and proven technology and

can be used with software and hardware for caching, proxying and

load balancing.

Four basic operations on document using CouchDB via HTTP

REST API:

Create: HTTP PUT /db/docid

Read: HTTP GET /db/docid

Update: HTTP POST /db/docid

Delete: HTTP DELETE /db/docid
It makes use of simple HTTP create, request, update and delete

operations on documents. It is accessible just by giving HTTP

requests through the browser.

e) Map/Reduce
The Map and Reduce functions of Map/Reduce are both defined

with respect to data structured in (key, value) pairs. Map() is a

user defined function which transform each documents into zero,

one or multiple intermediate objects, reduce() is user defined

function to consolidate the intermediate objects into the final

result.

f) Replication
CouchDB achieves eventual consistency between databases by

using incremental replication, a process where document changes

are periodically copied between servers. Share nothing clusters of

databases can be built where each node is independent and self-

sufficient, leaving no single point of contention across the system.

Replication allows synchronizing two or more CouchDB

instances and includes automatic conflict detection and resolution.

When trying to replicate, CouchDB detects the conflict and each

node independently chooses one conflicting revision to be the

winning revision. All losing revisions get stored as previous

revisions.

3.1.2 Data Model for COUCHDB
{

“_id”:"44e55a9a3ebe5204a747343b9134",

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

42

“_rev”: "11-4290911434",

“clinical history”: {"Kidney stone": "yes", "TB":

"no”},

“name”: “Mr. Kiran”,

“symptoms”: {"1": "Vomiting", "2": "Fever", "3":

"Stomach_ache"},

“personal_data”: {"Age": 36, "Height": 179,

"Weight": 76},

“test”: {"a": “Culture_test”, "b": “Blood_test”, "c":

“HC/CBC”}

}

3.1.3 Advantages

a) Scalability
CouchDB embraces RESTful architectural constraints to

promote resolvability, efficiency, performance, and reliability

thus enhancing scalability.

b) Schema Free
There is no need to predefine a schema before creating

documents. All documents can be independent which reduces

their inter dependency and there is no need to update database

when a field is added.

c) HTTP request-response mechanism
 It makes use of simple HTTP create, request, update and

delete operations on documents. It is accessible just by giving

HTTP requests through the browser.

d) Support for attachments
It stores file attachments in the form of images, music, and

flash. Thus, it supports digital attachments which are not seen

in traditional relational databases.

e) Zero configuration Replication
Now, there is no need to carry storage devices. Data can be

replicated in the network across nodes both in local and

remote fashion with absolutely no need of internet connection.

f) Provision of Web administration interface-Futon

Futon JavaScript interface can be used for displaying and

editing data, deleting, inserting, creating, updating documents

and triggering replication.

g) Low Memory requirement
Takes 150MB compared to 8Gig taken by MySQL for a

similar database set-up.

3.1.4 Difference between RDBMS and COUCHDB

a) Unstructured with no Table-Format
Relational databases are structured and have a predefined

schema. But CouchDB is a document oriented database

where data is stored in the document itself, not in a related

table as it would be in a relational database. There are no

tables, rows, columns or relationships in a document-oriented

database at all.

b) Schema Free
No strict schema needs to be defined in advance before using

the database. If a document needs to add a new field, it can

simply include that field, without adversely affecting other

documents in the database. These documents do not have to

store empty data values for fields they do not have a value

for.

c) Concept of Identifiers
Relational databases use concept of primary keys, generated

by an auto-increment feature or by a sequence generator.

These identifiers are unique for the table or database they are

used on, hence they can be reused by other tables and

databases. If an update operation is made at the same time on

two databases on separate networks, they cannot both

accurately retrieve the next unique identifier. CouchDB does

not come with an auto-increment or sequence feature.

Instead, it assigns a Universally Unique Identifier (UUID) to

each and every document, making it almost impossible for

another database to accidentally select the same unique

identifier.

d) Concept of views
Document-oriented databases do not support joins. This is a

consequence of there being no primary and foreign keys in

CouchDB. Instead it provides a feature called view which

allows creating an arbitrary relation between documents that

is not actually defined in the database itself. This means all

benefits of typical SQL join queries can be achieved without

the burden of predefining their relationships in the database

layer.

e) Concept of Identifiers
Relational databases use concept of primary keys, generated

by an auto-increment feature or by a sequence generator.

