
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 14

43

NTR - New Test Runner, a Test Regression Runner and
Analyzer

 Nitin Rastogi Mona Jain Saran Prasad
 Staff Program Analyst Sr Staff Program Analyst IT Director

Cadence Design Systems, Inc Cadence Design Systems, Inc Cadence Design Systems, Inc

ABSTRACT
In this paper, we describe the New Test Runner, a test regression

and analyzer for Improving Testing capabilities and its

implementation in form of a working system across various

BU’s (Business Units) in Cadence.

1. INTRODUCTION
In the prevailing competitive environment, companies are facing

tremendous market pressures to launch defect-free products in a

timely manner. Cadence has an objective of reducing the

number of CCRs/Defects filled by customers to 50% by year

2010. One of the ways to achieve this is by testing the products

in an effective and efficient manner and catch/fix the bugs

before they are reported by customers.

Experience has shown that as software is developed,

reemergence of faults is quite common. Sometimes it occurs

because a fix gets lost through poor revision control practices (or

simple human error in revision control), but often a fix for a

problem will be "fragile" i.e. it fixes the problem in the narrow

case where it was first observed but not in more general cases

which may arise over the lifetime of the software. Finally, it has

often been the case that when some feature is redesigned, the

same mistakes will be made in the redesign that were made in

the original implementation of the feature.

Therefore, in most software development situations it is

considered a good practice that when a bug is located and fixed,

a test that exposes the bug is recorded and regularly retested

after subsequent changes to the program. Although this may be

done through manual testing procedures or using programming

techniques, it is often done using automated testing tools.

Regression tools were introduced in order to provide a solution

for maintaining version quality along the life cycle of a product.

However, in most cases they suffer from insufficient ability to

configure tests and reuse them, huge maintenance overhead,

failure to supply sufficient debug aids, and above all limited

results analysis capabilities. NTR has Failure Analysis

capabilities and thus is an innovative environment for regression

tools results analysis.

NTR is based on the Incisive Enterprise Manager platform. This

paper focuses on presenting NTR major capabilities: Advanced

Failure Analysis, Reports Generation and Debug Support.

For the past few years different products have been tested using

NTR regression tool which has optimized their development

process and spared the tedious work of regression tests results

analysis.

2. PROBLEM STATEMENT
During the life cycle of a product, the regression tests and

harness tools used to validate the product evolve from fairly

simple components to complex and hard-to-manage ones. As the

validation of a product generally consumes many resources, any

improvement in the regression testing infrastructure tends to pay

off quickly.

Until now, solutions were confined to the level of

implementation and execution. These solutions were usually

based on predefined templates or scripts that implement new

tests. In most cases, they were successful, because 99% of the

tests in a regression suite share very few execution flows. No

attempt was made to address challenges beyond execution. In

most cases, failure analysis ended with a summary of failed tests

per group. Configurability typically focused solely on the

environment setup. Test reuse was barely considered.

Maintainability and extensibility of tests was somehow

addressed by having common templates and scripts, but there

was no way to track or enforce correct usage.

The current systems/tools that are being used internally lack

exhaustive failure analysis capabilities of regression results. This

creates a situation for the engineers where they end up fixing the

same issue in the multiple runs. There is no way to categorize

the failures which will help the engineers to identify the cause in

good time and apply the fixes quickly. In the current

environment there is no automatic way of comparing the results

of the multiple sessions which are very important when

benchmarking a regression or checking what has changed

talking of test results.

A good regression suite should also have some way to help the

engineers to debug the failures and fix them with ease. The

difficult part in debugging the failures is to generate the

execution environment and validating all the stages of the run.

Different groups follow a different approach of executing their

testcases and their verification mechanisms. There is no standard

procedure of writing a flow of events in the regression process.

Other than all the important features provided by any regression

tool, standard/customized reports should be generated such that

it helps different audience. Sometimes the need of different kind

of reports differs from person to person. For example, managers,

validation engineers, developers might require different data

from the result of regression.

