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ABSTRACT 

Many researchers invented ideas to generate the frequent itemsets. 

The time required for generating frequent itemsets plays an 

important role. Some algorithms are designed, considering only 

the time factor. Our study includes depth analysis of algorithms 

and discusses some problems of generating frequent itemsets from 

the algorithm. We have explored the unifying feature among the 

internal working of various mining algorithms. Some 

implementations were done with KDD cup Dataset to explore the 

relative merits of each algorithm. The work yields a detailed 

analysis of the algorithms to elucidate the performance with 

standard dataset like Adult, Mushroom etc. The comparative study 

of algorithms includes aspects like different support values, size 

of transactions and different datasets. 
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1. INTRODUCTION 
In recent years the size of database has increased rapidly. This has 

led to a growing interest in the development of tools capable in 

the automatic extraction of knowledge from data. The term data 

mining or knowledge discovery in database has been adopted for a 

field of research dealing with the automatic discovery of implicit 

information or knowledge within the databases. The implicit 

information within databases, mainly the interesting association 

relationships among sets of objects that lead to association rules 

may disclose useful patterns for decision support, financial 

forecast, marketing policies, even medical diagnosis and many 

other applications.  

The problem of mining frequent itemsets arose first as a sub-

problem of mining association rules [9]. Frequent itemsets play an 

essential role   in many data mining tasks that try to find 

interesting patterns from databases such as association rules, 

correlations, sequences, classifiers, clusters and many more of 

which the mining of association rules is one of the most popular 

problems. The original motivation for searching association rules 

came from the need to analyze so called supermarket transaction 

data, that is, to examine customer behavior in terms of the 

purchased products. Association rules describe how often items 

are purchased together. For example, an association rule “beer, 

chips (80%)” states that four out of five customers that bought 

beer also bought chips. Such rules can be useful for decisions  

concerning product pricing, promotions, store layout and many 

others. 

2. PROBLEM STUDY 

2.1. Need of Frequent Itemset Mining 

Studies of Frequent Itemset (or pattern) Mining is acknowledged 

in the data mining field because of its broad applications in 

mining association rules, correlations, and graph pattern constraint 

based on frequent patterns, sequential patterns, and many other 

data mining tasks. Efficient algorithms for mining frequent 

itemsets are crucial for mining association rules as well as for 

many other data mining tasks. The major challenge found in 

frequent pattern mining is a large number of result patterns. As the 

minimum threshold becomes lower, an exponentially large 

number of itemsets are generated. Therefore, pruning unimportant 

patterns can be done effectively in mining process and that 

becomes one of the main topics in frequent pattern mining. 

Consequently, the main aim is to optimize the process of finding 

patterns which should be efficient, scalable and can detect the 

important patterns which can be used in various ways. 

3. RELATED WORK 
 

3.1. FP-Growth Algorithm 
The most popular frequent itemset mining called the FP-Growth 

algorithm was introduced by [5]. The main aim of this algorithm 

was to remove the bottlenecks of the Apriori-Algorithm in 

generating and testing candidate set. The problem of Apriori 

algorithm was dealt with, by introducing a novel, compact data 

structure, called frequent pattern tree, or FP-tree then based on 

this structure an FP-tree-based pattern fragment growth method 

was developed. FP-growth uses a combination of the vertical and 

horizontal database layout to store the database in main memory. 

Instead of storing the cover for every item in the database, it 

stores the actual transactions from the database in a tree structure 

and every item has a linked list going through all transactions that 

contain that item. This new data structure is denoted by FP-tree 

(Frequent-Pattern tree) [4]. Essentially, all transactions are stored 

in a tree data structure. The definition, according to [5] is as 

follows: 

Definition (FP-tree): A frequent pattern tree is a tree structure 

defined as 

1.It consists of one root labeled as “root”, a set of item prefix sub-

trees as the children of the root, and a frequent-item header table. 
2.Each node in the item prefix sub-tree consists of three fields: 

item-name, count and node-link, where item-name registers which 

item this node represents, count registers the number of 

transactions represented by the portion of the path reaching this 

node, and node-link links to the next node in the FP-tree carrying 
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the same item-name, or null if there is none. 3.Each entry in the 

frequent-item header table consists of two fields, I. item-name and 

II. head of node-link, which points to the first node in the FP-tree 

carrying the item-name.The algorithm FP-tree[5] is as below: 

Algorithm 1 (FP-tree construction): 

Input: A transactional database DB and a minimum 

support threshold. 

Output: Its frequent pattern tree, FP-tree 

Method: The FP-tree is constructed in the following 

steps: 

1.Scan the transaction database DB once. Collect the set 

of frequent items F and their supports. Sort F in support 

descending order as L, the list of frequent items. 

