
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 14

81

Parallel Association Rule Mining on Heterogeneous

System

Rakhi Garg
Computer Science Section,

MMV, Banaras Hindu University,
Varanasi

ABSTRACT

Association Rule Mining from transaction–oriented databases is

one of the important process that finds relation between items and

plays important role in decision making. Parallel algorithms are

required because of large size of the database to be mined. Most

of the algorithms designed were for homogeneous system uses

static load balancing technique which is far from reality. A

parallel algorithm for heterogeneous system is regarded as one of

the most promising platforms for association rule mining. In this

paper we propose a simple parallel algorithm for association rule

mining on heterogeneous system with dynamic load balancing

based on Par-Maxclique algorithm. We maintain one linked list at

the scheduler end that keep track of load value of every processor

and each processor is having a job queue associated with it which

is served in First come first basis. On the basis of load value

scheduler directs the migration of task from heavy loaded to least

loaded processor in the cluster during the execution and thus

balances load dynamically in a cluster.

Keywords
Parallel association rule mining, heterogeneous system, Par-

MaxClique algorithm

1. INTRODUCTION
Most of the parallel association rule mining algorithm developed

so far uses static load balancing for homogeneous systems [12].

Static load balancing initially partitions work among the

homogeneous processors using some heuristics; no data

movement for current load balancing during the execution is

available.

If we apply the parallel algorithm developed for homogeneous

system to heterogeneous environment, it will leads to significant

performance deterioration [1]. Since in homogeneous system

there is an equal distribution of job among the processors of the

same speed, uses static load balancing technique whereas

heterogeneous system has processors of different speeds in which

one completes job earlier than the other due to speed mismatch

[4]. In this case high speed processor executes the assigned job

quickly and sits idle while low speed processor is still busy with

the assigned job. It degrades the performance of the system. To

utilize system processors efficiently and enhance the performance

we design an algorithm that during execution checks the load of

the processor and on the basis of that it moves the job from heavy

loaded processor to least loaded one so that no processor sits idle

till the completion of the whole jobs in a system.

The algorithm assumes heterogeneous environment where there is

no prior knowledge of processing speed of processors. Initially,

there is same number of jobs assigned to all the processors in a

cluster by the scheduler assuming homogeneous environment by

using static load balancing technique. During the execution it

checks the load value of all the processors which is computed by

using the job queues of every processor in a cluster, at the

scheduler end. The load value of processors in a cluster are

compared during the execution, the job is moved from the heavy

loaded processor to the least loaded one and thus balances load

dynamically in a cluster. A linked list containing the load values

of all processors in a cluster are maintained at the scheduler end

that gets updated during the execution of jobs. In this way load

balancing becomes dynamic and involves movement of data from

one processor to another.

Section 2 briefly explains association rule mining, its parallel

algorithms and Par-MaxClique algorithm. Section 3 introduces

the algorithm designed by us and section 4 describes the analysis

of the proposed algorithm. At the end we give conclusion that

comprise of our future work.

2. ASSOCIATION RULE MINING:

PARALLEL ALGORITHM AND PAR-

MAXCLIQUE ALGORITHM

2.1 Association Rule Mining
Let J = {i1, i2,….,im} be a set of items, D be a set of database

transactions and T is transaction contains set of items such that

JT ⊂ . Each transaction is associated with an identifier, called

TID. Let A, B be set of items and T is said to contain A,

iff TA ⊂ . An association rule is an implication of the form

BA⇒ holds, where JA ⊂ and also JB ⊂ and A∩B is

NULL. The rule BA⇒ holds in transactions set D with

support s, where s is the percentage of both A and B. The rule

has confidence c in the transaction set D if c is the percentage of

transactions in D containing A that also contains B [3]. ARM is

two step process:-

1. Find all frequent itemsets having minimum support.

P. K. Mishra
Department of Computer Science,

 Banaras Hindu University,
Varanasi

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 14

82

2. Generate strong association rules having minimum confidence,

from the frequent itemsets.

The efficiency of Association Rules Mining Algorithms can be

enhanced by reducing the computational cost of association rules

mining in four ways [13]:

• By reducing the number of passes over the database

• By sampling the database

• By adding extra constraints on the structure of patterns

• Through parallelization.

2.2 Parallel association rule mining algorithms
Although Apriori is a simplest sequential ARM algorithm

designed so far but it has some limitations like large number of

candidate itemsets were generated that scans database at every

step.

