
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

9

A Software Reliability Growth Model for Three-Tier Client
Server System

Pradeep Kumar

Information Technology Department
ABES Engineering College, Ghaziabad
Affiliated to UPTU Lucknow, India

Yogesh Singh
Professor, University School of IT

Guru Gobind Singh Indraprastha University
 Delhi – 110006, India,

ABSTRACT
With the ever-increasing role that software is playing in our real-
life systems, concern has steadily grown over the quality of the
software products. In today’s life the computers are being used
to monitor and control safety critical and civilian systems with a
great demand for high-quality software products. So reliability is
a primary concern for both software developers and software
users. In literature many software reliability growth models have
been proposed over the years to estimate and predict reliability
of software products. But it is often very difficult for project
managers and practitioners to determine which model is more
useful in a particular domain and up to what extent. In this paper
we propose a NHPP based software reliability growth model for
three-tier client server systems. The present model composed of
three layers of client-server architecture related to presentation
logic, business logic and database stored at backend.
Presentation layer contains forms or server pages which presents
the user interface for the application, displays the data, collects
the user inputs and sends the requests to next layer. Business
layer, which provides the support services to receive the requests
for data from user tier, evaluates against business rules, passes
them to the data tier and incorporates the business rules for the
application. Data layer includes data access logic, database
driver(s), query engines used for communicating directly with
the data store of a database. The model has been validated
through standard dataset consists of software failure data on
various projects released from the software reliability dataset
and applying to a live commercial application.

Categories and Subject Descriptors
Software reliability engineering, client-server models,
distributed applications, software metrics, nonhomogeneous
Poisson process, failure rate.

General Terms
Reliability, Measurement, Performance, Experimentation

Keywords
Application server, database server, presentation layer,
reliability growth factor

1. INTRODUCTION
The present scenario of software development life cycle has
emerged into a distributed environment because of the
development of network technology & ever increased demand of
sharing the resources to optimize the cost. Therefore to improve

the process of reliability estimation and prediction of software
products we identify and remove the remaining faults during the
testing phase in a three-tier client server based systems.
Reliability can be grown through various means such as
improving the process of designing, effectiveness of testing,
manual & automated inspections, familiarization with
developers, users & product, and improving the management
processes & decisions [1, 2]. The rate at which reliability grows
depends on the factors related to how rapidly defects are
discovered, how fast corrective action can be identified and
implemented & how soon the impact of the changes take place
and make operational in the field. In three-tier client server
architecture the presentation logic and business logic are split
off into separate components resulting into three-tier system
shown as in figure 1.

Figure 1. A three-tier client-server architecture view

2. SRGM SPECIFICATION
In a multi node client-server system consisting of various
components of software that execute on different nodes it
becomes almost mandatory to model the system in such a client-
server computing environment if realistic reliability prediction
and assessment are to be made. Also in three-tier architecture
when there are number of clients and number of servers in a
client-server system, it is not always necessarily the case that a
software failure in any of the clients or servers will cause the
system to fail. There are various factors related to the failure of a
system such as transmission failure, networking failure,
database-linking failure, query engine failure including software
development life cycle (SDLC) failure [4,5]. To address some of
these vital issues related to software failure we decompose the

 Level 1 Level 2 Level 3

 Sending request sending request SQL Query

 Sending reply sending reply

 Client Application Server Database Server

Presentation

Layer

Contains

Presentation

Logic

Business

Layer

Contains

Business

Logic

Data

Layer

Contains

 Data Access

Logic

Database

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

10

present model into three different layers and discuss each layer
to identify the causes of errors, level of severity and its impact to
improve the reliability of the software during the testing phase.
Finally we compute the failure intensity function, probability
distribution function, cumulative distribution function, mean
time to failure, and reliability of the system as a whole using a
real life software reliability dataset [6,7]. The present model
facilitates project managers and the practitioners to assess the
reliability of a software system based on the amount of efforts
put in testing, how accurately parameters are estimated, how
efficiently the relevant & updated failure data of modern
computer system is collected and to the possible extent the
model has been validated using current real life software. This
model further can be used to determine the quality of
development processes in terms of the number of remaining
faults, mean time to failure, time between failure, next expected
failure and failure intensity of the software at the beginning of a
system test.