2.Create the root of an FP-tree, T, and label it as “root”.  

 

For each transaction Trans in DB do the following: 

 

1.Select and sort the frequent items in Trans according to the 

order of L. Let the sorted frequent item list in Trans be [p | P], 

where p is the first element and P is the remaining list. Call 

insert_tree([p | P], T). 2.The function insert_tree([p | P], T) is pe- 

rformed as follows. If T has a child N such that N.item-name = 

p.item-name, then increment N’s count by 1; else create a new 

node N, and let its count be 1, its parent link be linked to T, and its 

node-link be linked to the nodes with the same item-name via the 

node-link structure. If P is nonempty, call insert_tree(P, N) 

recursively. 

 

3.2. Broglet’s FP-Growth  
Broglet implemented an efficient FP-Growth[1] algorithm using C 

Language. The FP-growth in his implementation preprocesses the 

transaction database according to [1] is as follows: 

1.In an initial scan the frequencies of the items (support of single 

element item sets) are determined. 2. All infrequent items, that is, 

all items that appear in fewer transactions than a user-specified 

minimum number are discarded from the transactions, since, 

obviously, they can never be part of a frequent item set. 3. The 

items in each transaction are sorted, so that they are in descending 

order with respect to their frequency in the database. 

 

3.3. Goethals FP-Growth 
Goethal also implemented the FP-Growth algorithm. This 

implementation is based on the Fp-growth algorithm [5]. Consider 

a transaction database and a minimal support threshold of 2. First, 

the supports of all items is computed, all infrequent items are 

removed from the database and all transactions are reordered 

according to the support descending order resulting in the 

example transaction database in Table 1. The FP-tree for this 

database is shown in Figure 1. 

 

Table  1: An example preprocessed transaction database. 

 

Tid            X 

100 {a, b, c, d, e, f} 

200 {a, b, c, d, e} 

300 {a, d} 

400 {b, d, f} 

500 {a, b, c, e, f} 

 

The FP-Growth tree will be constructed as below figure 1. 

 

 

Figure 1: An example of a FP-tree. 

 

3.4 Eclat 
Eclat [11, 8, 3] algorithm is basically a depth-first search 

algorithm using set intersection. It uses a vertical database layout 

i.e. instead of explicitly listing all transactions; each item is stored 

together with its cover (also called tidlist) and uses the 

intersection based approach to compute the support of an itemset. 

In this way, the support of an itemset X can be easily computed by 

simply intersecting the covers of any two subsets Y, Z ⊆ X, such 

that Y U Z = X. It states that, when the database is stored in the 

vertical layout, the support of a set can be counted much easier by 

simply intersecting the covers of two of its subsets that together 

give the set itself. 

 

The Eclat algorithm is as given below.  

 

Input: D, σ, i ⊆ I 

Output: F[I](D, σ) 

1: F[I] :={} 

2: for all I Є I occurring in D do 

3: F[I] := F[I] ∪ {I ∪ {i}} 

4: // Create D
i
 

5: D
i
: = {} 

6: for all j Є I occurring in D such that j>I do 

7: C := cover({i}) ∩ cover({j}) 

8: if |C| >= σ then 
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9: D
i
: = D

i
 ∪ {(j, C)} 

10: end if 

11: end for 

12: //Depth-first recursion 

13: Compute F[I ∪ {i}](D
i
, σ) 

14: F[I] := F[I] ∪ F[I ∪ {i}] 

15: end for 

 

In this algorithm each frequent item is added in the output set. 

After that, for every such frequent item i, the i-projected database 

Di is created. This is done by first finding every item j that 

frequently occurs together with i. The support of this set {i, j} is 

computed by intersecting the covers of both items. If {i, j} is 

frequent, then j is inserted into Di together with its cover. The 

reordering is performed at every recursion step of the algorithm 

between line 10 and line 11. Then the algorithm is called 

recursively to find all frequent itemsets in the new database Di. 

 

It essentially generates the candidate itemsets using only the join 

step from Apriori. Again all the items in the database is reordered 

in ascending order of support to reduce the number of candidate 

itemsets that is generated, and hence, reduce the number of 

intersections that need to be computed and the total size of the 

covers of all generated itemsets. Since the algorithm doesn’t fully 

exploit the monotonicity property, but generates a candidate 

itemset based on only two of its subsets, the number of candidate 

itemsets that are generated is much larger as compared to a 

breadth-first approach such as Apriori. As a comparison, Eclat 

essentially generates candidate itemsets using only the join step 

from Apriori [6], since the itemsets necessary for the prune step 

are not available. 