To overcome these demerits parallel algorithms are designed on

different platforms i.e. shared memory system (SMS) and

distributed memory system (DMS). CCPD (Common Candidate

Partitioned Database) and PCCD (Partitioned Candidate Common

Database) was proposed by M. J. Zaki, M. Ogihara, S.

Parthasarathy and W.Li. [3] for shared memory system. The main

design issue was minimization/elimination of false sharing and the

maintenance of good data locality [3, 4]. In case of CCPD serial

I/O depreciates the performance while I/O overhead and disk

contention for PCCD was unacceptable, resulting in slow-downs

on more than one processor.

Count Distribution (CD), Data Distribution (DD) and Candidate

Distribution (Cand Dist) were proposed by Rakesh Agrawal and J.

Shafer [4, 5, 6]. The main design issue is minimization of

communication and load balancing. Although CD minimizes

communication since only count is exchanged among processors

but it doesn’t utilize memory as the entire hash tree is replicated

on each processor. DD efficiently utilizes system memory but

suffers from high communication overhead because of all to all

broadcast to send the local database portion to every other

processor and is unable to divide the work done on each

transaction at every processor. Candidate distribution provides

balancing of work load of all processors but the cost incorporated

due to redistribution of the database and scanning local database

partition repeatedly. To overcome these limitations of CD, DD,

Candidate distribution algorithms, Non-Partitioned Apriori

(NPA), Simply-Partitioned Apriori (SPA) and Hash-Partitioned

Apriori (HPA) were proposed by T. Shintani and M. Kitsuregawa

[4, 7]. It also has limitations like use of complicated internal

structures and additional computation overheads as compared to

DD, no proper utilization of memory and involves extra

computation overheads.

On the other hand Fast Parallel Mining (FPM) for Distributed

Memory System, developed by D. Cheung and Y. Xiao proposed

FPM [8, 9] improves Count Distribution by adopting two pruning

i.e. distributed and local and generates less number of candidates

but is more sensitive to work load balance than data skewness.

Another limitation is to obtain very high ARM efficiency, first

database should be partitioned using Balanced k-means clustering

and then FPM is executed on it.

After that Intelligent Data Distribution (IDD) and Hybrid

Distribution (HD) were proposed by E-H. Han, G. Karypis and V.

Kumar [6]. IDD too have some disadvantages like it involves use

of complicated structures to partition items. As number of

processors increases the number of candidates assigned to every

processor reduces that leads to two problems (a) With fewer

number of candidates per processor it’s much difficult to balance

the work and (b) the smaller number of candidates gives smaller

HT and less computation work per data that reduces overall

efficiency. Similarly there are limitations associated with HD also

i.e. It involves extra computation to determine number of

processor in a group at every pass.

Parallel association rule mining algorithms for homogeneous system;

uses static load balancing

Shared memory Distributed memory Hierarchical

 system system system

CCPD, PC, APM FPM, IDD, CD, PEAR, PDM, Par-Eclat, Par-Clique,

 DD, SPA, Candi. Distri., HPA, Par-MaxEclat,

 PPAR, P-Cluster, MAFIA, Par-MaxClique

 SPRINT, SLIQ/R, SLIQ/D,

 ScalPrac

Figure 1: List of Parallel association rule mining algorithm developed so

far for homogeneous system that uses staic load balancing technique on

different machines i.e. shared memory and distributed memory system [4]

All algorithms discussed above were implemented on dedicated

homogeneous system and uses static load balancing technique

based on the initial data decomposition for load assignment to the

processors in the system. This is far from reality. A typical parallel

database server has multiple users, and has transient loads. This

calls for an investigation of dynamic load balancing schemes.

Dynamic load balancing is also crucial in a heterogeneous

environment, which can be composed of meta-and super-clusters,

with machines ranging from ordinary workstations to

supercomputers [4].

Kun-Ming Yu, Jiayi Zhou and Wei Chen Hsiao proposed a

parallel and distributed mining algorithm based on FP-tree

structure, Load Balancing FP-Tree (LFP-tree) [11]. The algorithm

divides the item set for mining by evaluating the tree’s width and

depth and proposed a simple and trusty calculate formulation for

loading degree. The experimental results show that LFP-tree can

reduce the computation time and has less idle time compared with

Parallel FP-Tree (PFP-tree) and has better speed-up ratio than

PFP-tree when number of processors grow [11]. But the problem

is that it involves the maintenance of complex tree structure.

Masaru Kitsuregawa and Takahilus Shintani, Masahisa Tamura

and Iko Pramudiono, proposed Parallel Data Mining on large

scale PC Cluster, the new dynamic load balancing methods for

association rule mining, which works under heterogeneous system

[14]. In this, two strategies, called candidate migration and

transaction migration are proposed. Initially first one is invoked.

