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ABSTRACT
The Ambient Network project aims at designing a future 

networking environment where today’s networks (cellular, 

wireless, fixed) are seamlessly integrated offering a richer and 

smarter networking experience to applications and users. An 

efficient resource management method to deal with different 

characteristics of the heterogeneous technologies is the need of 

the hour. IXP 2800 network processor is the high end device 

designed for 10 gigabit data rates with typical usage in high 

speed packet forwarding systems and ambient networks. This 

project aims at using network processors for solving resource 

management issues in ambient networks. The problem of fair 

allocation among contending traffic flows on a link has been 

extensively reasearched. Moreover, conventional resource 

scheduling algorithms depend strongly upon the assumption of 

prior knowledge of network parameters and cannot handle 

variations or lack of information about these parameters. In this 

paper a novel scheduler called the Composite Bandwidth and 

CPU Scheduler (CBCS). Which jointly allocates the fair share 

of the link bandwidth as well as processing resource to all 

competing flows. CBCS also uses a simple and adaptive online 

prediction scheme for reliably estimating the processing time 

of the packet. 
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1. INTRODUCTION 

Recent Technology has become indispensable to human life. 

Today number of network offers different kind of services to 

unlimited number of end users, but they are not getting 

satisfactory services from service provider. For instance 

existing mobile and wireless link layer technologies like 

Wireless Local Area Network, Global System for Mobile 

Communication, in third generation network, etc, lack a 

common control plane in order to enable end-users to benefit 

fully from the offered access connectivity. In addition access to 

these networks is often restricted due to security and business 

consideration. Although static, pre-established roaming 

agreements can extend the scope of these subscriptions to some 

other networks, there is no technology to automatically and 

transparently select the best and cost effective link for the end-

user. Major factor that affects the services offered by these 

networks is congestion. 

The solutions for these problems are provided in next 

generation communication networks with coexistence of 

multiple technologies and user devices of integrated fashion. 

One such technology is Ambient Network. Ambient Network 

aims to provide solutions encountered in current mobile and 

wireless networks. As ambient network compose and 

decompose, topology and traffic patterns changes rapidly and 

makes it difficult to rely on long-term network planning and 

dimensioning .To overcome these difficulties, mechanisms are 

needed to dynamically adapt changes in traffic demand and to 

utilize the available resources fairly. In this project a new 

networking concept known as Ambient Control Space and its 

functionalities are introduced and discussed about the design of 

congestion control .In this project we also identify and analyze 

the challenges of ambient network pose to resource 

management. 

The main objective and goal of this project is to make better 

use of available resources by adapting the routing function to 

the current traffic situations. So that we can  

� Maximize the throughput. 

� Increase Fairness in resource allocation. 

� To increase the packet transmission rate with 

minimum delay. 

 

 

2. AMBIENT NETWORK 
The Ambient Network project aims at creating scalable and 

affordable network solutions for mobile and wireless systems 

beyond 3G.Ambient Network (AN) contains a set of one or 

more nodes and devices, which share a common control plane 

called the Ambient Control Space (ACS). It aims to enable the 

cooperation of heterogeneous networks belonging to different 

operator or technology domains to overcome the difficulties 

encountered in current generation of network. Norbert Niebert, 

Andreas Schieder (April 2004) has analyzed the formation of 

Ambient Network based on three-design principle, 
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� Ambient Networks build upon Open Connectivity 

and Open Networking functions. 

� Ambient Networks are based on Self-Composition 

and Self-Management. 

� Ambient Network functions can be added to Existing 

Networks. 

Architecture and Components of Ambient Networks 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Components of Ambient Network 

 

2.1 Ambient Control Space 
The ACS (Ambient Control Space) is the internal of an 

Ambient Network. It has the functions that can be accessed and 

it is in full control of the resources of the network. Ambient 

control space can be subdivided into the actual control 

functions and the control space framework functions, which are 

not explicitly shown but assumed to implement the loop 

surrounding the connectivity plane. Today’s Internet 

Networking Technology according to Norbert Niebert, Andreas 

Schieder (April 2004) lack this common plane .The control 

space framework comprises all functions necessary to allow the 

control functions to plug into control space, execute their 

control tasks and coordinate with other functions present in the 

control space as said by Chen .Z, M.Mohamed ali (2004). 