In a company like Cadence where code is protected under

different version control systems, it is highly desirable to have

systems which can supports and integrates smoothly with

version control systems such as Clearcase and CVS. The volume

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 14

44

of testcases running under regressions are sometimes so large

that it burdens the resource on which they are executing. In such

scenarios distributed computing is a way to make maximum and

effective utilization of the existing resources. This will also

reduce the total execution time of the regression.

In Cadence environment wide variety of verification products

and tools are used to test a product under testing, hence the

regression environment should be such that it supports the

needed tools. It is always good to have regression tools which

require less effort in managing the testcases and their setup.

There is a need to find a quick way of running testcase

regressions and it can be achieved by reusing the old test flows.

Another issue with most of the standard testing tools used in

Cadence is that once the testing is done and failures are known

there is no way to record information about the failures or assign

ownerships.

In our later sections we will talk about how to deal with the

problems stated above.

3. OVERVIEW
New Test Runner (NTR) has been developed internally, and is

based on the Incisive Enterprise Manager platform. NTR

addresses the challenge of making regression testing simple,

repeatable, automated and most important easy to manage. NTR

encapsulates hierarchical test case management, multi-user

support, automated test execution and results analysis to

facilitate easy testing.

NTR categorizes regression results in groups. These groups

classify failures according to their cause instead of providing

each failure out of context. The major advantage of this

approach is eliminating redundant work on common failures.

Most regression tools supply only a pass / fail result for each

test. However, NTR generates a detailed report on each test

failure cause. NTR FC approach supplies a framework for

clustering multiple test results with a common failure cause. A

cluster can be viewed as a group of tests with the same failure

cause. NTR may filter some of the information about the failure

cause so that the common aspects can be easily identified. The

importance of clustering different tests with the same failure

cause is to identify a single problem, which most likely can be

fixed with a single bug fix.

 Figure 1. Features of NTR.

The architecture of NTR is such that it supports the existing LSF

deployment matrix of Cadence. It can be easily integrated with

different LSF configurations for different clusters. This setup

enables regressions to run on distributed environment and also

takes care of job scheduling overheads.

NTR also supplies traditional tests management features. The

most important one is version quality comparison mechanism

for identifying degradations. As a regression tool NTR provides

a way to analyze if a problem is new or exists in previous

versions. In order to supply this functionality, NTR has a

compare mechanism that produces a compare status for each

problem.

When NTR identifies a new problem, the regression manager

needs to classify it. Classification can be done by attaching

information for the problem. As part of classification, the

regression manager identifies the owner of the failure and

assigns the problem to him. In order to execute this task, NTR

provides two solutions.

1 The notes mechanism contains the ability to easily attach

information to problems after they occur.

2 The failure category mechanism lets user define a problem,

and each test that matches the failure category, is attached

with all the available information for this category. The

failure categories are transferred from regression to

regression. This feature optimizes the time spent by

regression manager in analyzing failures. A failure, which

is attached to an existing category, is considered as a

known failure.

NTR also helps the user to isolate the simplest test from the

problem cluster in order to debug the problem. In addition, the

NTR supplies tools for running the failed tests under the user

environment with the test debugger utility.

After finishing a regression run, the NTR produces a report

specifying all the problems encountered in this run, in addition

to available information and compare status of each identified

problem. The report mechanism supplied wide functionality in

order to achieve maximum flexibility and meet the needs of

various users.

4. IMPLEMENTATION DETAILS
NTR is a layer over vManager and uses it for execution of the

testcases. The input to NTR is the VSIF file that contains the

attributes and the test definitions. Once the vSif file is read,

NTR creates a directory for each test in its own workspace and

copies necessary files to it. LSF is used for distributing the jobs

to the server farm machines. Results from the testcase execution

are sent back to the workspace and parsed to generate a

Verification Session Output File (vSof) file.

These vSofs are available as web reports.