These identifiers are unique for the table or database they are

used on, hence they can be reused by other tables and

databases. If an update operation is made at the same time on

two databases on separate networks, they cannot both

accurately retrieve the next unique identifier. CouchDB does

not come with an auto-increment or sequence feature.

Instead, it assigns a Universally Unique Identifier (UUID) to

each and every document, making it almost impossible for

another database to accidentally select the same unique

identifier.

f) Replication
CouchDB uses replication to propagate application changes

across participating nodes. This is a fundamentally different

approach from relational databases, which operate at

different intersections of consistency, availability, and

partition tolerance. This can be illustrated by the following

diagram.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

43

Fig 1. Difference between CouchDB and RDBMS

� Consistency

All database clients see the same data, even with concurrent

updates.

� Availability

All database clients are able to access some version of the

data.
� Partition tolerance

The database can be split over multiple servers.

3.2 Amazon SIMPLEDB: Overview
Amazon SimpleDB is a web service providing the core database

functions of data indexing and querying. This service works in

close conjunction with Amazon Simple Storage Service (Amazon

S3) and Amazon Elastic Compute Cloud (Amazon EC2),

collectively providing the ability to store, process and query data

sets in the cloud, making web-scale computing easier and more

cost effective for developers. A traditional, clustered relational

database requires a sizable upfront capital outlay, is complex to

design, and often requires a DBA to maintain and administer.

Amazon SimpleDB is simpler, requiring no schema, automatically

indexing and providing a simple API for storage and access. This

approach eliminates the administrative burden of data modeling,

index maintenance, and performance tuning. Developers gain

access to this functionality within Amazon’s proven computing

environment, are able to scale instantly, and pay only for what

they use.

3.2.1 Features of SimpleDB

a) Simple to use
Amazon SimpleDB provides streamlined access to the lookup and

query functions that traditionally are achieved using a relational

database cluster while leaving out other complex, often-unused

database operations. The service allows you to quickly add data

and easily retrieve or edit that data through a simple set of API

calls.

b) Flexible
With Amazon SimpleDB, it is not necessary to pre-define all of

the data formats to be stored; simply new attributes can be added

to the Amazon SimpleDB data set when needed, and the system

will automatically index the data accordingly. The ability to store

structured data without first defining a schema provides

developers with greater flexibility when building applications.

c) Scalable
Amazon SimpleDB allows to easily scale the application. New

domains can be quickly created as data grows or request

throughput increases. Currently, store up to 10 GB per domain can

be stored and up to 100 domains can be created.

d) Fast
Amazon SimpleDB provides quick, efficient storage and retrieval

of data to support high performance web applications.

e) Reliable
The service runs within Amazon's high-availability data centers to

provide strong and consistent performance. To prevent data from

being lost or becoming unavailable, fully indexed data is stored

redundantly across multiple servers and data centers.

f) Low touch
Accessing capabilities through the AWS cloud eliminates the

complexity of maintaining and scaling operations in-house. The

service allows focusing on value-added application development,

rather than arduous and time-consuming database administration.

g) Designed for use with other Amazon Web Services
Amazon SimpleDB is designed to integrate easily with other web-

scale services such as Amazon EC2 and Amazon S3.

h) Inexpensive
Amazon SimpleDB passes on the financial benefits of Amazon's

scale. Vendors have to pay only for resources they consume.

Data Model for SimpleDB

Fig 2. A SimpleDB model

3.2.2Advantages

a) No big infrastructure investment
Freedom from the shackles of big infrastructure investment opens

up great opportunities for innovation. Vendors can now focus on

their business ideas instead of fretting over the number of servers

they have, worrying about running out of disk space, etc. Amazon

worries about the mundane details of the hardware and

infrastructure and how to make it highly available while they can

concentrate on bringing their ideas to life. Low setup costs and

pay-as-you-go expansion make it perfect for startups.

b) Maintenance is simpler
Setting up and maintaining a highly available clustered database

that is constantly growing is extremely difficult. However,

Partition

Tolerance

Availability

Consistency

CouchDB MySQL

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

44

maintenance in SimpleDB is much simpler than a typical database

because there is nothing to set up or configure. Amazon takes care

of all the administrative tasks. Data is automatically indexed by

Amazon and is available anytime from anywhere.