These ACS functions can be used as a plug and play feature in 

existing networks. 

There are three interfaces present to communicate with an 

ACS. These are: 

 

� ANI: Ambient Network Interface. If a network wants 

to join in, it has to do so through this interface. 

 

� ASI: Ambient Service Interface. If a function needs 

to be accessed inside the ACS, this Interface is used. 

 

� ARI: Ambient Resource Interface. If a resource 

inside a network needs to be accessed, this interface 

is used. 

2.2 Functional Area (FA) 
FA is a concept to group functions into topic – related sets for 

easier reference and discussion. In this project, network 

processor is used inside gateways i.e. inside ANI and performs 

functions such as Traffic management, Queue management, 

Packet Processing, Packet classification etc. Network Processor 

used here mainly concerns with congestion control Functional 

Area. Congestion control Functional Area consists of 

connectivity plane (ACY) with some functionality as depicted 

in Figure 2 .In this project these functions are assumed to be 

performed by network processor. Collections of these 

functionalities are called CC-FA-CY (congestion control 

Functional area connectivity) and CC-FA-CS (Congestion 

control Functional Area Control space) respectively. CC-FA-

CY includes mechanisms and techniques to interact with 

legacy solution such as TCP.CC-FA-CS includes all the 

functions that are necessary to interact with all other functional 

areas. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Congestion control Functional Area. 

 

2.3 Network Composition 
Network Composition as demonstrated by Jorge Andres Colas 

(2005) is a new architectural concept introduced in ambient 

Networks to enable control – planes inter working and sharing 

of control functions among networks. Different networks may 

cooperate with each other dynamically for various purposes. 

The main intention as analyzed by Jorge Andres Colas (2005) 

is to provide inter working without manual intervention and 

prior signing of agreements between different network 

operators. To ensure a smooth and seamless cooperation 

agreement has to be made among all networks involved. A new 

composed network may be created when individual AN make 

an agreement to compose. 

Generic Ambient Network signaling protocol suggested by 

Jorge Andres Colas (2005) is used to exchange signaling 

information of functional areas inside ACS.A composed 

network consists of all logical and physical resources and 

services each of its members contribute according to the 

composition agreement. 

 

2.4 Characteristics of Ambient Networks 
The characteristics of Ambient Networks are: 

 

� Heterogeneity: Ambient Networks are based on a 

federation of multiple networks of different operators 

and technologies. 

� Mobility: In dynamically composed network 

architectures, mobility of user group clusters would 

support effective local communication. 

� Composability: An Ambient Network can be 

dynamically composed of several other networks. 

Cooperating Ambient Networks could potentially 

belong to separate administrative or economic 

entities. Hence, Ambient Networks provide network 

services in a cooperative as well as competitive way. 
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The Ambient Network Interface (ANI) facilitates 

cooperation across different Ambient Networks. 

� Explicit Control Space: Provisioning (at least a 

subset of) the Ambient control. 

� Space Functions: When Ambient Networks and their 

control functions are composed, care must be taken 

that each individual function controls the same 

resources as before: by composing two Ambient 

Networks, resources shall not become a common 

asset but rather an asset that can be traded. 

 

3. Network Processor 
Network Processor (NP) are network devices specifically 

designed to store, process and forward large volumes of data 

packets at wire speed with strong programmability. Processing 

of packet at wire speed has resulted in the creation of 

Integrated Circuits that are optimized to deal with this form of 

packet data, such as ASIC-based switches and routers. General-

purpose processor offer programming flexibility, but they lack 

packet-processing performance. Network Processor has 

specific features or architecture that is provided to enhance and 

optimize packet processing within these networks. 

 

3.1 Intel IXP2800 Network Processor 
The IXP2800 is the high-end device of a family of network 

processors developed by Intel Corporation. It is designed for 10 

Gigabit/sec data rates, with typical usage in packet forwarding 

systems. According to Matthew Adiletta, Mark Rosenbluth, 

Debra Bernstein (Aug 2002), It can be configured with large 

amounts of dynamic and static storage for buffering hundreds 

of thousands of packets for up to a million Internet 

Transmission Control Protocol (TCP) connections. 