Table 1. Causes of Errors at Different Layer of the Model

Model Layers Possible Causes of Error(s)

Presentation
layer

Invalid input(s), non-formatted data such as
entering characters in place of a non negative
integer value, User authentication and
authorization error such as invalid login or
password and Lack of security measures such
as damaging & mishandling of the system

Business
Layer

Logical error such as business logic is not
being coded as per the software requirement
specifications, Exceptions are not being
handled properly, Less tolerance power (degree
to which handle the unexpected behavior of the
system) and Security measures such as poor
encryption / decryption algorithm(s)

Database
Layer

Non homogeneous data formats, database
connectivity error or intermittent connectivity,
ODBC driver failure, query engine failure to
execute the query or large amount of data to
process and retrieve, availability of low
bandwidth to fetch the data, network
congestion and security measures such as fire,
floods, earthquake or any other mishap.

The main advantage of three-tier client server SRGM is that all
business logic has been centralized in one layer. A component in
the business layer can be accessed by any number of
components in the presentation layer, therefore any changes to
business logic can be made in one place and be automatically
inherited by all other components without having to duplicate
the change in those other components. Also the presentation
layer components do not access the database all data is provided
by the business layer in the form of XML streams. Any changes
made in the presentation layer need to be passed back to the
business layer before they can be applied to the database.

2.1 Severity of Errors

We categorize the severity level of error(s) during the execution
& operation of present model as follows:
Catastrophic: The system failures may cause to loss of life or
heavy damage to the system wherever it is installed.
Gradual: The severity level of this kind of error(s), which may
further be critical, marginal or negligible depending upon the
kind of application and operational environment.
Critical: may cause complete loss of system such as disaster and
applicable to all three layers presentation, application and
database of the model.
Marginal: may degrade the system gradually such as infected by
viruses, worms or network congestion and heavy load of data to
be processed.
Negligible: may lead to minor failure of the system and
applicable to the presentation & database layer such as incorrect
username & password, invalid user’s input, database not found
or does not exist, ODBC driver failure or rebooting the system
in worst case.
Terminology
Node: A hardware element on a network generally a computer

\PC \desktop\ laptop that is installed with a NIC
card.

Client: A node that makes request of services in a network or
that uses resources available through the servers.

Server: A node that provides some type of services to the clients
such as network resources/ files or distributed
services.

Client-Server computing: defined as processing capability or
available information distributed across multiple
nodes.

Software Defect: Any undesirable deviation in operation of the
software from its intended operation, as defined in
the software requirement specifications.

Errors: are human actions that result in the software containing a
fault. Examples of such faults are the omission or
misinterpretation of the user’s requirements, a
coding error etc.

Faults: are manifestations of an error in the software. If
encountered then it may cause a failure of the
software.

Failure: is the inability of the software to perform its mission for
function within specified limits. Failures are
observed during testing and operation.

Failure rate: refers to the rate of occurrence of Failure (ROCOF)
depending upon the context. The ROCOF is the
unconditional rate of occurrence of a failure at a
point in time.

Software failure: a failure caused by a software fault. It is to be
noticed that software itself does not fail. Faults
already present in the software lead to failure of the
system under certain conditions.

NHPP: The non-homogeneous Poisson process model
(NHPP) represents the number of failures experienced
up to time t is a non-homogeneous Poisson process {N
(t), t ≥ 0}. The NHPP based model provides an
analytical framework for describing the software
failure phenomenon during testing. The main issue in
the NHPP model is to estimate the mean value
function of the cumulative number of failures
experienced up to a certain point in time.

Assumptions:

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

11

• The software failure-occurrence phenomenon is
described by an NHPP.

• The software faults detected during the testing
phase are corrected certainly and completely, that is
no new faults are introduced into the software
systems during the debugging phase. On a failure
observation an immediate effort takes place to
locate the causes of the failure & the error removal
takes very small amount of time, which is nearly
negligible.

• Software is subject to failures during execution
caused by faults remaining in the software.

• The software is developed for three-tier client
server based systems.

• A finite number of test cases are prepared to ensure
that the software works according to the
requirements and specifications. Each test case is
designed to execute a finite number of instructions.

• The error removal intensity per execution is
proportional to the remaining errors in the software
at any point of time.

