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ABSTRACT 

Power is increasingly becoming the bottleneck for the design of 

high performance VLSI circuits. It is essential to analyze how the 

various components of power are likely to scale in the future, 

thereby identifying the key problematic areas. While most 

analyses focus on the timing aspects of interconnects, power 

consumption is also important. In this paper, the power 

distribution estimation of interconnects is studied using a reduced-

order model [1]. The relation between power consumption and the 

poles and residues of a transfer function is derived, and an 

appropriate driver model is developed, allowing power 

consumption to be computed efficiently. 
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1. INTRODUCTION 
As the scale of process technologies steadily shrinks and the size 

of designs increases, interconnects have increasing impact on the 

area, delay, and power consumption of circuits. Over the past 

decade there have been a number of advances in modeling and the 

analysis of interconnect that have facilitated the continual 

advances in design automation for systems of increasing size and 

frequency. As integrated circuit feature sizes continue to scale 

well below 0.18 µm [2], active device counts are reaching 

hundreds of millions. Interconnect models must incorporate 

distributed self and mutual inductance to accurately estimate time 

delay and crosstalk in a multilevel network for multi-GHz 

gigascale integration (GSI) [3]. In addition to interconnect delay, 

crosstalk noise resulting from capacitive and, more recently 

investigated, inductive effects [4], [5] between adjacent 

interconnect lines is also becoming a primary concern for ICs 

performance and reliability. Furthermore, with present VLSI 

technology, on-chip interconnects are best modeled as a network 

of coupled lines the amount of interconnect among the devices 

tends to grow super linearly with the transistor counts, and the 

chip area is often limited by the physical interconnect area. Due to 

these interconnect area limitations, the interconnect dimensions 

are scaled with the devices whenever possible. In addition, to 

provide more wiring resources, IC’s now accommodate numerous 

metallization layers, with more to come in the future. These 

advances in technology that result in scaled, multi-level 

interconnects may address the wire ability problem, but in the 

process create problems with signal integrity and interconnect 

delay. As regards power, the situation is similar in that the portion 

of power associated with interconnects is increasing. This is an 

important fact because the conventional design, analysis, and 

synthesis of VLSI circuits are based on the assumption that gates 

are the main sources of on-chip power consumption. Furthermore, 

the power consumed by interconnects results in a phenomenon, 

called self heating, which reduces electro-migration induced mean 

time to failure (MTF) [6]. It is shown in [7] that the power 

distribution analysis on interconnects is feasible in frequency 

domain using poles and residues. However, high complexity is 

inevitable when calculating the power dissipation of the whole 

interconnects since poles and residues of the current flowing 

through each element have to be calculated. As feature sizes are 

decreased to deep sub-micrometer dimensions, on-chip 

interconnect is best modeled as a distributed RLC line. However, 

unlike the RC model, such a model increases the complexity of 

interconnects crosstalk noise and its induced delay estimation. 

Advances in deep sub-micron technology indicate that present and 

future interconnects might no longer be considered as simply 

made of RC lines. Thus, RLC interconnect models become a 

necessity [8]. It therefore appears that, if accurate interconnect 

delay estimation is to be achieved, modeling interconnect as a 

distributed RLC line is necessary. In this case, the commonly and 

generally well-accepted Elmore delay calculation becomes 

inapplicable to RLC interconnect networks due to their non-

monotonic characteristics induced by inductances [8] [9]. To 

verify the effects induced by interconnects a combination of 

extraction and analysis is necessary. Extraction determines the 

capacitance and the resistance of interconnects, which can then be 

used to build a circuit model for the analysis of interconnect 

effects. For analysis (or estimation), extensive studies have been 

made of the use of model order reduction over the last few years, 

following the introduction of AWE [9]. Model order reduction is 

based on approximating the Laplace-domain transfer function of a 

linear network by a relatively small number of dominant poles and 

zeros. Such reduced-order models can be used to predict the time-

domain or frequency-domain response of the linear network. 

