
International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 15

86

Survey on Frequent Item set Mining Algorithms

Pramod S.

Information Technology
M.P.Christain College of Engineering

Bhilai, C.G., India

 O.P. Vyas
Professor

IIIT, Alahabad
U.P., India

ABSTRACT

Many researchers invented ideas to generate the frequent itemsets.

The time required for generating frequent itemsets plays an

important role. Some algorithms are designed, considering only

the time factor. Our study includes depth analysis of algorithms

and discusses some problems of generating frequent itemsets from

the algorithm. We have explored the unifying feature among the

internal working of various mining algorithms. Some

implementations were done with KDD cup Dataset to explore the

relative merits of each algorithm. The work yields a detailed

analysis of the algorithms to elucidate the performance with

standard dataset like Adult, Mushroom etc. The comparative study

of algorithms includes aspects like different support values, size

of transactions and different datasets.

Keywords

Frequent Itemset, Mining, KDD cup, Mashroom, Adult.

1. INTRODUCTION
In recent years the size of database has increased rapidly. This has

led to a growing interest in the development of tools capable in

the automatic extraction of knowledge from data. The term data

mining or knowledge discovery in database has been adopted for a

field of research dealing with the automatic discovery of implicit

information or knowledge within the databases. The implicit

information within databases, mainly the interesting association

relationships among sets of objects that lead to association rules

may disclose useful patterns for decision support, financial

forecast, marketing policies, even medical diagnosis and many

other applications.

The problem of mining frequent itemsets arose first as a sub-

problem of mining association rules [9]. Frequent itemsets play an

essential role in many data mining tasks that try to find

interesting patterns from databases such as association rules,

correlations, sequences, classifiers, clusters and many more of

which the mining of association rules is one of the most popular

problems. The original motivation for searching association rules

came from the need to analyze so called supermarket transaction

data, that is, to examine customer behavior in terms of the

purchased products. Association rules describe how often items

are purchased together. For example, an association rule “beer,

chips (80%)” states that four out of five customers that bought

beer also bought chips. Such rules can be useful for decisions

concerning product pricing, promotions, store layout and many

others.

2. PROBLEM STUDY

2.1. Need of Frequent Itemset Mining

Studies of Frequent Itemset (or pattern) Mining is acknowledged

in the data mining field because of its broad applications in

mining association rules, correlations, and graph pattern constraint

based on frequent patterns, sequential patterns, and many other

data mining tasks. Efficient algorithms for mining frequent

itemsets are crucial for mining association rules as well as for

many other data mining tasks. The major challenge found in

frequent pattern mining is a large number of result patterns. As the

minimum threshold becomes lower, an exponentially large

number of itemsets are generated. Therefore, pruning unimportant

patterns can be done effectively in mining process and that

becomes one of the main topics in frequent pattern mining.

Consequently, the main aim is to optimize the process of finding

patterns which should be efficient, scalable and can detect the

important patterns which can be used in various ways.

3. RELATED WORK

3.1. FP-Growth Algorithm
The most popular frequent itemset mining called the FP-Growth

algorithm was introduced by [5]. The main aim of this algorithm

was to remove the bottlenecks of the Apriori-Algorithm in

generating and testing candidate set. The problem of Apriori

algorithm was dealt with, by introducing a novel, compact data

structure, called frequent pattern tree, or FP-tree then based on

this structure an FP-tree-based pattern fragment growth method

was developed. FP-growth uses a combination of the vertical and

horizontal database layout to store the database in main memory.

Instead of storing the cover for every item in the database, it

stores the actual transactions from the database in a tree structure

and every item has a linked list going through all transactions that

contain that item. This new data structure is denoted by FP-tree

(Frequent-Pattern tree) [4]. Essentially, all transactions are stored

in a tree data structure. The definition, according to [5] is as

follows:

Definition (FP-tree): A frequent pattern tree is a tree structure

defined as

1.It consists of one root labeled as “root”, a set of item prefix sub-

trees as the children of the root, and a frequent-item header table.
2.Each node in the item prefix sub-tree consists of three fields:

item-name, count and node-link, where item-name registers which

item this node represents, count registers the number of

transactions represented by the portion of the path reaching this

node, and node-link links to the next node in the FP-tree carrying

International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 15

87

the same item-name, or null if there is none. 3.Each entry in the

frequent-item header table consists of two fields, I. item-name and

II. head of node-link, which points to the first node in the FP-tree

carrying the item-name.The algorithm FP-tree[5] is as below:

Algorithm 1 (FP-tree construction):

Input: A transactional database DB and a minimum

support threshold.