Notations:

a total number of errors in the software
N(t) number of errors corrected up to time t
m(t) the mean value function or expected no. of faults

detected or removed by time t
b1 error correction rate during the initial testing phase of

presentation layer
b2 error correction rate during the testing phase of

business layer
b3 error correction rate during the final testing phase of

database layer
r1 error generation factor due to correction of errors in

initial testing phase of presentation layer
r2 error generation factor due to correction of errors in

testing phase of business layer
r3 error generation factor due to correction of errors in

testing phase of database layer
t1 time spent in initial testing phase at presentation layer
t2 time spent in testing of business layer
t3 time spent in testing at database layer
t total time spent in all the three phases of testing
λ(t) intensity function for NHPP models or fault detection

rate per unit time
Tk software life cycle length
R(t) reliability of the software developed
F(t) cumulative distribution function (cdf)
f(t) probability distribution function (pdf)
MTTF mean time to failure

3. MATHEMATICAL MODEL

We consider a software in which failures are caused by software
errors. Let {N (t), t ≥ 0} be the total number of errors corrected
up to time t during the total testing phase. A stochastic process
{N (t), t ≥ 0} is a non–negative process where N(t) is a random
variable which represents the cumulative no of faults detected
up to a testing time t. The fault detection process is described by
NHPP with the mean value function m(t) as follows:

 {m (t)}n exp [- m(t)]}
Pr {N (t) = n} =

 n !
where n=0, 1, 2…

m (t) = ∫t λ (x) dx (1)
 0

where Pr{N(t)} denotes the probability of event N(t) and m(t)
is the mean value function, which represents the expected
cumulative no. of faults detected in the testing time interval
(0,t] and λ(t) is an intensity function which represents the
fault-detection rate per fault. The NHPP model is
characterized by its mean value function defined as follows:
m(t) = a (1 – e –bt) a>0, b>0 (2)

where a, is the expected no of initial inherent fault before
testing and b is the software failure occurrence rate per
inherent fault.In three-tier client server based model there are
three type of faults and some faults are easier to detect then
others based upon the efforts required to detect the cause of
failure in order to fix and remove it. In the present model
these faults are associated with presentation layer, business
layer and database layer during the total testing phases. Also
we consider that error correction rate and error generation
factor is different for both these phases, i.e. during the initial
testing phase more errors are likely to occur which
consequently decreases as the testing progresses. During the
process of error correction at presentation layer, a few errors
may be generated at business layer and database layer, which
will affect the total performance of the system. Thus m(t) for
the proposed model can be written as:
 3

m(t) = a ∑ (1 – exp[-bi ti])*(1- ri) (3)
 i=1
where t1 + t2 + t3 ≤ t, a > 0,

0 < b3 < b2 < b1 < 1, 0 < ri < 1
For three types of fault at each layer the intensity function can
be written as dm(t) / dt that is
 3
 λ(t) = a∑{bi exp[-bi ti]-ri exp[-bi ti]bi}
i=1

 3

 = a∑ bi exp [-bi ti] (1- ri) (4)
 i=1
This is the instantaneous error detection rate, i.e. the expected
number of detected errors per unit time at time t. Also we can
derive the expressions for various software reliability
assessment measures from this new model given by eq. (3).

The expected no. of faults remaining at the system testing
time t which is obtained by taking expectations of random
variables {N(∞) – N(t)}i.e.

 n(t) = E [N(∞) – N(t)] (5)

The error detection rate per error (per unit time) at time t is
defined by dp(t) as follows:

 λ(t)
dp(t)=
 [a – m(t)]

 3

 a ∑ (1 – exp [-bi ti] (1- ri)
 i=1

 = 3

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

12

 a- a∑ (1 – exp [-bi ti] (1- ri)
 i=1

 3

 a ∑ bi exp [-bi ti] (1- ri)
 i=1
 =

ri + exp [-bi ti] - ri exp [-bi ti] (6)
Applying the boundary conditions when t=0 and t=∞ we get
 3

 dp(0) = ∑ bi (1- ri) and dp(∞)=0 (7)
 i=1
The expected no. of errors remaining in the software at time t
is given by N(t)=a – m(t) i.e.,
 3

 N(t)= a ∑ [(1 - ri) exp(- bi ti) + ri] (8)
 i=1
The probability that a software failure does not occur during
(s, s + x), given that the last occurrence time of a software
failure was s, is given by 3
R(x / s)=exp(-a∑[{exp[-bi s]–exp[-bi (s + x)]} ((1 - ri)
 j=1 + ri]) (9)
The conditional probability function Rp(x /s) is known as
software reliability of NHPP model with m(t). The mean
value function m (t) represents the number of errors actually
corrected.