Power, which inherently involves improper integration, can be 

derived from the poles and residues of the transfer function, which 

requires only algebraic computation. When the interconnect is 

driven by MOSFETs and connected to the gates of MOSFETs, the 
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load transistor can be satisfactorily approximated by a capacitor. 

And we show that the driver transistor can be modeled by a linear-

region resistance with sufficient accuracy for power estimation 

[10]. In this paper, we expand the work presented in [10] by 

including the effective distributive inductance and derive an 

analytical delay expression for power distribution of interconnects 

to be estimated. 

2. BASIC THEORY 

2.1 Model Order Reduction 
Due to the large number and complex nature of on-chip 

interconnects; it is impractical to run SPICE-like accurate 

simulations on an entire IC. If more moments are required for an 

accurate approximation, moment matching or other order 

reduction schemes can be used to generate reduced-order 

dominant pole or zero approximations for the interconnect 

transfer, admittance, and impedance functions[1]. Model order 

reduction is a technique that takes a circuit and reduces it to a 

smaller representation consisting of the dominant poles from the 

original circuit. There are two approaches to model order 

reduction: moment matching and matrix approximation [11]. In 

this section, we outline the method based on moment matching 

[9]. However, we stress the fact that any kind of model order 

reduction method can be used as part of the power distribution 

estimation. All of the efficient moment-based models for 

interconnect analysis are for linear circuits. The overall behavior 

and performance of a signal on the interconnect path is strongly 

dependent upon the nonlinear drivers and loads too. One 

straightforward way of combining moment-based interconnect 

models and nonlinear components (e.g. transistors) is to 

characterize the linear interconnect portion of the circuit by a 

reduced order multiport (refer to Figure -1) [1]. 

 

For example, we can approximate the Y parameters in terms of 

the dominant poles and zeros. We then combine the reduced order 

interconnect models and the nonlinear devices in a circuit 

simulation environment. An important issue for such a simulation 

is the passivity. We can force the reduced order models to be 

stable, however, for a stable simulation the reduced order blocks 

have to be passive as well a lumped, linear, time-invariant circuit 

can be described by first order differential equations given bellow 

                       x =AX + bu            (1) 

                       
duxcy T

                           (2) 

Where x is an n-dimensional state vector, A is a nn  matrix, u 

is the system’s input, y is the output of interest, and d denotes the 

direct-coupling term. We apply the Laplace transform to (1) & (2) 

assuming zero initial conditions and ignoring the term du, which 

can be treated separately. Then, we obtain 

                          bUAXsX , 

                            XcY T

             (3) 

Where X, U, and Y denote the Laplace transform of x, u, and y, 

respectively. It follows from (2) that the transfer function or the 

Laplace transform of the impulse response, defined as 
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sH

  is  

                            bAsIcsH T 1)()(        (4)  

Where I is an identity matrix. If H(s) has a Taylor series 

expansion about s= = 0 (i.e. Maclaurin series), then it can be 

described by 

                                   0
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i

i

ismsH

       (5) 

Substituting (5) into (4) and equating like powers of s, it can be 

shown that 
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i

1
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The terms mi are related to the moments of the impulse response, 

denoted by h (t), because 
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Applying a Taylor series expansion of e-st  about s = 0 yields 

         0
0

3322

0

)(
)!(

)1(

....}
!3

1

!2

1
1{)()(

i

ii
i

dtthts
i

dttstsstthsH

               (8) 

   The ith circuit-response moment [9], mi is defined as: 
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is equal to the ith time moment of h(t)), multiplied by a constant 

factor. Note that the terms mi can be computed recursively in 

from (6) and (9), the transfer function H (s) can be expressed as: 

.........ˆˆˆˆ)( 3

3

2
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In a reduced-order model, especially one obtained by moment 

matching, the transfer function is approximated by the reduced 

order system of proper rational function of s having q-poles: 
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Because there are 2q unknowns in the reduced-order system, it is 

forced to correspond to the first 2q terms of (5) by using Pade´ 

approximation [1]. In other words, 2q low-order moments are 

required to obtain the reduced-order system having q poles, 

yielding the following equality  
12

1210 .................)(ˆ q

q smsmmsH        (12) 