When the load imbalance cannot be resolved with the first

method, the second one is employed, which is costly but more

effective for strong imbalance.

Parallel association rule mining algorithms for heterogeneous system; uses

dynamic load balancing

Load Balabcing FP-Tree Dynamic load balancing use candidate

 and transaction migration strategies

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 14

83

Figure 2: List of Parallel association rule mining algorithm developed so

far

2.3 Par-MaxClique algorithm
A completely different design characterizes the equivalence class

based algorithms Par-Eclat, Par-MaxEclat, Par-Clique and Par-

MaxClique proposed by Zaki, Parathasarathy, Oghihara and Li

[2]. Par-MaxClique algorithm gives more accurate frequent

itemsets as it uses clique clustering which is more accurate than

equivalence class clustering [2, 10].This method utilizes a vertical

database format, a hybrid search, and generate only the longest

maximal frequent itemsets and some non frequent itemsets. The

algorithms utilize the structural properties of frequent itemsets to

facilitate fast discovery. The items are organized in a subset lattice

search space, which is decomposed into small independent chunks

or sub-lattices, which can be solved in memory. Efficient lattice

traversal techniques are used, which quickly identify all the

frequent itemsets via simple tid-list intersections [2].

Basically Par-MaxClique algorithm is divided into three phases

i.e. initialization phase, asynchronous phase and final reduction

phase [2, 10]. In the initialization phase it generates clusters from

L2 using uniform hypergraph cliques and partition the clusters and

the tid-list among the processors. In the asynchronous phase the

frequent itemsets are computed independently by each processors

from the cliques assigned to it. At last, the final reduction phase

produces the aggregate results and outputs the associations

between the frequent itemsets.

EXAMPLE OF PAR-MAXCLIQUE ALGORITHM
Let database contains A,C,D,T and W four itemsets and 6 transactions

are:-

Tid-list is computed as: T(A) =

{1,3,4,5}; T(C)={1,2,3,4,5,6};

T(D)={2,4,5,6} and

T(W)={1,2,3,4,5}. During the

initialization phase the tid-list is

communicated among the

processors and support counts

for 2-itemsets are read. e.g.

support count for AC ={1,3,4,5} = 4 which is counted by the intersection

of the tid list of A and C. Similarly the support counts of AD, AT, AW,

CD, CT, CW, DT, DW and TW are 2,3,4,3,4,4,3,2,3 and 3 respectively.

Let us assume that minimum support = 3 so AD and DT will be discarded.

Frequent 2- itemsets are :- Equivalence classes are:-

AC,AT,AW,CD,CT,CW,DW,TW [A]: C T W

 [C]: D T W

 [D]: W

 [T]: W

By applying the hypergraph clique for clustering to L2, the set of

potential maximal cliques per equivalence class are generated.

Generated Maximal cliques per class:-

[A]: ACTW, ACW, ATW, ACT

[C]: CDW, CTW

Maximal cliques for equivalence class A

Figure 3: Equivalence class and Uniform Clique clustering

Here, two cliques and equivalence class are generated and are

distributed on the processors to achieve equal load balancing. It is

clear that this algorithm uses static load balancing and distributes

the load among processor without having knowledge of its speed

i.e. purely homogeneous system.

As compared to Count Distribution and Candidate Distribution

parallel algorithm for association rule mining, Par-MaxClique

algorithm outperforms because it utilizes the aggregate memory of

the parallel system, decouples the processors right in the

beginning by repartitioning the database so that each processor

can compute independently, use vertical database layout which

clusters the transactions containing an itemset into tid-list without

scanning the database and computes the frequent itemsets by

simple intersections on two tid-lists without having an overhead

of maintaining complex data structures[2].

Inspite of this it has limitation that it uses static load balancing for

homogeneous system which is far from reality because a database

server has multiple systems with different configurations and

speeds. This needs dynamic load balancing schemes.

We try to deal with the problem of parallel mining of the

association rules in such a heterogeneous environment where

there is no prior knowledge of the processing speeds of the

processors in the system.

3. PROPOSED ALGORITHM
In the proposed algorithm, we initially distribute the load among

the processors assuming that they are of the same speed since we

don’t have prior knowledge of speed of the processors in a

system. During the execution it seems that the speed of one is

faster than the other as it executes the job assigned to it and sits

idle while other one is still busy in executing the job assigned to

it. In that case faster processor will retrieve data from the slower

one and executes the new assigned task. It is version of Par-

MaxClique algorithm for heterogeneous system.