  

A technique that is regularly used is to reorder the items in 

support ascending order to reduce the number of candidate 

itemsets that is generated. In Eclat, such reordering can be 

performed at every recursion step in the algorithm. Also that at a 

certain depth d, the covers of at most all k-itemsets with the same  

k − 1-prefix are stored in main memory, with k < d. Because of 

the item reordering, this number is kept small. 

 

3.5 SaM Algorithm 
The SaM (Split and Merge) algorithm established by [10] is a 

simplification of the already fairly simple RElim (Recursive 

Elimination) algorithm. While RElim represents a (conditional) 

database by storing one transaction list for each item (partially 

vertical representation), the split and merge algorithm employs 

only a single transaction list (purely horizontal representation), 

stored as an array.  

 

This array is processed with a simple split and merge scheme, 

which computes a conditional database, processes this conditional 

database recursively, and finally eliminates the split item from the 

original (conditional) database. 

SaM preprocesses a given transaction following the steps below: 

1. The transaction database is taken in its original form. 2. The 

frequencies of individual items are determined from this input in 

order to be able to discard infrequent items immediately. 3. The 

(frequent) items in each transaction are sorted according to their 

frequency in the transaction database, since it is well known that 

processing the items in the order of increasing frequency usually 

leads to the shortest execution times. 4. The transactions are 

sorted lexicographically into descending order, with item 

comparisons again being decided by the item frequencies; here the 

item with the higher frequency precedes the item with the lower 

frequency. 5. The data structure on which SaM operates is built by 

combining equal transactions and setting up an array, in which 

each element consists of two fields: 

An occurrence counter and a pointer to the sorted transaction 

(array of contained items). This data structure is then processed 

recursively to find the frequent item sets. The basic operations of 

the recursive processing are based on depth-first/divide-and-

conquer scheme. In the split step the given array is split with 

respect to the leading item of the first transaction. All array 

elements referring to transactions starting with this item are 

transferred to a new array. The new array created in the split step 

and the rest of the original arrays are combined with a procedure 

that is almost identical to one phase of the well-known merge sort 

algorithm.The main reason for the merge operation in SaM is to 

keep the list sorted, so that: 1.All transactions with the same 

leading item are grouped together and 2.Equal transactions (or 

transaction suffixes) can be combined, thus reducing the number 

of objects to process. 

 

 

 

Figure 2: Transaction database (left), item frequencies (middle), 

and reduced transaction database with items in transactions sorted 

accordingly with respect to their frequency (right). 

Each transaction is represented as a simple array of item 

identifiers (which are integer numbers). The transaction list is 

prepared which are stored in a simple array, each element of 

which contains a support counter and a pointer to the head of the 

list. The list elements themselves consist only of a successor 

pointer and a pointer to the transaction. The transactions are 

inserted one by one into this structure by simply using their 

leading item as an index.  
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Figure 3: Procedure of the recursive elimination with the 

modification of the transaction lists (left) as well as the transaction 

lists for the recursion (right). 

 

4. Data Set Requirements  
For the experiment we have used datasets of different application. 

These datasets was obtained from the UCI repository of machine 

learning databases [7]. The Table 2 below portraits the 

characteristics of the datasets selected for the experiment. 

Table 2: Details of Datasets used in the comparison 

 

File  

name 

Divisi

ons 

Dist./ 

Rand. 

Recor

ds 

I/P 

Columns 

 

adult.D97. 

N48842.C2.n

um 

 

5 

 

Yes 

 

48842 

 

15 

 

Census 

 

0 

 

No 

 

48842 

 

14 

 

letRecog.D1

06. 

N20000.C26.

num 

 

5 Yes 20000 17 

Mushroom. 

D90.N8124.

C2.num 

5 Yes 8124 23 

 

 

 

 

  

5.Performance Comparisons 
We have conducted a detailed study to assess the performance of 

FP-Growth with respect to the other FIM algorithms. The 

performance metrics in the experiments is the total execution time 

taken and the number of Itemsets Generated for different data 

sets. For this comparison also same data sets were selected as for 

the above experiment with 30% to 70% of minimum support 

threshold.  

The table 3 below shows the execution time for all the algorithms 

with different support threshold for adult data set. The time of 

execution is decreased with the increase support threshold. 

Table 3: Adult data set  execution time. 

Support 

Total Time in Seconds 

BROGLET 

FP-Growth Eclat Relim SaM 

30 0.56 0.54 0.49 0.47 

40 0.5 0.49 0.44 0.44 

50 0.49 0.45 0.42 0.41 

60 0.48 0.44 0.4 0.4 

70 0.42 0.4 0.39 0.37 

 

Figure 4 shows that the execution time for the FP-growth 

algorithm decreases with the increase in support threshold form 

30% to 70% for adult dataset. We observed that FP-growth and 

Eclat takes more time as that compared to RElim and SaM. 
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Figure 4: Execution Time for adult data set. 