c) High Scalability
SimpleDB is designed from the ground up to address the use case

of scaling massive amounts of data utilizing a cloud approach. All

data stored in SimpleDB is replicated multiple times in

geographically disbursed data centers, so customer databases need

not be backed and will automatically fail over to another replica if

one is not available. Requests can be done via https for

encryption.

d) Parallelism
It is based on Erlang which supports both distributed and

concurrent operations. Hence, data are stored across multiple

nodes which support parallel query execution

e) Schema free
The ability to store structured data without first

defining a schema provides developers with greater flexibility

when building applications and eliminates the need to re-factor an

entire database as those applications evolve.

f) Better storage
SimpleDB can be used as both data storage and an indexing

service. For example, one can use SimpleDB as a flat-file store,

where each record maps onto a line. Another use case is to use

each record in SimpleDB as Meta data for a media file that is

stored on Amazon S3. This solution enables quick search of

media files via SimpleDB and then retrieval via Amazon S3.

Individual item names, attribute names, and attribute values can

be up to 1,024 bytes in length. Amazon SimpleDB allows 10GB

of storage for each domain with 100 domains per customer

account, which provides you with 1 TB of total storage.

3.2.3 Differences between RDBMS and SIMPLEDB

a) Items are stored in hierarchical structure, not a table
Items stored in SimpleDB domain can contain multiple attributes,

each of which may have multiple values. Relationship between

these resources is best visualized as a hierarchical tree structure

rather than as a rigid, predefined table structure. Because, there

are no predefined database or table schemas, an item can have a

different set of attributes from the other items in a domain. There

is freedom to rearrange attribute and value portions of the tree as

and when new data elements are added.

 Fig 3. RDBMS Model

Fig 4. SimpleDB Model

b) Better querying capabilities
Amazon SimpleDB does not storing raw data. It takes data as

input and expands it to create indices across multiple dimensions

to quickly query that data. Amazon SimpleDB stores smaller bits

of data and uses dense drives that are optimized for data access

speed.

c) Provision of technical benefits not offered by

RDBMS
Amazon SimpleDB requires no schema, automatically indexes

your data and provides a simple API for storage and access. This

eliminates the administrative burden of data modeling, index

maintenance, and performance tuning. Developers gain access to

this functionality within Amazon’s proven computing

environment, are able to scale instantly, and pay only for what

they use. Traditionally, this type of functionality has been

accomplished with a clustered relational database that requires a

sizable upfront investment, brings more complexity than is

typically needed, and often requires a DBA to maintain and

administer. In contrast, Amazon SimpleDB is easy to use and

provides the core functionality of a database, real-time lookup and

simple querying of structured data without the operational

complexity.

3.3 Google’s Big Table: Overview

Bigtable is a distributed storage system for managing structured

data that is designed to scale to a very large size: terabytes of data

across thousands of commodity servers. Many projects at Google

store data in Bigtable, including web indexing, Google Earth, and

Google Finance. These applications place very different demands

on Bigtable, both in terms of data size (from URLs to web pages

to satellite imagery) and latency requirements (from backend bulk

processing to real-time data serving). Despite these varied

demands, Bigtable has successfully provided a flexible, high-

performance solution for all of these Google products.

Google’s Appengine is built on top of DataStore, which is built on

top of Bigtable.

Google App Engine datastore

The App Engine datastore is a schemaless object datastore, with a

query engine and atomic transactions. The Python interface

includes a rich data modeling API and a SQL-like query language

called GQL.

The Google App Engine datastore provides robust scalable data

storage for your web application. The datastore is designed with

web applications in mind, with an emphasis on read and query

performance. It stores data entities with properties, organized by

application-defined kinds. It can perform queries over entities of

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

45

the same kind, with filters and sort orders on property values and

keys. All queries are pre-indexed for fast results over very large

data sets. The datastore supports transactional updates, using

entity groupings defined by the application as the unit of

transactionality in the distributed data network.