In this algorithm we consider the clusters where host act as a

scheduler and assigns jobs/ task to the processors within it.

 ..…………………

 …… ……. ……

 ….

Figure 4: H1,H2,..Hm represents m number of host and P1,P2,..Pn

represents the n number of processors attached to each cluster

Let us assume that there are m number of host and n number of

processors attached to each host. Here, database is equally

partitioned among the entire host in the system. Initially load

balancing is done in each processor using Par-MaxClique

algorithm for homogeneous system i.e. all processors gets equal

work load. We also maintain job queue with each processor which

keeps track of the number of jobs assigned to the processor for

execution and also maintain a linked list at the host i.e. scheduler

end that keep tracks of the loads of all the nodes in a cluster. This

list is adjusted whenever job is scheduled at a node or job

completes at the assigned node. The load of a processor is the

number of jobs in its job queue.

Transaction

s

A C D T W

 T1 1 1 0 1 1

T2 0 1 1 0 1

T3 1 1 0 1 1

T4 1 1 1 0 1

T5 1 1 1 1 1

T6 0 1 1 1 0

J1 J2 J3 …………

C W
W C

T
W

T
C

A T
A A A

H1

P1

H2
Hm

m

P1
P1

P2
Pn

P2 Pn
P2

Pn

P1

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 14

84

Initialization Phase

Figure 5: Job queue of processor

 Points to the least loaded processor of the cluster

Figure 6: Linked list maintained by the host/scheduler

Table 1: Pseudo code for parallel association rule mining

algorithm for heterogeneous environment

Begin

/* Initialization Phase */

1. Generate L2 from 2-itemset support counts

2. Generate clusters from L2 using uniform hypergraph

 cliques

3. Partition clusters among the processors

4. Scan local database partition

5. Transmit relevant tid-list to other processors

6. Received tid-list from other processors.

7. First, we compute the job queue and linked list of each

processor and scheduler respectively. Initially, all processor have

the same load value since jobs are equally distributed among the

processors as in Par-MaxClique algorithm for homogeneous

system.

/* Asynchronous Phase */

8. For each assigned cluster C2, compute Frequent

 Itemsets

9. During execution, each processor updates its job queue

and the linked list at the scheduler is also gets updated

accordingly.

/* Communication OR Complete and offer Phase */

10. If job queue of all processors are empty then go to step

 13

11. Else

Begin

The scheduler compares the load value of all the processors

within the cluster and if any difference is found then perform the

following :-

(i) Job from heavy loaded processor say Pi is taken and gets

assigned to least loaded processor say Pj.

(ii) Job queues of the Pi and Pj are adjusted accordingly.

(iii) The link list at the scheduler is also adjusted

accordingly.

12. Go to asynchronous phase i.e. step 8.

End

/* processing completes at each processor and then comes final or

reduction phase */

13. Aggregate Results and Output Associations

14. STOP

Initially it is assumed that all processors are of same speed so load value

of each processor which is maintained in the linked list at scheduler and

job queue of all processors has same value

 Asynchronous Phase

 YES If job queue

 all processors are empty?

 Agg. Result

 & Output

 Associations

 NO

 The linked list at the

 scheduler is checked. If there is NO

 difference between the load value

 of processors ?

 YES

 -Data movement from heavy loaded Pi to least loaded Pj

 -Job queue of both the Pi and Pj is updated

 -Linked list of load value at scheduler is updated

Figure 7: Flowchart of the proposed algorithm

4. ANALYSIS OF PROPOSED

ALGORITHM
The initialization phase and asynchronous phase remains same as

for Par-MaxClique algorithm for homogeneous system [4] that

uses static load balancing scheme. Because this algorithm utilizes

the aggregate memory of the parallel system, decouples the

processors right in the beginning, uses vertical database layout for

clustering by performing simple intersection on two tid-lists and

avoid the generation of all the subsets of a transaction and

checking them against the candidate hash tree during support

counting [2]. And also, since we are not aware of the processing

speeds of the processors prior execution so load balance is same

as in the case of Par-MaxClique parallel association rule mining

algorithm for homogeneous system initially.

In the communication step i.e. complete and offer phase the

processing speeds of processors are compared and checked by

maintaining the linked list at the scheduler and the job queue at

each of the processor respectively. If a difference in the load value

of the processors is found, it means there is speed mismatch and

immediately the work is migrated from heavy loaded processor to

n1 n2 n3 ………

H1

STOP

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 14

85

the least loaded one. The decrease in the processing speed of the

processor in the system won’t affect the efficiency of the whole

system as its work gets executed by the least loaded processor or

processor with empty job queue.