4.1 Regression Definition

A regression definition consists of three major parts:

• Basic test definitions

• Configuration and environment setup

• Test selection

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 14

45

4.1.1 Basic Test Definitions
A pure test definition looks as follows:

//Test definition file: socfv.vsif

 test socfv_flow

 {

 home: /grid/ilab/vol07/NTR/vsifs;

 simulate_script:"run.csh";

 };

In this case the test definition contains the path of the testcase

directory and the simulate script which executes the actual

testcase. In a single verification session input file (vSif file),

multiple tests with different properties can be defined. No

configuration specification takes place at this level. Instantiating

the test definitions in the vSif and completing the required

configuration is done at a higher level of hierarchy.

4.1.2 Configuration and Environment Setup
 Configuration covers a wide range of things. NTR gives

flexibility to configure different properties of test environment.

Example:

//Configuration file: socv_flow.vsif

group SOCFV_KIT

 {

 home_root:/grid/ilab/vol07/NTR/vsifs;

 display: ANY_DISPLAY;

 scan_script: specman.flt;

 precious_files: *;

 test socfv_flow

 {

 home: socvflow;

 simulate_script:"run.csh";

 };

 };

In the above example, the socv_flow.vsif file contains

environment setup that would be applicable for the entire group

of testcases. The testcase execution will be based on these

definitions. There can be several levels of configurations and the

configurations related to tool version are likely to be specified

higher in the hierarchy, as versions might change frequently.

4.1.3 Test Selection
A common requirement of regression testing environments is to

enable flexible selection of tests from a test suite. The two main

motivations for that are:

• Product restrictions – A typical example is restrictions on the

support matrix of the products being validated. Typical matrices

are OS and cross-product version support. Maintaining the

support matrix might become demanding if it is not done in a

central location and in a top-down manner.

• Feature-test correlation – Accurate correlation reduces the

required computing resources. Shortening the turnaround time

from launch of regression session to final results provides a

significant productivity increase.

It lets us define the requested subset of tests in a way that

governs the regression definition while avoiding specifications

per tests or group of tests. The knowledge of test definitions

enables accurate and straightforward test selection by evaluating

conditions in terms of properties. The following example

reflects the lack of support for the 64 bit platform:

session platforms {

refine: not ($attribute(bits) == 64);

};

NOTE: Test selection is done at the regression session level,

which is orthogonal to the test and configuration definitions. The

NTR ability to support a fine granularity of test selection enables

three layers of test selection, each layer adding its own

restrictions:

1. Project

2. Feature

3. Developer

At the project level, selections are mainly driven by the support

matrix. At the feature level, selections focus on tests that

exercise a specific feature. At the developer level, selection

depends on current development requirements.

4.2 Failure Analysis

Failure analysis is an iterative effort, consuming significant

human resources. Good and well-defined procedures are

required to perform failure analysis efficiently.

Fundamentally, failure analysis should focus on problems and

not on failed tests. This is true from both management and

development points of view. The number of problems and their

severity uncovered by a regression suite is much more

significant than the number of failed tests. To facilitate better

analysis, runtime information (like the OS version used to

execute the test and failure descriptions) should be gathered and

added to the set of test properties. Having a comprehensive set

of runtime and behavior properties leverages the analysis

capabilities of tools such as vManager.

4.2.1 Classing Failures

Classing failures supports a focus on problems rather than failed

tests. A failure class definition is a problem definition that

serves the need to characterize a failure and apply it to the entire

regression suite. Defining a failure class involves:

• Defining the signature of a problem, possibly using the failure

description, and even the conditions that cause it.

• Assigning relevant information to the problem, like owner,

status, etc.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 14

46

A failure class is like an empty bucket waiting to be filled with

failed tests that meet the bucket terms. As such, failure class

definition is useful for random driven simulations and sporadic

failures, where the original test definitions cannot be recognized

upfront as failures.