3.3.1 Features

a) Schema Free
The App Engine datastore is a schemaless object datastore, with a

query engine and atomic transactions. The Python interface

includes a rich data modeling API and a SQL-like query language

called GQL.

b) Scalable
The datastore uses a distributed architecture to manage scaling to

very large data sets.

c) Queries and Indexes
An App Engine datastore query operates on every entity of a

given kind (a data class). App Engine has defined Query and

GqlQuery class to query the datastore. The Query class is a

datastore query interface that uses objects and methods to prepare

queries. The GqlQuery class is a datastore query interface that

uses the App Engine query language GQL. GQL is a SQL-like

query language suitable for querying the App Engine datastore.

An entity is returned as a result for a query if the entity has at least

one value (possibly null) for every property mentioned in the

query's filters and sort orders, and all of the filter criteria are met

by the property values.

d) Consistency and Reliability Of Data
With the App Engine datastore, every attempt to create, update or

delete an entity happens in a transaction. A transaction ensures

that every change made to the entity is saved to the datastore, or,

in the case of failure, none of the changes are made. This ensures

consistency of data within an entity. The datastore can execute

multiple operations in a single transaction, and roll back the entire

transaction if any of the operations fail. This is especially useful

for distributed web applications, where multiple users may be

accessing or manipulating the same data object at the same time.

e) Quotas and Limits
Each call to the datastore API counts toward the Datastore API

Calls quota. Note that some library calls result in multiple calls to

the underlying datastore API.

Data sent to the datastore by the app counts toward the Data Sent

to (Datastore) API quota. Data received by the app from the

datastore counts toward the Data Received from (Datastore) API

quota. The total amount of data currently stored in the datastore

for the app cannot exceed the Stored Data (adjustable) quota. This

includes entity properties and keys, but does not include indexes.

3.3.2 Data Model for Google’s Datastore

class Patient(db.Model):

id = db.IntegerProperty()

_rev= db.StringProperty()

clinicalHistory= db.StringProperty()

name = db.StringProperty()

symptoms= db.ReferenceProperty(Symptom)

persoanlData= db.ReferenceProperty(PersonalData)

test= db.ReferenceProperty(Test)

where Symptom ,PersonalData and Test are other entities.

class Symptom(db.Model):

id = db. IntegerProperty()

symptom = db.StringProperty()

class PersonalData(db.Model):

age= db.Integer Property()

symptom = db.StringProperty()

class Test(db.Model):

id= db.Integer Property()

test_name = db.StringProperty()

3.3.3 Advantages

a) Better Scaling
Unlike traditional databases, the datastore uses a distributed

architecture to manage scaling to very large data sets. An App

Engine application can optimize how data is distributed by

describing relationships between data objects, and by defining

indexes for queries.

b) Better Design
The App Engine datastore is strongly consistent, but it's not a

relational database. While the datastore interface has many of the

same features of traditional databases, the datastore's unique

characteristics imply a different way of designing and managing

data to take advantage of the ability to scale automatically.

c) Schema Free
The App Engine datastore is a schemaless object datastore, with a

query engine and atomic transactions. This provides the flexibility

in managing structured data that is designed to scale to a very

large size: terabytes of data across thousands of commodity

servers.

3.3.4 Differences between RDBMS and Google’s

Bigtable

a) Scaling
Unlike traditional databases, the datastore uses a distributed

architecture to manage scaling to very large data sets. An App

Engine application can optimize how data is distributed by

describing relationships between data objects, and by defining

indexes for queries.

b) Uniqueness Of Data
The concept of Primary Key in Relational Database ensures

uniqueness of data. There is no such concept in Google’s

DataStore. Datastore does not provide any implicit method to

maintain uniqueness. The only thing that is unique is

key/key_name across all your entities. However, there have been

a couple of methods (individual projects) that provide this feature.

If you don’t use above framework, or create something of your

own to maintain uniqueness, AppEngine has no problem with

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

46

Sduplicate entries, since the entries are not duplicate. Every entity

has a unique key/key name.

c) Relationship between entities
The concept of foreign key, helps us in establishing one-one, one-

many, many-many relationship between various entities.

However, there is no such concept in Datastore. For implementing

something similar to foreign key, you need what is called

Reference Property. Again, reference property is nothing like

foreign key. So, don’t expect an error when an entity is deleted

and the other entity still points to the non-existing entity.