4. DATA COLLECTION

The sanctity of collected failure data depends on how
accurately & efficiently we observe failure data from real life
software products of modern computer systems which is very
complex procedure and that need to be addressed further
separately for better validation of the model by the
community of researchers and practitioners. In this paper we
have taken software failure data on various projects from the
Software Life Cycle Empirical/Experience Database (SLED)
published by Data & Analysis Center for Software (DACS).
Further to validate our model for estimating reliability growth
of three-tier client server system we have applied the model
to the data set of On-line Data Entry Software Package test
data (Obha 1984a) and Real-Time Control Systems (Hou et
al., 1997) assuming that the no. of failures-detection data set
is observed from the system-testing phase after confirmation
of the integration of all modules\ software components. The
observation of failure and repair times can be represented by
t1 ,t2…….,…. tn where ti represents the time of failure of i

th
unit. It is assumed that each failure represents an independent
sample from the same population. The population is the
distribution of all possible failure times and may be
represented by f(t), R(t), F(t) or λ(t). Therefore the basic
problem reduces to determine the best failure distribution
implied by the n failure times comprised in the sample. In all
cases the sample is assumed to be a simple random or
probability sample. A simple random sample is one in which
the failure or repair times are independent observations from
a common population. If f(t) is the probability density
function of the underlying population then f(ti) is the
probability density function of the ith sample value. Since the
sample comprises of n independent values therefore the joint
probability distribution of the sample is the product of n
identical and independent distributions i.e.
ft1,t2… tn(t1,t2… tn)=f(t1)f(t2).,f(tn) (10)

Table 2. Failure Datasets applied to the model

S.No. Project

Description

Number

of

Failures

Source #

1 Real Time
Command &
Control

136

DACS

2
Real Time
Command &
Control

54

DACS

3
Real Time
Command &
Control

58

DACS

4
Real Time
Command &
Control

53

DACS

5
Commercial
Subsystem

73
DACS

6
On-line Data
Entry Software
Package

46
Obha 1984

7
Real-Time
Control Systems

481
(Hou et al.,
1997)

4.1 Method of Parameter Estimation

The value of six unknown parameters of the proposed model
given in equations (3) and (4) are obtained by the method of
Maximum Likelihood Estimation (MLE). Let X be the
discrete variable representing the no. of trials necessary to
obtain the first failure. Here we assume that the probability of
failure remains a constant p and each trial is independent then

Pr{X = x } = f(x) = (1- p) x -1 . p (11)
where x=1,2,….

and which is the probability of (x-1) successes i.e. probability
=(1- p) x -1 followed by a failure probability (probability =
p).If x1 , x2…….,…. xn represents a sample of size n from this
distribution then from equation (10) the joint distribution may
be written as:
fx1 , x2… xn (x1 , x2…… xn) = f(x1)f(x2).,f(xn).

=(1-p) x1-1.p(1-p) x2-1.p (1-p) x3-1.p…,(1-p) xn-1.p
 n
=pn.(1-p) exp[∑ (xi - 1)] (12)
 i=1
Equation (12) is called likelihood function and represents the
probability of obtaining the observed sample. Since equation
(12) contains the unknown parameter p we find a value of p
consistent with the observed sample. If a value of p is found
that maximize the likelihood function then it also maximize
the probability of obtaining the observed sample.

 n

max g(p) = pn.(1-p) exp[∑ (xi - 1)]
 i=1
 for 0<=p<=1

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

13

Therefore we solve this equation to get maximum of a
function by finding the point at which the first derivative is
equal to zero as follows:
 n
max log g(p) = log[pn.(1-p) exp[∑ (xi - 1)]]
 i=1
 n
 = n log p + ∑ (xi - 1) log(1 – p) (13)
 i=1
Now putting first derivative of max log g(p) = 0 we get i.e.
d/dp [max log g(p)] = d/dp [n log p +
 n
 +∑ log (1 – p)] = 0
 i=1
 n
n / p + ∑ (xi - 1) (–1) / (1-p) = 0
 i=1
 n
n / p (1 – p) = ∑ (xi - 1)
 i=1
 n
max (p) = n / ∑ xi (14)
 i=1

where max (p) is defined as the Maximum Likelihood Estimator
of the given distribution.