Multiplying both sides of (12) by the denominator of the left-hand 

side yields a set of equations that can be solved for 2q 

coefficients. After finding roots of the denominator of the 

reduced-order model, (11) can be expressed as a partial fraction 

expansion form given by 

               q

i i

i

ps

r
sH

1

)(ˆ                   (13) 

Where ri is a residue of )(ˆ sH ) at the pole pi. It is then 

straightforward to obtain the approximated impulse response )(ˆ th

from (13), computing moments and obtaining the reduced-order 

model as described above has limitations: a reduced-order model 

of a stable circuits may be unstable. 

Figure-1 Model Order Reduction of Multiport Interconnect 

Circuits 

Linear 

elements 

(Interconnect) 
Reduced  

Order 

Macromodel 
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2.2 Estimation Method of Power Estimation      

in Interconnect 
In order to find the power consumption or energy dissipation of a 

particular resistor element in a linear circuit, we first obtain the 

reduced-order model of current flowing through the resistor, 

denoted by )(ˆ sj  (with the corresponding time-domain function

)(ˆ tj ). using a model order reduction techniques The approximate 

energy dissipated by Ri, denoted by 
iÊ  during time period  is then 

given by t1, t2 is given by 

                       dttjRE
t

t
ii

2

1

2 )(ˆˆ       (14) 

We make t1 the time origin and t2 infinite time. Then )(ˆ tj ) will 

reach a steady state, provided that )(ˆ tj corresponds to the reduced-

order model of an individual transition. This leads us to the 

improper integral 

                              
0

2 )(ˆˆ dttjRE ii
       (15) 

First, we derive a general relation between improper integration in 

the time-domain and algebraic computation in the s-plane, which 

is expressed by the following theorem. 
 

THEOREM-1: If the Laplace transform of a time-domain 

signal h(t), denoted by H(s)), has q singularities in the left half of 

the s-plane, then 

                             
0

1
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q
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where ir̂  is a residue of H(-s))H(s) ) at the singularity of H(s).) 

Proof: Let 
0

2 )( dtthI  

From the definition of the Laplace transform, we have  
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Since the Laplace transform of a product of two functions is equal 

to the convolution of the Laplace transforms of two functions, we 

find that 
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where is chosen solely by the condition that it is to the right of 

the singularities of  H(s)()), meaning that can be chosen as any 

real number larger than or equal to 0. So we set = 0 and take the 

contour of integration as a semicircle of radius T with the line

)(sR as diameter and to the left of it and the line segment

)(sR , TsTT )( as shown in Figure 2. By taking T 

sufficiently large, we can guarantee that only the singularities of 

H(s) fall inside the contour, because H(s) has singularities to the 

right of the s-plane. Then, by the Cauchy residue theorem, It 

reduces to the sum of residues of H (-s). H (s) at the singularities 

of H(s), this concludes the proof. 

 

 

Figure-2. The singularities of H(s)) and the contour of 

integration 

THEOREM-2 If the Laplace transform of a time-domain 

signal h(t), denoted by H(s)), has q simple poles in the left half of 

the s-plane, then 

0
1

2 )()(
q

i

ii pHrdtth      (19) 

Where ri is a residue of H(s) at the pole of pi of H(s). 

 

Proof: From Theorem-1, the residue of H(-s)H(s) at the simple 

pole  pi )ˆ( ir  can be computed by  
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We obtain the desired result from (16), (20) and (21): 
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Notice that the relations derived in Theorems 1 and 2 are exact, 

rather than approximate. Thus, when the reduced-order model

)(ˆ sH ) is used in (16) or (19), the accuracy of energy dissipation 

is determined by the accuracies of the poles and residues of the 

reduced-order model. The relations can also be used to derive the 

exact energy dissipation if we have the Laplace transform of the 

exact time-domain function of current. 