 

3.2 The XScale™ Processor 
The XScale processor is compliant with the ARM Version 5TE 

(Advanced Risc Machines), and runs at 700MHz.Normally, it 

is used as a system control plane processor, handling exception 

packets and doing management tasks. It contains independent 

32KB instruction and data caches, and a full capability memory 

management unit. The XScale has uniform access to all system 

resources, so it can efficiently communicate with the 

microengine though data structures in shared memory. 

3.3 The IXP2XXX Microengine 
Several goals guided the specification of the ME: 

�  High frequency to allow for sufficient instructions per 

packet. The ME has a six-stage pipeline and runs at 1.4 

GHz. 

� Large register set. Having many registers minimizes the 

need to shuffle program variables back and forth between 

registers and memory. 

� Multiple threads. Given the disparity in processor cycle 

times vs. external memory times, a single thread of 

execution often blocks waiting for external memory 

operations to complete. Having multiple threads available 

allows for threads to interleave operation—there is often 

at least one thread ready to run while others are blocked. 

This makes more productive use of the other ME 

resources, which would otherwise be idle. There are eight 

hardware threads available in the ME. Each of the eight 

threads will always be in one of four states. 

� Inactive—some applications may not require all eight 

threads. Unused threads can be kept in an inactive state by 

setting the appropriate value in a configuration register. 

� Executing—the executing thread is the one in control of 

the ME. Its PC is used to fetch the instructions that are 

executed. A thread will stay in this state until it executes 

an instruction that causes it to go to sleep state (there is no 

hardware interrupt or pre-emption; thread swapping is 

completely under software control). At most, one thread 

can be in executing state at any time. 

� Ready—In this state, a thread is ready to execute but is 

not because a different thread is executing. When the 

executing thread goes to sleep state, the MEs thread 

arbiter selects the next thread to go to the executing state 

from among all the threads in the ready state. The 

arbitration is round robin. 

� Sleep—In this state, the thread is waiting for some 

external event(s) to occur (typically, but not limited to, an 

IO access). In this state the thread does not arbitrate to 

enter the executing state. At most, one thread can be in 

executing state at a time; any number of threads can be in 

any of the other states. 

 

3.4 Registers 
Each ME contains four types of 32-bit data path registers: 

� 256 general-purpose registers 

� 512 transfer registers 

� 128 next neighbor registers 

� 640 32-bit words of local memory 

GPRs are used for general programming purposes. They are 

read and written exclusively under program control. GPRs, 

when used as a source in an instruction, supply operands to the 

execution data path. When used as a destination in an 

instruction, they are written with the result of the execution 

data path. 

Transfer registers are used for transferring data to and from the 

ME and locations external to the ME (for example, DRAMs, 

SRAMs, etc). 

Next Neighbor (NN) registers are used as an efficient method 

to pass data from one ME to the next, for example, when 

implementing a data-processing pipeline. 

 Local Memory (LM) is addressable storage located in the ME. 

LM is read and written exclusively under program control.The 

distinction between LM and the registers described above is 

that the LM address is computed by the program at run-time, 

whereas the register addresses are determined at compile time 

and bound in the instruction.  

 

3.5 The DRAM Cluster 
The DRAM cluster provides three independent DRAM 

controllers, each of which controls external Rambus DRAMs 

(RDRAMs). The reason for three channels is to provide 

sufficient data buffering bandwidth for 10Gb network 

applications. DRAMs are a good choice for a data buffer 

because they offer excellent burst bandwidth and are much 

denser and cheaper per bit relative to SRAM. Each DRAM 

controller, running at 133MHz provides 17Gb/s of bandwidth, 

shared between reads and writes. The three DRAM controllers 

provide hardware interleaving of the DRAM address space 

(often referred to as striping). This is done to spread accesses 

evenly to prevent “hot spots” in the memory. 
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3.6 The SRAM cluster 
The SRAM cluster consists of four independent SRAM 

controllers, each of which controls external Quad-Data-Rate 

(QDR) SRAMs. The reason for four channels is to provide 

sufficient control information bandwidth for 10 GB network 

applications. SRAMs are a good choice for control 

information, which tends to have many small data structures 

such as queue descriptors and linked lists. Each SRAM 

controller, running at 200MHz, provides 800MB/s of read 

bandwidth and 800MB/s of write bandwidth. In addition to the 

normal read and write access, the IXP2800 SRAM controllers 

provide three additional hardware functions. 