4.2 Model Validation

Based on the data available given in table (2) the performance
analysis of the proposed model is measured by the four common
criteria SSE as the sum of squared errors, R-square, Adjust R-
square & RMSE for the model comparison of goodness of-fit as
follows:
Sum of square of Error (SSE): This statistic measures the
deviation of the responses from the values of responses. A value
closer to 0 indicates a better estimation. It is calculated as:
 k n

SSE = ∑ ∑ [yij - mj(ti)]
2 (15)

 j=1 i=1
where yij is total number of type j failures observed at time ti
according to the actual data mj(ti) ,the estimated cumulative
number of type j failures at time ti for i =1,2,…,n and j =1,2,…,
k.
Mean Square of fitting Error (MSE): It is calculated as:
 n

 ∑ [mj(ti) - yij]
2 (16)

 i=1
MSE =
 n
where yij(mj(ti)) is the actual estimated value of the total number
of errors removed in interval (0, t]. The MSE measures the
distance of a model estimate from the actual data with the
consideration of the number of observations and the number of
parameters (N) in the model.
RMSE – is defined as the root of mean squared error and for a
computed value closer to 0 it indicates a better approximation &
estimation.
That is,
 RMSE = √ MSE (17)
R-square: This statistic measures how successful the model is in
explaining the variation of the data, which may be defined as the

square of the correlation between the response values and the
predicted response values. It is also called the square of the
multiple correlation coefficients and the coefficient of multiple
determinations. R-square can take on any value between 0 and 1,
with a value closer to 1 indicating a better estimation of the
model. For example if R-square = 0.8234 means that the
estimation explains 82.34% of the total variation in the data
about the average.

Adjusted R-Square: The degrees of freedom uses the R-square
statistic and adjusts it based on the residual degrees of freedom.
The residual degree of freedom is defined as the number of
response values n minus the number of fitted coefficients m
estimated from the response values.
 v = n-m (18)
where v indicates the number of independent pieces of
information involving the n data points that are required to
calculate the sum of squares. A value closer to 0 indicates a
better estimation of the model.

5. RESULT ANALYSIS

In this section we show the result of our model applied to a set
of failure data extracted from various projects listed in table2.
Figure (2) to figure (12) exhibits the result of various computed
quality attributes using equations (3) and (4) such as failure
intensity λ(t), reliability of the software at any instance of time
during testing phase R(t), cumulative distribution function
(CDF), probability distribution function (PDF), mean time to
failure (MTTF) & variance factor. Here we have modeled the
daily defect arrival data during the testing phase of system based
on the cumulative failures, length of failure interval and the day
of failure it was reported whereas tracking of the data for
software reliability estimation has been done on a calendar-time
basis and the testing effort is homogeneous throughout the
testing phase. We have simulated the seven failure datasets
taken as one-dimensional data with the help of non-linear fitting
functions using Matlab 7.0.1 under Windows XP environment.

Table 3. Goodness of fitness for different projects

Goodness

of fitness

criteria

SSE R_

Square

Adj. R-

Square

RMSE

Project 1 0.04451 0.9754 0.9703 0.03423

Project 2 0.00744 0.4824 0.2237 0.02158

Project 3 0.00008 0.9997 0.9995 0.00298

Project 4 0.00002 0.9999 0.9998 0.00147

Project 5 0.20080 0.5353 0.3495 0.03168

Project 6 0.10920 0.5693 0.2822 0.09539

Project 7 0.34290

0.8517 0.8401 0.18330

5. 1 OBSERVATIONS
Typically software reliability growth model estimate the time to
next failure or the expected number of remaining failures or
when to stop the testing and release the product to the customer.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

14

Time is measured in terms of test time including CPU execution
time, lines of code tested, system operating time as a calander
time i.e. the duration of testing such as no. of hours \days\weeks
& months.As a result the probabilistic models are used in
describing software reliability and normally a decreasing failure
rate is observed if software failures are fixed as they occur and
the fix does not generate any new failures. Thus software testing
can be likened to reliability growth testing in which the software
is executed in an attempt to discover failure, analyze the causes
of failure mechanism and initiate the corrective measures.
Following are the observations made from applying the model
on seven projects listed in table (2) and table (3). The different
reliability attributes computed using datasets of project (6) and
(7) are shown in figures (9) to figure (13) with significant and
improved results. The present model exhibits constant failure
rates and the exponential distribution in many respects, which is
the simplest reliability distribution to analyze and reveals from
the observations that if the failure rates of all failure modes of a
component are constant & independent then the overall failure
rate of the component is also constant. There are several
interesting physical processes that give rise to the cause why
have we chosen exponential probability distribution for
implementing our model. A constant failure rate implies
completely random and independent failures over time and
hence results in lack of memory. In fact these three
characteristics related to randomness, constant failure rates and
memorylessness more or less exhibit different form of same
phenomenon.