Output: Its frequent pattern tree, FP-tree

Method: The FP-tree is constructed in the following

steps:

1.Scan the transaction database DB once. Collect the set

of frequent items F and their supports. Sort F in support

descending order as L, the list of frequent items.

2.Create the root of an FP-tree, T, and label it as “root”.

For each transaction Trans in DB do the following:

1.Select and sort the frequent items in Trans according to the

order of L. Let the sorted frequent item list in Trans be [p | P],

where p is the first element and P is the remaining list. Call

insert_tree([p | P], T). 2.The function insert_tree([p | P], T) is pe-

rformed as follows. If T has a child N such that N.item-name =

p.item-name, then increment N’s count by 1; else create a new

node N, and let its count be 1, its parent link be linked to T, and its

node-link be linked to the nodes with the same item-name via the

node-link structure. If P is nonempty, call insert_tree(P, N)

recursively.

3.2. Broglet’s FP-Growth
Broglet implemented an efficient FP-Growth[1] algorithm using C

Language. The FP-growth in his implementation preprocesses the

transaction database according to [1] is as follows:

1.In an initial scan the frequencies of the items (support of single

element item sets) are determined. 2. All infrequent items, that is,

all items that appear in fewer transactions than a user-specified

minimum number are discarded from the transactions, since,

obviously, they can never be part of a frequent item set. 3. The

items in each transaction are sorted, so that they are in descending

order with respect to their frequency in the database.

3.3. Goethals FP-Growth
Goethal also implemented the FP-Growth algorithm. This

implementation is based on the Fp-growth algorithm [5]. Consider

a transaction database and a minimal support threshold of 2. First,

the supports of all items is computed, all infrequent items are

removed from the database and all transactions are reordered

according to the support descending order resulting in the

example transaction database in Table 1. The FP-tree for this

database is shown in Figure 1.

Table 1: An example preprocessed transaction database.

Tid X

100 {a, b, c, d, e, f}

200 {a, b, c, d, e}

300 {a, d}

400 {b, d, f}

500 {a, b, c, e, f}

The FP-Growth tree will be constructed as below figure 1.

Figure 1: An example of a FP-tree.

3.4 Eclat
Eclat [11, 8, 3] algorithm is basically a depth-first search

algorithm using set intersection. It uses a vertical database layout

i.e. instead of explicitly listing all transactions; each item is stored

together with its cover (also called tidlist) and uses the

intersection based approach to compute the support of an itemset.

In this way, the support of an itemset X can be easily computed by

simply intersecting the covers of any two subsets Y, Z ⊆ X, such

that Y U Z = X. It states that, when the database is stored in the

vertical layout, the support of a set can be counted much easier by

simply intersecting the covers of two of its subsets that together

give the set itself.

The Eclat algorithm is as given below.

Input: D, σ, i ⊆ I

Output: F[I](D, σ)

1: F[I] :={}

2: for all I Є I occurring in D do

3: F[I] := F[I] ∪ {I ∪ {i}}

4: // Create D
i

5: D
i
: = {}

6: for all j Є I occurring in D such that j>I do

7: C := cover({i}) ∩ cover({j})

8: if |C| >= σ then

International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 15

88

9: D
i
: = D

i
 ∪ {(j, C)}

10: end if

11: end for

12: //Depth-first recursion

13: Compute F[I ∪ {i}](D
i
, σ)

14: F[I] := F[I] ∪ F[I ∪ {i}]

15: end for

In this algorithm each frequent item is added in the output set.

After that, for every such frequent item i, the i-projected database

Di is created. This is done by first finding every item j that

frequently occurs together with i. The support of this set {i, j} is

computed by intersecting the covers of both items. If {i, j} is

frequent, then j is inserted into Di together with its cover. The

reordering is performed at every recursion step of the algorithm

between line 10 and line 11. Then the algorithm is called

recursively to find all frequent itemsets in the new database Di.