� Atomic read-modify-write operations: increment, 

decrement, add, subtract, bit-set, bit-clear, and 

swap. 

The atomic operations are useful for implementing software 

semaphores. They can also be used for multiple processes that 

modify a shared variable without using conventional mutex to 

obtain ownership. This is more efficient, since it eliminates the 

mutex operation altogether in this case. 

� Linked-list queue operations.  

This hardware accelerates enqueue and dequeue to linked-list 

operations by eliminating the read-to-write or read-to-read 

latency. For example, to do an enqueue, software must read the 

current list tail and then use it as an address to write the new 

link to memory. The SRAM controller keeps the tail address in 

on-chip registers and does the enqueue write locally; this saves 

the time that would have been spent by the microengine to get 

the tail value and then simply use it as the address for the write. 

� Ring operations.  

A ring is also sometimes called a circular buffer. It consists of 

a block of SRAM addresses, which are referenced through a 

head and tail pointer. Data is inserted at the tail of the ring and 

removed from the head .The SRAM controller keeps the head 

and tail pointers in on chip registers and increments them as 

they are used. The advantage is that multiple processors can 

add data to and remove data from the rings without having to 

use a mutex to obtain ownership.  

 

3.7 The Media-Switch-Fabric Interface 
The Media and Switch Fabric (MSF) Interface is used to 

connect an IXP to a physical layer device (PHY) and/or a 

switch fabric. The MSF consists of separate receive and 

transmit interfaces. Each of the receive and transmit interfaces 

can be separately configured. The receive and transmit ports 

are unidirectional and independent of each other. Each 

IXP2800 port has 16 data signals, a clock, a control signal, and 

parity signals. There is also a flow control port consisting of a 

clock, data, parity, and ready status bits, and it is used to 

communicate between two IXP2800 chips, or an IXP2800 and 

a switch fabric interface. The IXP2800 supports 10Gb/s 

inbound traffic and 15Gb/s outbound or 15Gb/s inbound and 

10Gb/s outbound.  

Incoming packets are received into the Receive Buffer 

(RBUF). Outgoing packets are held in the Transmit Buffer 

(TBUF). The RBUF and TBUF are both RAMs and store data 

in sub-blocks (referred to as elements), and are accessed by 

either the microengines or XScale™.The RBUF and TBUF 

each contain 8KB of data. The element size is programmable 

as 64 bytes, 128 bytes, or 256 bytes per element. The 

microengine can read data from the RBUF to the microengine 

inbound registers using the MSF [read] instruction. The 

microengine can promote data from RBUF to DRAM directly 

using the DRAM [rbuf_rd] instruction. The microengine can 

promote data into the TBUF along with status via writes from 

the outbound transfer registers using the MSF [write] 

instruction. The microengine can control movement of data 

from DRAM directly to the TBUF using the DRAM [tbuf_wr] 

instruction. 
 

3.8 Resource Allocation 
Fair allocation of shared network resources among multiple 

users is an intuitively desirable property. The Link bandwidth 

is not the only resource that is shared by the traffic flows as 

they traverse the network. A routers processor is often also a 

critical resource to which all competing flows should have fair 

access. For each incoming packet the router has to perform 

several activities like computing checksum, performing a 

forwarding table lookup, processing variable length option, etc. 

As the processing requirement of different packet vary widely, 

the issue of fairness in the allocation of the processing 

resources gains significance. 

The overall fairness cannot be achieved by fair sharing of the 

link bandwidth alone or merely through fair allocation of 

processing resource alone. Therefore, for better QoS and 

overall fairness in resource allocations for the contending 

flows, it is vital that the processor and bandwidth scheduling 

schemes should be integrated. A Novel scheduler called the 

Composite Bandwidth and CPU Scheduler (CBCS) Algorithm 

as discussed by Fariza Sabrina, Salil S. Kanhere and Sanjay 

K.Jha is used to allocate resource fairly. 

CBCS can schedule multiple resources adaptively, fairly, and 

efficiently among all the competing flows. Scheduler employs 

a simple and adaptive online prediction scheme called modified 

Single Exponential Smoothing (SES) for determining the 

packet execution times. Packets from each flow are first 

processed by the processor and then transmitted onto the output 

link. The joint allocation of the processing and bandwidth 

resource is accomplished by the composite scheduler, which 

selects a packet from the input buffers and passes it onto the 

CPU for processing. No scheduling action takes place after the 

processing; the packets processed by the CPU are stored in the 

buffer between the processor and the link and are transmitted in 

a first come first serve order. 