With NTR, developers can define meaningful and precise failure

classes. For example, you could have a failure class for a

specific simulator version running in a specific mode as follows:

fc warm_restore {

condition:

 ($attribute(simulator) == ncsim) and

 ($attribute(link_mode) == static) and

 ($attribute(os) == solaris) and

 ($attribute(bits) == 32) and

 ($attribute(failure_description) == "INTERNAL ERROR");

failure_comment: Occurs in IUS5.8 earlier versions;

failure_defect: 910976; //PCR number

failure_status: defect;

};

NTR uses its knowledge of test properties to help developers

define the failure class condition. NTR automatically detects the

set of attributes that share the same value in a group of failed

tests.

The benefits of classing failures are many and varied. Classing

failures can be used to control regression execution, for

example, by rerunning particular failure classes or by

performing automatic problem definition before analysis takes

place. Those and other aspects should to be covered by other

papers.

4.2.2 Annotating Failures

In some cases, defining a problem by classing failures is not

needed. This could happen when a problem is very unique or

temporary. Nevertheless, it might still be helpful to annotate

such a failure, as done using NTR. NTR not only allows

annotation of tests but also the propagation of test annotations

(as most annotations must be propagated from regression to

regression in order to maintain the annotations). The question is

how to identify corresponding tests in the results of two different

regressions. In other words, what defines a test instance? The

answer is not trivial because the same test with the same name

can be used by different configurations (see Section 4.4 “Top-

Down Configurability and Test Reusability”). To accommodate

that, the properties that define a test are identified, and finding

corresponding tests comes down to identifying tests with the

same values for properties.

4.2.3 Comparing Regression Results

The ability to find corresponding tests in different regressions

also enables comparison of two regressions and identification of

new failures, new passed tests, and so on. In a regression suite

with failures, this is a powerful tool. It can serve as a Go-NoGo

gauge. Having no new failures in a regression generally

indicates high quality of the product under development. The

same technique may also be used to compare performance

results, CPU, or memory.

4.3 Test Banks

It is a fairly common practice to split a regression suite into

distinct groups, or “banks”, of tests, all sharing something in

common. Usually, test banks validate different aspects of a

product. This practice is useful as it captures the essence of the

tests. NTR supports this methodology in two ways:

• Hierarchical structure of tests with meaningful group names –

NTR also enables viewing of tests in an expandable tree

structure, with zooming in and out, rather than a flat listing of

groups.

• Specifying the scope of tests and group of tests – For example,

the following group of tests has a verilog scope:

group ports {

scope: verilog;

#include verilog_ports.vsif

};

One test can have multiple scopes, which can be useful for

various purposes, like test selection. Despite the advantage of

having test banks, there are two fundamental problems with it:

• Test banks are black boxes that do not provide knowledge

about internal tests. Hence using them negates most of what we

presented in this paper.

• Test banks are defined statically by the regression suite

moderator. However, in most cases, tests have multiple aspects

and should be used in various contexts.

4.4 Top-Down Configurability & Reusability

The hierarchical structure of regression definition is used to

implement top-down configurability and test reusability. To

deliver a comprehensive solution, three features are required:

• Selecting Tests at the Group Level

• Forward-Referencing to Properties

• Conditional Value Assignment

4.4.1 Selecting Tests at the Group Level
The idea is to apply a configuration to a subset of tests. Those

tests are typically instantiated by multiple configurations. Each

configuration might apply to different set of tests within a group.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 14

47

4.4.2 Forward-Referencing to Properties

A top-down configuration might require the ability to govern

property values from the top level. However, in some cases a

property value depends on a lower-level test definition. Forward

referencing addresses that. The following example demonstrates

a forward-reference to a test_name property used to define the

log_file property of IFV.

group IFV {

product: ifv;

log_file: $attribute(test_name)_ifv.log;

#include top.vsif;

};

Figure 2. Top-Down configurability and
reusability.