It essentially generates the candidate itemsets using only the join

step from Apriori. Again all the items in the database is reordered

in ascending order of support to reduce the number of candidate

itemsets that is generated, and hence, reduce the number of

intersections that need to be computed and the total size of the

covers of all generated itemsets. Since the algorithm doesn’t fully

exploit the monotonicity property, but generates a candidate

itemset based on only two of its subsets, the number of candidate

itemsets that are generated is much larger as compared to a

breadth-first approach such as Apriori. As a comparison, Eclat

essentially generates candidate itemsets using only the join step

from Apriori [6], since the itemsets necessary for the prune step

are not available.

A technique that is regularly used is to reorder the items in

support ascending order to reduce the number of candidate

itemsets that is generated. In Eclat, such reordering can be

performed at every recursion step in the algorithm. Also that at a

certain depth d, the covers of at most all k-itemsets with the same

k − 1-prefix are stored in main memory, with k < d. Because of

the item reordering, this number is kept small.

3.5 SaM Algorithm
The SaM (Split and Merge) algorithm established by [10] is a

simplification of the already fairly simple RElim (Recursive

Elimination) algorithm. While RElim represents a (conditional)

database by storing one transaction list for each item (partially

vertical representation), the split and merge algorithm employs

only a single transaction list (purely horizontal representation),

stored as an array.

This array is processed with a simple split and merge scheme,

which computes a conditional database, processes this conditional

database recursively, and finally eliminates the split item from the

original (conditional) database.

SaM preprocesses a given transaction following the steps below:

1. The transaction database is taken in its original form. 2. The

frequencies of individual items are determined from this input in

order to be able to discard infrequent items immediately. 3. The

(frequent) items in each transaction are sorted according to their

frequency in the transaction database, since it is well known that

processing the items in the order of increasing frequency usually

leads to the shortest execution times. 4. The transactions are

sorted lexicographically into descending order, with item

comparisons again being decided by the item frequencies; here the

item with the higher frequency precedes the item with the lower

frequency. 5. The data structure on which SaM operates is built by

combining equal transactions and setting up an array, in which

each element consists of two fields:

An occurrence counter and a pointer to the sorted transaction

(array of contained items). This data structure is then processed

recursively to find the frequent item sets. The basic operations of

the recursive processing are based on depth-first/divide-and-

conquer scheme. In the split step the given array is split with

respect to the leading item of the first transaction. All array

elements referring to transactions starting with this item are

transferred to a new array. The new array created in the split step

and the rest of the original arrays are combined with a procedure

that is almost identical to one phase of the well-known merge sort

algorithm.The main reason for the merge operation in SaM is to

keep the list sorted, so that: 1.All transactions with the same

leading item are grouped together and 2.Equal transactions (or

transaction suffixes) can be combined, thus reducing the number

of objects to process.

Figure 2: Transaction database (left), item frequencies (middle),

and reduced transaction database with items in transactions sorted

accordingly with respect to their frequency (right).

Each transaction is represented as a simple array of item

identifiers (which are integer numbers). The transaction list is

prepared which are stored in a simple array, each element of

which contains a support counter and a pointer to the head of the

list. The list elements themselves consist only of a successor

pointer and a pointer to the transaction. The transactions are

inserted one by one into this structure by simply using their

leading item as an index.

International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 15

89

Figure 3: Procedure of the recursive elimination with the

modification of the transaction lists (left) as well as the transaction

lists for the recursion (right).

4. Data Set Requirements
For the experiment we have used datasets of different application.

These datasets was obtained from the UCI repository of machine

learning databases [7]. The Table 2 below portraits the

characteristics of the datasets selected for the experiment.

Table 2: Details of Datasets used in the comparison

File

name

Divisi

ons

Dist./

Rand.

Recor

ds

I/P

Columns

adult.D97.

N48842.C2.n

um

5

Yes

48842

15

Census

0

No

48842

14

letRecog.D1

06.

N20000.C26.

num

5 Yes 20000 17

Mushroom.

D90.N8124.

C2.num

5 Yes 8124 23

5.Performance Comparisons
We have conducted a detailed study to assess the performance of

FP-Growth with respect to the other FIM algorithms. The

performance metrics in the experiments is the total execution time

taken and the number of Itemsets Generated for different data

sets. For this comparison also same data sets were selected as for

the above experiment with 30% to 70% of minimum support

threshold.