  

4. ARCHITECTURE 
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4.1 System Design 
The design consists of modules for packet reception, 

processing and transmission. This design is implemented using 

Intel Network Processor IXP2800.Purpose of using Intel 

Network Processor is that, when compare to Motorola and IBM 

Intel Network Processor has flexibility in programming so that 

it can adapt to changing technologies. In addition Intel 

Network Processor provides high performance. The pipeline 

consist of following modules 

� RX Block 

� Packet Classification Block 

� Queue Management Block 

� Decision Making Block 

� TX Block 

 

The Proposed system comprises of Network Processor IDE that 

provide a real time environment and are designed to use inside 

gateway. Here gateway is used as network interface that is used 

to exchange information about various networks. The 

checkpoint node functionalities are embedded within this 

network processor. Different types of real time and non real 

time data are given as input to different ports. The incoming 

packets are classified based in TCP port as real time and non 

real time data and are placed in separate queues. These queues 

are served based on weighted round robin scheduling 

algorithm. The selection of routes and packets are transmitted 

in such a way that network congestion is reduced. The 

efficiency of packet transmission is also increased 

considerably. 

 

  

4.2 Allocation of Microengine 
The checkpoint node functionalities are assigned to each 

microengine as below; For example: Microengine 0:0 is 

assigned to receive block. Microengine 1:0 is assigned for 

CBCS scheduler, Microengine 0:1,0:2,1:1,1:2 is assigned for 

packet processing and forwarding block, Microengine 1:3 is 

assigned for transmitter block. 

 

 4.3 System Function 
The sequence of traffic monitoring, packet processing and 

optimum route selection in order to avoid packet loss and 

hence to decrease the overall latency is given below. 

� System is configured. Script files are added in startup 

menu. 
� Data stream from external packet generator or 

packgen are assigned to input ports. 

� Start Simulation 

� Receive packet from MSF.Signal indicates 

occurrence of packet at MSF interface. 

� Only after signaling, buffers and thread are allocated 

to incoming packets. If payload is large additional 

buffers are allocated from buffer pool. 

� Address of header and metadata are stored in queue 

descriptor. Only metadata information is handed over 

to classification block. This metadata information is 

written in SRAM memory using command 

sram_write. 

� Packets are validated. Packets should follow 

RFC1812 rule. Some of the rules are packet header 

should be five bytes of length, Time to live field 

should not be zero, source and destination address 

should not be class D or class E address, Packets 

with zero address should be dropped. 

� Packets are serviced using CBCS algorithm. 

� Packets are then handed over to transmit block using 

dispatch loop and are then transmitted Processing of 

next packet is done. If no packet is present in the 

interface its stop processing. 

 

  5. System Modules 

  5.1Packet Rx to CBCS Scheduler Message 

Structure  
On receiving a new packet, each thread in this block checks the 

Start of Packet (SOP) and End of Packet (EOP) bits of the 

packet, identifies the port of the packet, allocates a DRAM 

buffer for the packet on start of a new packet. Moves the data 

from the receive buffer to DRAM buffer, signals the next stage 

of the pipeline on EOP, and cleans up the state for the next 

round. This stage requires the following four operations. They 

are 1) SRAM read to allocate a new buffer; 2) DRAM write to 

move the packet data into the DRAM buffer; 3) SRAM write to 

update the packet descriptor information; and 4) a scratch ring 

write to signal the next pipeline stage when the entire packet 

has been reassembled with the packet data. 

The packet Rx microengine sends enqueue messages to the 

CBCS scheduler microengine via SR-1 contain three long 

words of data. 

 

5.2 CBCS Scheduler to Packet Processor 

Message Structure 
The CBCS scheduler to the packet processor messages (via 

SR-2) contains 2 long words of data. The packet processor 

microengines cache (i.e., store) the first long word data in local 

memory and uses the same data to generate transmit message 

to the packet transmitter microengine. Also the 

sopBufferOffset value is used to access the packet metadata 

from the SRAM memory using the dispatch loop functions. 

The second long word value is used later as a part of Packet 

Processor to Scheduler feedback message. 