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
0

2

4

6

8

1 0

1 2

1 4

1 6

F
a
ilu
re
 I
n
te
n
s
it
y

F a i l u r e i n t e n s i t y vs T e s t i n g t im e : a p p l i e d t o p r o j e c t 1

T e s t i n g t im e (d a y s)

f i t t e d d a t a

A c t u a l d a t a

Figure 2. Failure intensity vs. testing time

0 5 1 0 1 5 2 0 2 5
0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

fa
ilu
re
 r
a
te

F a i lu re R a t e vs t e s t i n g p e r io d

T e s t in g t im e (d a y s)

F i t t e d d a t a

A c t u a l d a t a

Figure 3. Failure intensity vs. testing time

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0 . 5 5

0 . 6

0 . 6 5

0 . 7

0 . 7 5

0 . 8

0 . 8 5

0 . 9

0 . 9 5

1

R
e
lia
b
ili
ty
 f
u
n
c
ti
o
n

R e l ia b i l i t y fu n c t i o n vs t e s t in g

T e s t i n g t im e (in d a y s)

F i t t e d d a t a

A c t u a l d a t a

Figure 4. Reliability function vs. testing time

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

0 .0 5

0 .1

0 . 1 5

0 . 2

0 . 2 5

0 . 3

0 . 3 5

0 . 4

0 . 4 5

F
a
ilu
re
 i
n
te
n
s
it
y

F a i lu re In t e n s it y vs Te s t in g p e rio d

Te s t in g T im e (d a y s)

fi t 1

R e l vs . t im e

Figure 5. Failure intensity vs. testing time

0 20 40 60 80 100 120
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

R
e
lia
b
ili
ty
 f
u
n
c
ti
o
n
 R
(t
)

Re liability func t ion vs tes t ing t im e

Tes t ing t im e (days)

F it ted Data

A c tual data

Figure 6. Reliability function vs. testing time

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700

F
a
ilu
re
 R
a
te
 L
a
m
b
d
a
(t
)

Failure rate vs Tes ting t ime

Testing t ime (days)

Fitted data

Ac tual data

Figure 7. Failure intensity vs. testing time

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

15

0 5 10 15 20 25 30 35 40 45 50
-0 .1

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

R
e
lia
b
ili
ty
 f
u
n
c
ti
o
n

R e liab ilit y V s Tes t ing

Tes t ing t im e (day s)

F it ted da ta

A c tua l da ta

Figure 8. Reliability function vs. testing time

0 20 40 60 80 100 120

10
-250

10
-200

10
-150

10
-100

10
-50

10
0

Testing period (days)

R
(t
)

Reliability function

observed data

Reliability function

Figure 9. Reliability function vs. testing time

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Testing period (days)

C
u
m
m
u
la
ti
v
e
 d
is
tr
ib
u
ti
o
n
 f
u
n
c
ti
o
n
 (
C
D
F
)

Reliability & CDF

CDF

Reliability function

Figure 10. Reliability & CDF vs. testing time

30 40 50 60 70 80 90 100 110 120
0

0.2

0.4

0.6

0.8

1

Cummulative no of errors

V
a
ri
a
n
c
e
 f
a
c
to
r

Variance factor

Variance factor

Cummulative no of errors

Figure 11. Cumulative errors vs. Variance factor

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Testing period (days)

M
T
T
F

Reliability & MTTF

MTTF

Reliability

Figure 12. Cumulative distribution function vs. testing time

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7
x 10

-3

Testing time (days)

P
ro

b
a
b
il
it
y
 d
is
tr
ib
u
ti
o
n
 f
u
n
c
ti
o
n

PDF

observed data

PDF

Figure 13. Probability distribution function vs. testing time

6. CONCLUSION & FUTURE WORK
Based on the above approach it seems to be quite feasible to
develop such a software reliability growth model for a three-tier
client-server system. However, in order to implement the present
model it is necessary to partition the failures and defects into
three categories associated with each presentation, application &
database layer of the present model. In this paper we have
designed a software reliability growth model for three-tier
client-server system based on nonhomogeneous Poisson process,
which incorporates the exponential software reliability growth
model for estimation and prediction of software reliability. We
have discussed various aspect related to the severity level of
errors and its impact on the respective layer of the proposed
model. The model also has been validated using failure data of
seven real life datasets of various projects released by software
reliability dataset DACS. Further if we are able to estimate the
values of the parameters more precisely then we can enhance
software reliability assessment measures more accurately with
the help of our model in comparison with the conventional
existing models.