 

The table 4 shows the execution time for all the algorithms with 

different support threshold for census data set. The time of 

execution is decreased with the increase support threshold. 
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Table 4: Census data set execution time. 

 

Support 

Total Time in Seconds 

BROGLET 

FP-

Growth 

Eclat Relim SaM 

30 1.21 0.76 0.74 0.74 

40 1.16 0.75 0.72 0.71 

50 0.86 0.72 0.7 0.69 

60 0.73 0.69 0.67 0.67 

70 0.68 0.65 0.65 0.64 

 

Figure 5 shows that the execution time for the FP-growth 

algorithm is high with the small support threshold and it decreases 

with the decrease in support using census data set. It is also 

analyzed that the execution time for other FIM algorithms is less 

as compared to FP-growth algorithm.  
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Figure 5: Execution Time for census data set. 

The table 5 below show the execution time for all the algorithms 

with different support threshold for Letter Recognition data set. 

The time of execution is decreased with the increase support 

threshold. 

 

Table 5: Letter Recognition data set execution time 

 

Support 

Total Time in Seconds 

BROGLET 

FP-

Growth 

Eclat Relim SaM 

30 0.21 0.21 0.2 0.19 

40 0.2 0.21 0.19 0.18 

50 0.18 0.2 0.19 0.17 

60 0.17 0.19 0.18 0.16 

70 0.15 0.17 0.16 0.14 

 

Figure 6 shows that the execution time of the FP-growth 

algorithm is near by the execution time of Eclat and RElim with 

the decrease in support threshold for Letter Recognition data set. 

It is also analyzed that the execution time for other SaM algorithm 

is less as compared to other FIM algorithms. 
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Figure 6: Execution Time for Letter Recognition data set. 

 

The table 7 below shows the execution time for all the algorithms 

with different support threshold for mushroom data set. The time 

of execution is decreased with the increase support threshold. 

Table 7: Mashroom data set  execution time. 

 

Support 

Total Time in Seconds 

BROGLET 

FP-

Growth 

Eclat Relim SaM 

30 0.13 0.11 0.11 0.11 

40 0.11 0.11 0.09 0.1 

50 0.09 0.09 0.09 0.08 

60 0.08 0.09 0.08 0.07 

70 0.08 0.08 0.07 0.06 

 

Figure 7 shows that the execution time of the all FIM algorithm is 

nearby but it can also be analyzed that the execution time of SaM 

is comparatively less for higher support threshold. 
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Figure 7: Execution Time for Mushroom data set. 
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6.Findings and Analysis 
The first interesting behavior can be observed in the Experiment 1 

for the adult, census and letter recognition data set. Indeed, 

Broglet’s FP performs better for adult and letter data set, as it 

takes much less time to generate frequent itemsets in comparison 

of Goethal’s FP. Whereas for letter recognition data set Goethal’s 

FP takes much less time of execution then the other, but it can 

also be studied that it generates constant number of frequent 

itemsets even with the increase in the minimum support threshold. 

Another remarkable result is that the frequent itemsets generated 

by Goethal’s is enormous then that generated by the Broglet’s FP 

of which numerous itemsets may not be useful from the point of 

mining purpose. Future no. of transaction of adult and census data 

set are same, even then Goethal’s FP behave inappropriate for 

census data set.By these consequences we consider Broglet’s FP 

to be better performer than that of Goethal’s FP and accordingly 

we performed the second experiment to compare the Broglet’s FP 

with the classical frequent itemset mining algorithms (like Apriori 

and Eclat) along with the newly implemented algorithms (RElim 

and SaM). 

In the later experiment it can be observed that for adult and census 

data set FP-Growth takes more time than that of other FIM 

algorithms. Along that RElim performs in close proximity to that 

of SaM. For letter recognition and mushroom dataset all the FIM 

algorithms performs close to each other. Nevertheless, SaM can 

be considered as an improved performer from the overall dataset 

analysis. 

7.CONCLUSION 
A comparison framework has developed to allow the flexible 

comparison of existing and new frequent itemset mining 

algorithms that conform to the defined algorithm interface. Using 

this framework this paper presented the comparative performance 

study of three iterative algorithms for FIM algorithms with FP-

Growth algorithms.  

In this work, an in-depth analysis of few algorithms is done which 

made a significant contribution to the search of improving the 

efficiency of frequent itemset mining. By comparing them to 

classical frequent item set mining algorithms like FP-growth and 

Eclat the strength and weaknesses of these algorithms were 

analyzed.  

The developed framework can be used for comparing the other 

algorithms, which does not use candidate set generation to 

discover frequent patterns. And can also lead to several ideas for 
optimizations, which could improve the performance of other 

algorithms. 
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