3. PROPOSED MODEL FOR ENERGY 

CALCULATION 

The focus of this paper is on the power distribution estimation of 

circuits consisting of lumped elements, we include the exact 

energy distribution of a distributed RLC interconnect for 

completeness. We consider a distributed RLC line as shown in 

figure.

 
Figure-3 A distributed RLC Interconnect 

 

Suppose that it is excited by a step input. Then, the Laplace 

transform of v(x, t) for a distributed RLC line of infinite length is 

given by [12] 

BAsxVsxV inout .).,(),(     (23) 

x Singularities of H(s) 

s-plane 
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 is the characteristic impedance of lossless 

transmission line, r is the resistance per unit length, c is the 

capacitance per unit length, l is the inductance per unit length 

Rtr=Zs is the driver resistance. For the step input the output 

equation is (by taking Rtr=r)
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The current equation [10] in the time domain is given by 

        I(x, t) =
t

txv

r

),(1
                (25)    

 

Table-1 Comparison of the energy distribution for 

randomly generated RLC circuit 

 

  By applying Laplace transform on both side of (25)           
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By equating the denominator term of (26) to zero, we get the pole 

of I(x, s) as    

                    P1=0   &  
22

crl

r
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The pole P2 is in the left half of the s-plane, so we can use the 

relation given in Theorem-2. Now from (26) and (27) 
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The residue of I(x, s) at pole P2 is given by 
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Thus the energy dissipation at the arbitrary position is given by 

from Theorem-2 
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This is our approximated formula for the Energy dissipation in the 

Distributed RLC interconnects using model order reduction 

technique  The obtained expression for the distribution of energy 

dissipation  can be plotted as an exponential form as shown in the 

figure-4. 

 
 

Figure-4 The Distribution of Energy Dissipation for a 

distributed RLC Interconnect 
 

4. RESULTS 
We have implemented the proposed power estimation method 

using  Model Order Reduction technique and applied it to widely 

used actual interconnect RLC networks as shown  in Figure-5. For 

each RLC network source we put a driver, where the driver is a 

step voltage source followed by a resister. Here power 

consumption and energy dissipation are used interchangeably. 

 

Figure-5 An RLC Tree Example 
 

In order to verify the validity of the proposed analysis method, we 

randomly generate RLC Tree network while varying the number 

of nodes from 1000 to 1500.We generate resistance, capacitance 

Number of Nodes=1000 Number of Nodes=1500   

SPICE Model 

(micro J) 

Our Model 

(micro J) 

SPICE  Model 

 (micro J) 

Our Model 

(micro J) 

  0.2 0.2 0.2 0.2 

1 1 1 1 

8 8 8 8 

10 10 10 10 

102 75 102 85 

6X102 575 6X102 590 

8x102 700 8x102 795 

103 8x102 103 9.2x102 

104 8.6x103 104 9.25x103 

105 8.5x104 105 9.35x104 

106       8.8x105 106      9.57x105 

107 9.5x106 107 9.79x106 

108 9.98x107 108 9.98x107 
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and inductance values in such way that the resulting circuit has 

widely varying time-constant and compare the energy distribution 

obtained by SPICE with that obtained by our methods. Table-1 

gives the comparative result of the energy dissipation computed 

using SPICE and our method.         

Figure-6 & Figure-7 show the graphical representation of the 

result for the circuit with 1000 and 1500 nodes respectively. The 

result shows that a two pole approximation is quite accurate for 

most of the cases. 

 
 

 

 

 

 

 

 

5. CONCLUSION 
We propose a method for the power estimation of RLC 

interconnects based on the reduced-order model. We show that 

power consumption can be computed efficiently in the s-domain 

using an algebraic formulation, instead of the improper integration 

in the time domain. The proposed method of computing power 

consumption relies on the poles and residues of the transfer 

function and can be used in any kind of model order reduction 

technique. Compact expressions that describe the energy 

distribution of a single distributed RLC interconnect are 

rigorously derived. Simple closed form approximation is derived 

that estimates the energy dissipation of semi-infinite distributed 

RLC interconnects. 
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