The table 3 below shows the execution time for all the algorithms

with different support threshold for adult data set. The time of

execution is decreased with the increase support threshold.

Table 3: Adult data set execution time.

Support

Total Time in Seconds

BROGLET

FP-Growth Eclat Relim SaM

30 0.56 0.54 0.49 0.47

40 0.5 0.49 0.44 0.44

50 0.49 0.45 0.42 0.41

60 0.48 0.44 0.4 0.4

70 0.42 0.4 0.39 0.37

Figure 4 shows that the execution time for the FP-growth

algorithm decreases with the increase in support threshold form

30% to 70% for adult dataset. We observed that FP-growth and

Eclat takes more time as that compared to RElim and SaM.

Comparison of FIM Algorithms

0.35

0.4

0.45

0.5

0.55

0.6

30 40 50 60 70

Support

T
im
e
 i
n
 S
e
c
.

BROGLET FP-

Growth

BROGLET Eclat

BROGLET Relim

BROGLET SaM

Figure 4: Execution Time for adult data set.

The table 4 shows the execution time for all the algorithms with

different support threshold for census data set. The time of

execution is decreased with the increase support threshold.

International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 15

90

Table 4: Census data set execution time.

Support

Total Time in Seconds

BROGLET

FP-

Growth

Eclat Relim SaM

30 1.21 0.76 0.74 0.74

40 1.16 0.75 0.72 0.71

50 0.86 0.72 0.7 0.69

60 0.73 0.69 0.67 0.67

70 0.68 0.65 0.65 0.64

Figure 5 shows that the execution time for the FP-growth

algorithm is high with the small support threshold and it decreases

with the decrease in support using census data set. It is also

analyzed that the execution time for other FIM algorithms is less

as compared to FP-growth algorithm.

Comparison of FIM Algorithms

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

30 40 50 60 70

Support

T
im
e
 i
n
 S
e
c
. FP-Growth

Eclat

Relim

SaM

Figure 5: Execution Time for census data set.

The table 5 below show the execution time for all the algorithms

with different support threshold for Letter Recognition data set.

The time of execution is decreased with the increase support

threshold.

Table 5: Letter Recognition data set execution time

Support

Total Time in Seconds

BROGLET

FP-

Growth

Eclat Relim SaM

30 0.21 0.21 0.2 0.19

40 0.2 0.21 0.19 0.18

50 0.18 0.2 0.19 0.17

60 0.17 0.19 0.18 0.16

70 0.15 0.17 0.16 0.14

Figure 6 shows that the execution time of the FP-growth

algorithm is near by the execution time of Eclat and RElim with

the decrease in support threshold for Letter Recognition data set.

It is also analyzed that the execution time for other SaM algorithm

is less as compared to other FIM algorithms.

Comparison of FIM Algorithms

0.1

0.12

0.14

0.16

0.18

0.2

0.22

30 40 50 60 70

Support

T
im
e
 i
n
 S
e
c
. FP-Growth

Eclat

Relim

SaM

Figure 6: Execution Time for Letter Recognition data set.

The table 7 below shows the execution time for all the algorithms

with different support threshold for mushroom data set. The time

of execution is decreased with the increase support threshold.

Table 7: Mashroom data set execution time.

Support

Total Time in Seconds

BROGLET

FP-

Growth

Eclat Relim SaM

30 0.13 0.11 0.11 0.11

40 0.11 0.11 0.09 0.1

50 0.09 0.09 0.09 0.08

60 0.08 0.09 0.08 0.07

70 0.08 0.08 0.07 0.06

Figure 7 shows that the execution time of the all FIM algorithm is

nearby but it can also be analyzed that the execution time of SaM

is comparatively less for higher support threshold.

Comparison of FIM Algorithms

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

30 40 50 60 70

Support

T
im
e
 i
n
 S
e
c
. FP-Growth

Eclat

Relim

SaM

Figure 7: Execution Time for Mushroom data set.

International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 15

91

6.Findings and Analysis
The first interesting behavior can be observed in the Experiment 1

for the adult, census and letter recognition data set. Indeed,

Broglet’s FP performs better for adult and letter data set, as it

takes much less time to generate frequent itemsets in comparison

of Goethal’s FP. Whereas for letter recognition data set Goethal’s

FP takes much less time of execution then the other, but it can

also be studied that it generates constant number of frequent

itemsets even with the increase in the minimum support threshold.