4.4.3 Conditional Value Assignment
Conditional value assignment is the opposite requirement to

forward-referencing, which is, defining a test property according

to a top configuration. The following example shows how the

hdl_compile_args property is conditionally assigned according

to

the value of the simulator property. The simulator is defined at a

higher level of hierarchy.

test memory {

hdl_compile_args: $condition($attribute(simulator)==ncsim);

hdl_files: mem.v;

};

4.5 Test Suite Management

Managing a regression suite can be difficult, especially when no

documentation is available and the size of the regression suite is

large. Using an analysis tool that reads the regression definition

(vSif), anyone can analyze the content of the regression suite

without prior knowledge about the structure of the regression

suite. Once the regression definition is read, queries can be used

to understand the content of the regression suite.

4.6 Test Maintainability and Extensibility

The fact that a test definition is kept solely at the declarative

level dramatically reduces the required maintenance effort.

Changing an execution flow or adding a new property or

property value barely influences existing declarations. In

addition, the logic that translates property values into execution

is centralized and can be adjusted to make changes that affect all

tests. Moreover, products from the same family might share

common execution logic implementation. Therefore, a single

change can apply to all tests for multiple products.

4.7 Debug Abilities

NTR as a concept can be used to implement various debugging

aids. So far we have identified the following possibilities:

• Identification of the simplest test that represents a problem –

The simplest test is chosen according to its properties. A limited

number of files and tools, short execution duration, and other

properties contribute to test simplicity.

• Rerunning failed tests

• Interactive or verbose reruns – The fact that the lower level

execution logic is decoupled from the test definition makes it

easy to support debug flows that are general enough to address

all product tests.

• Using various versions of tools and comparing previous results

with current results

4.8 Easy Definition of Tests

The process of adding new tests to regression suites also benefits

from NTR. Developers focus on test properties. They do not

need to know much about test execution. Developers also do not

need to take into consideration reuse of tests (with the exception

of any need for conditional value assignment) Moreover,

developers have a compiler that constantly checks the test

definition, producing informative errors and warnings and

thereby making the NTR a user-friendly environment for test

definition.

5. CONCLUSION
NTR tool provides an edge to software validation teams through

its capability of failure analysis and classification. It also gives

testcase comparison in multiple regressions and provides debug

utility to analyze, fix and rerun the failures.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 14

48

6. DEFINITIONS, ABBREVIATION AND

ACRONYMS
Acronym Description

NTR New Test Runner

LSF Load Sharing Facility

FC Failure Classification

VSIF Verification Session Input File

VSOF Verification Session Output File

7. ACKNOWLEDGEMENTS
Name Description

Yair Nergaon Concept Owner

8. REFERENCES

[1] Automated verification management with extended

language and simulation support. Available link:
http://www.cadence.com/products/fv/enterprise_manager/p

ages/default.aspx

[2] gridMatrix

JRL (Job Request Language) available link:
http://www.isi.edu/~deelman/wfm-rg/pulsipher_06_04.ppt

9. BIOGRAPHY OF THE AUTHORS

Saran Prasad

Saran is working as IT Director at Cadence, since 2002. He is

postgraduate in Electronics an MBA and alumni of IIMC. He

has industry experience of over 19 years. Saran is currently

perusing his PhD in software testing domain.

Nitin Rastogi

Nitin is working as Staff Program Analyst in Cadence Design

Systems, Inc. since 2001. He is graduate in computer science

and a member of IIMB alumni and leading the test automation

team in the present company. Nitin has submitted papers in the

Quality conferences inside Cadence as well as externally and is

helping the Product Validation team for their test automation

needs.

Mona Jain

Mona has around 13 years of industry experience and is

currently playing the role of a Technical Manager in the

Engineering Tools team in Cadence. Previous to Cadence she

was working in the role of J2EE Technical Architect and

Development manager. Mona has also worked in United States

for 6 years with various large corporate in both Microsoft as

well as J2EE technologies. Mona Jain completed her MCA from

Pune University in 1995