4. COMPARISON BETWEEN NON-
RELATIONAL DATABASES

4.1 Scorecard for non-relational databases

Table 1. Performance Matrix

5. CONCLUSION
Thus, through various illustrations given in this paper, we have

tried to showcase features of non relational databases which

ensure that better integrity, scalability, robustness are achieved.

Enhanced data modeling and representation, faster computations,

load balancing are the major targets of using these database

concepts. They can bring about a revolution in this modern era of

supercomputer power through their resource centric and support

for versatile data approaches.

6. ACKNOWLEDGMENTS
Creation of a report requires great effort, hard work and blessings

of many great people who directly or indirectly contribute to the

report. This report is no exception and we owe special gratitude to

several persons.

First and foremost it is a matter of great pleasure to express our

gratitude to Usha Mittal Institute of Technology for granting us

this lifetime experience which we shall always treasure. Also, we

are extremely indebted to Patni Computer Systems for giving us

an opportunity to explore a new dimension of the upcoming

technologies and providing us this brilliant opportunity.

Last but not the least we would like to thank our parents, friends,

lab assistants for supporting in our endeavors.

7. REFERENCES

1) Joe Lennon,” Exploring CouchDB-A document-

oriented database for Web applications”, 31 Mar 2009

[Online]. Available:

http://www.ibm.com/developerworks/opensource/librar

y/os-couchdb/ [Accessed: March 12, 2009].

2) “Homepage – CouchDB”, Apache Software

Foundation, 2008 [Online]. Available:

http://couchdb.apache.org/ [Accessed: March 3, 2009].

3) Koswik, “Interactive CouchDB”, 3 April, 2009

[Online]. Available:

http://labs.mudynamics.com/2009/04/03/interactive-

couchdb/ [Accessed: March 20, 2009].

4) RonDuPlain, “Apache-CouchDB Wiki”, 16 May

2009 [Online]. Available:

http://wiki.apache.org/couchdb/ [Accessed: May 20,

2009].

5) “Home Page - Amazon Web Services”. 2009,

[Online]. Available: http://aws.amazon.com/simpledb/

[Accessed: March 13, 2009].

6) James Murthy, “Programming Amazon Web Services”,

Available:

http://books.google.co.in/books?id=xIauw5xWTO8C&p

g=PA497&dq=simpledb&ei=OSxJSvSuG4j6lQTNgrnB

Ag [Accessed: March 28, 2009].

7) Tod Hoff ,” The Search for the Source of Data - How

SimpleDB Differs from a RDBMS”, 22 April 2008

[Online]. Available: http://highscalability.com/search-

source-data-how-simpledb-differs-rdbms [Accessed:

March 20,2009].

8) Stefan Reuter, Amazon SimpleDB Performance”, 28

August 2008 [Online]. Available:

“http://blogs.reucon.com/srt/2008/05/08/amazon_simple

db_performance.html” [Accessed: May 2,2009].

9) Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.

Hsieh, Deborah A. Wallach, Mike Burrows, Tushar

Chandra, Andrew Fikes, and Robert E. Gruber, “

Bigtable: A Distributed Storage System for Structured

Data”, November 2006 [Online]. Available:

http://labs.google.com/papers/bigtable.html [Accessed:

May 3, 2009].

10) Andrew Hitchcock, BigTable As A Web Service,
[Online]. Available: http://bigtable.appspot.com/

[Accessed: May 12, 2009].

11) Alvanos Michalis, “Bigtable: A Distributed Storage
System for Structured Data”, May 8 2009 [Online].

Available:

http://www.csd.uoc.gr/~hy558/reports/report_bigtable.p

df [Accessed: May 20,2009].

C
ap
ab
il
it
y

M
an
ag
ea
b
il
it
y

A
v
ai
la
b
il
it
y

S
ca
la
b
il
it
y

V
al
u
e

O
v
er
al
l
S
p
ac
e

% 25 25 20 20 10

Apache

CouchB

7 7 8 7 9 7.4

% 25 25 20 20 10

Amazon

SimpleDB

8 8 8 9 8 8.2

% 25 25 20 20 10

Google

Bigtable

8 8 8 9 8 8.2