It assigns job to the processors in a cluster dynamically and thus

maintains the load balance in a heterogeneous system. There is

minimum communication and data movement involved between

the processors because it’s a scheduler who checks the load

balance of the processors and involved in the data movement

between the desired processors. This minimizes the inter

processors communications.

5. CONCLUSION
In this algorithm, we raised the issue of parallel association rule

mining in heterogeneous environment where no prior knowledge

of relative processing speeds of the processors are known or say

assumed. It has good features of the Par-MaxClique parallel

association rule mining algorithm for homogeneous environment

which outperforms count distribution, data distribution and

candidate distribution algorithm for parallel association rule

mining. It also exploits vertical database layout, asynchronous

counting process and dynamic load balancing technique that leads

to efficient utilisation of the processors and enhance the

performance of the heterogeneous system with minimum

communication cost involvement.

In future, we try to perform dynamic load balancing in between

the clusters and minimize the communication delay to enhance the

performance of the system and will do detailed analysis of the

proposed algorithm. Also we will try to incorporate fault tolerance

in the system.

6. REFERENCES

[1] Masahisa Tamura and Masaru Kitsuregawa, “Dynamic Load

Balancing for Parallel Association Rule Mining on

Heterogeneous PC Cluster System”, Proceedings of the 25th

VLDB Conference, Edinburgh, Scotland, 1999, pp. 163.

[2] Mohammed J. Zaki, Srinivasan Parthasarthy, Mithsunori

Ogihara and Wei Li, “Parallel Algorithms for Discovery of

Association Rules”, Data Mining and knowledge Discovery,

© 1997 Kluwer Academic Publishers, pp. 360, 364.

[3] M. J. Zaki, S. Parthasarathy and W. Li., “Parallel data mining

for association rules on shared memory multi-processors”. In

Supercomputing96, November 1996, Pittsburg, pp. 17-22.

[4] M. J. Zaki, “Parallel and Distributed Association Mining: A

 Survey”, IEEE, 1999, pp. 2-3, 10-13.

[5] R. Agrawal and J. Shafer, “Parallel mining association rules”,

IEEE Trans. On Knowledge and Data Engineering, December

1996, 8(6): pp. 962-969.

[6] E-H. Han, G. Karypis and Vipin Kumar, “Scalable parallel

data mining for association rules”, In ACM SIGMOD Conf.

Management of Data, May 1997, pp. 279-284.

 [7] T. Shintani and M. Kitsuregawa, “Hash based parallel

algorithms for mining association rules”. In 4th Intl. conf.

Parallel and Distributed Info. Systems, December 1996, pp.

20-25.

[8] D. Cheung and Y. Xiao, “Effect of data skewness in parallel

mining of association rules”, in 2nd Pacific-Asia Conference

on Knowledge Discovery and Data Mining, April 1998, pp.

51-55.

[9] Arun k. Pujari, A Book on Data mining techniques,

Universities Press (India) Ltd., Hyderabad, 2001, First

edition, pp. 94-100.

[10] Mohammed J. Zaki, “Parallel and Distributed Data Mining:

An Introduction”, C.-T. Ho (Eds.): Large-Scale Parallel Data

Mining, ©Springer-Verlag Berlin Heidelberg 2000. LNAI

1759, pp. 9.

[11] Kun-Ming Yu, Jiayi Zhou and Wei Chen Hsiao, “Load

Balancing Approach Parallel Algorithm for Frequent Pattern

Mining”, V. Malyshkin (Ed.): PaCT 2007. © Springer-

Verlag Berlin Heidelberg 2007.LNCS 4671, pp. 623–631.

[12] Jochen Hipp, Ulrich G¨untzer, Gholamreza Nakhaeizadeh,

“Algorithms for Association Rule Mining – A General

Survey and Comparison”, SIGKDD explorations copyright ©

2000, ACM SIGKDD, July 2000, Volume 2, Issue 1, pp. 58-

61.

[13] Sotiris kotsiantis, Dimitris kanellopoulos, “Association Rule

Mining: A Recent Overview”, GESTS International

Transactions on Computer science and Engineering, Vol. 32

(1), 2006, pp. 73.

[14] Masaru Kitsuregawa and Takahilus Shintani, Masahisa

Tamura and Iko Pramudiono, “Parallel Data Mining on

large scale PC Cluster”, H. Lu and A. Zhou (Eds.): WAIM

2000, © Springer-Verlag Berlin Heidelberg 2000. LNCS

1846, pp. 15–26, 2000