However we have assumed a perfect debugging environment to
validate and implement the present model, which may not be
realistic in many real life development processes that is the
removal of all software error(s) or faults is performed perfectly
at each particular layer of the model during the testing phase.
Therefore to overcome this kind of deficiency we need to collect
more realistic data little bit more precisely from real life projects

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 13

16

released under the imperfect debugging environment of modern
computer systems with the possibility of introducing new faults
at different layers of the model. Since the software testing
consumes a large amount of efforts required to locate and fix the
error during the testing phase of a software system, which
consequently increase the allocated budget for the development
of the system. Therefore, in the future it is very much essential
and required to develop a mechanism of when to stop the testing
process and release the products to the end user with higher
quality, within budget and without any delay.

REFERENCES

[1] A Software Reliability Growth Model for a Distributed

Development Environment Electronics and
Communications in Japan, Part 3, Vol. 83. No. 12, 2000,
Shigeru Yamada, Yoshinobu Tamura and Mitsuhiro
Kimura.

[2] Determination of software release instant using a
nonhomogeneous error detection rate model Microelectron
Reliability, Vol. 33. No. 6. pp. 803-807, 1993, printed in
Great Britain, K.K. Aggarwal and Yogesh Singh.

[3] Software Reliability Engineering: more reliable software
faster and cheaper second edition published by TMH
publications 2007, Musa J D.

[4] Software reliability model for modular structure IEEE
Transactions on Reliability, R-28, No. 1979, Littlewood B.

[5] Topics in safety, reliability and quality Reliability
Engineering published by Kluwer publications 1993, K.K.
Aggarwal.

[6] Software reliability modeling published by World
Scientific publications 1991, Min Xie.

[7] System Software Reliability published by Springer Series
in Reliability Engineering 2006, Hoang Pham.

[8] Handbook of Software reliability engineering edited and
published by IEEE computer society press and TMH
publications 2007, Michael R Lyu.

[9] Operational profile in software reliability engineering IEEE
software 1993, Musa J D.

[10] Software Reliability Engineering for Client-Server Systems
Proceedings of the Seventh International Symposium on
Software Reliability Engineering (ISSRE ’96), 1071-
9458/96, 1996 IEEE, Norman F Schneidewind.

[11] An Architecture-Based Software Reliability Model
Computer Science Department, SUNY Albany 2000, Wen-
Li Wang, Ye Wu, Mei-Hwa Chen.

[12] Software Engineering: programs, documentation &
operating Procedures published by New Age International
publications 2007, K.K. Aggarwal and Yogesh Singh.

[13] Post-Release reliability Growth in Software Products ACM
Transactions on Software engineering and Methodology,
Vol. 17, No.4, Article 17, pub. Date: August 2008, Pankaj
Jalote, B Murphy, Vibhu Saujanya Sharma.

[14] Contributions to Hardware & Software Reliability
published by World Scientific publications 1999, P K
Kapur, R B Garg, S K Kumar.

[15] Software Reliability Carnegie Mellon University 18-849b
Dependable Embedded Systems Spring 1999 Authors:
Jiantao Pan ,jpan@cmu.edu , Jiantao Pan.

[16] Probability and Statistics with Reliability, Queuing and
Computer Science Applications, second edition published
by John-Wiley publications 2007, Kishore S Trivedi.

[17] Software Metrics and Reliability Software Reliability
Engineering the 9th International Symposium, 1998,

Germany, Rosenberg, L., Hammer, T., Jack S.

[18] Metrics and Models in Software Quality Engineering
published by Pearson education 2008, Stephan H Kan.

[19] Reliability and maintainability engineering published by
TMH publications by Charles E. Ebeling 2007.

[20] An Assessment of Testing-Effort Dependent Software
Reliability Growth Model, IEEE Transactions on
Reliability, Vol, 56,No,2, June 2007 by Chin-Yu Huang,
Sy-Yen Kuo, Michel R. Lyu.