Another remarkable result is that the frequent itemsets generated

by Goethal’s is enormous then that generated by the Broglet’s FP

of which numerous itemsets may not be useful from the point of

mining purpose. Future no. of transaction of adult and census data

set are same, even then Goethal’s FP behave inappropriate for

census data set.By these consequences we consider Broglet’s FP

to be better performer than that of Goethal’s FP and accordingly

we performed the second experiment to compare the Broglet’s FP

with the classical frequent itemset mining algorithms (like Apriori

and Eclat) along with the newly implemented algorithms (RElim

and SaM).

In the later experiment it can be observed that for adult and census

data set FP-Growth takes more time than that of other FIM

algorithms. Along that RElim performs in close proximity to that

of SaM. For letter recognition and mushroom dataset all the FIM

algorithms performs close to each other. Nevertheless, SaM can

be considered as an improved performer from the overall dataset

analysis.

7.CONCLUSION
A comparison framework has developed to allow the flexible

comparison of existing and new frequent itemset mining

algorithms that conform to the defined algorithm interface. Using

this framework this paper presented the comparative performance

study of three iterative algorithms for FIM algorithms with FP-

Growth algorithms.

In this work, an in-depth analysis of few algorithms is done which

made a significant contribution to the search of improving the

efficiency of frequent itemset mining. By comparing them to

classical frequent item set mining algorithms like FP-growth and

Eclat the strength and weaknesses of these algorithms were

analyzed.

The developed framework can be used for comparing the other

algorithms, which does not use candidate set generation to

discover frequent patterns. And can also lead to several ideas for
optimizations, which could improve the performance of other

algorithms.

8. REFERENCE
[1] C. Borgelt. An Implementation of the FP- growth

Algorithm. Proc. Workshop Open Software for Data Mining

(OSDM’05 at KDD’05, Chicago,IL),1–5.ACMPress, New

York, NY, USA 2005.

[2] C.Borgelt. Keeping Things Simple: Finding Frequent Item

Sets by Recursive Elimination. Proc. Workshop Open

Software for Data Mining (OSDM’05 at KDD’05, Chicago,

IL), 66– 70. ACM Press, New York, NY, USA 2005.

[3] C.Borgelt. Efficient Implementations of Apriori and Eclat.

Proc. 1st IEEE ICDM Workshop on Frequent Item Set

Mining Implementations (FIMI 2003, Melbourne, FL).

CEUR Workshop Proceedings 90, Aachen, Germany 2003.

[4] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns

without candidate generation: A frequent-pattern tree

approach. Data Mining and Knowledge Discovery, 2003.

[5] J. Han, H. Pei, and Y. Yin. Mining Frequent Patterns

without Candidate Generation. In: Proc. Conf. on the

Management of Data (SIGMOD’00, Dallas, TX). ACM

Press, New York, NY, USA 2000.

[6] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I.

Verkamo. Fast discovery of association rules. In U.M.

Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R.

Uthurusamy, editors, Advances in Knowledge Discovery

and Data Mining, pages 307–328. MIT Press, 1996.

[7] C.L. Blake and C.J. Merz. UCI Repository of Machine

 Learning Databases. Dept. of Information and Computer

Science, University of California at Irvine, CA, USA1998

http://www.ics.uci.edu/˜mlearn/MLRepository.html- 1998.

[8] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li.

NewAlgorithms for Fast Discovery of Association Rules.

Proc. 3rd Int. Conf. on Knowledge Discovery and Data

Mining (KDD’97), 283–296. AAAI Press, Menlo Park, CA,

USA 1997.

[9] R. Agrawal, T. Imielienski, and A. Swami. Mining

Association Rules between Sets of Items in Large

Databases. Proc. Conf. on Management of Data, 207–216.

ACM Press, New York, NY, USA 1993.

[10] C. Borgelt. SaM: Simple Algorithms for Frequent Item Set

 Mining. IFSA/EUSFLAT 2009 conference- 2009.

[11] J. Han, and M. Kamber, 2000. Data Mining Concepts and

 Techniques. Morgan Kanufmann.