 

 5.2.1CBCS Implementation Details 
 Microengine local memory is used for keeping CBCS 

scheduler variable such as Quantum (or credit increment), 

packet counts for the flows or queues, credit counter per flow, 

estimated CPU requirements (per packet per flow) etc. The 

local memory is used, as it's the fastest to access. However, 

SRAM can be used for allocating the variables when number of 

flows is extremely high. The CBCS scheduler is implemented 

using 4 threads e.g., initialization thread, enqueue thread, 

dequeue thread, and CPU prediction thread. After initialization 

is completed, the initialization thread sends signals to the 

enqueue, dequeue, and CPU prediction threads to begin their 

tasks as they wait on the initialization thread's completion 

signal. 

 

5.2.2 Initialization Thread 
Initialization thread sets the SRAM channel CSR to indicate 

that packet based enqueue and dequeue would be done, i.e., 

enqueue and dequeue of a full packet is done every time. The 

thread also initializes SRAM queue descriptors (and queue 
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array) and the scheduler variables (e.g., it initializes the value 

of quantum, credit counter for the flows, estimated CPU 

requirements per flow etc). After initializing the scheduler 

variables, the thread terminates itself so that the microengine 

thread arbiter excludes this thread from its list. 

 

5.2.3 Enqueue Thread 
The enqueue thread waits for the signal from the initialization 

thread before starting its infinite loop. In each turn, the thread 

calls an SRAM API (e.g. scratch get ring) to read an enqueue 

message from SR-1 and specifies a signal number (as a 

parameter to the API call). The thread then swaps out to allow 

other threads to run as the SRAM read operation would take 

some time. After receiving the control back, the thread checks 

the presence of the signal (i.e., checks whether the enqueue 

message read operation is completed or not. Once the enqueue 

message is read, it checks the validity of the enqueue message, 

as there may not be any message in the ring. If the thread 

receives an invalid message, it does context swap and then 

goes for the next turn. As shown earlier in table 1, the third LW 

of packet metadata contains the packet size field. So, if the 

enqueue message is a valid message, the thread reads the third 

LW of the packet metadata from the SRAM using another API 

(e.g. sram read) and extracts the packet size for calculating the 

total resource requirement (i.e. both the CPU and bandwidth) 

for the packet. The CPU requirement data is taken from the 

global variable (per flow), which is constantly updated by the 

CPU prediction thread. The calculated total resource 

requirement is used by the dequeue thread for scheduling 

purposes, and therefore it needs to be stored. The enqueue 

thread calls an SRAM API (e.g., sram write) to write back the 

resource requirement data to the SRAM and specifies a signal 

number. While the write operation is in progress, the thread 

calls another API to enqueue the packet info in the SRAM 

queue corresponding to the flow-id. It may be mentioned that 

the enqueue is done using the packet Next pointer (calculated 

using the sopBufHandle member of the enqueue message). The 

thread increments the packet counts for the queue and waits for 

the SRAM write operation to be completed. The thread then 

does a context swap and goes for the next round. 

 

RR Calculations 
The total resource requirement (RR) for the incoming packets 

is calculated in nano seconds (ns) using the following equation. 

RR= CPU Cost of the packet (ns) + Transmission cost of 

the packet (ns) 

= CPU cost (ns) per CPU Cycle * Estimated CPU 

Cycles Requirement                                     + 

Transmission cost per byte (ns) * Packet size in Bytes 

 Each microengine has clock frequency of 600 MHZ i.e., 600 

millions cycles per sec. Therefore, CPU cost (ns) per CPU 

Cycle =5/3 ns. For a 100 Mbits network interface, the 

transmission cost per byte would be = 80 ns. 

 

5.2.4 Dequeue Thread 
Dequeue thread waits for signal from initialization thread 

before starting its infinite loop. In each CBCS round, the 

algorithm serves all the active or backlogged flows (i.e., the 

flows having one or more packets in the queue). So for each 

flow i, the algorithm checks whether the Queue Count i.e., QC 

[i] (stored in global variables) is positive or not. If QC[i] is 

positive, it adds quantum to the value of the Credit Counter of 

the flow i (i.e. CC[i]), otherwise it resets the CC[i] to 0 and 

tries to serve the next active flow. While serving flow I within 

each CBCS round, the algorithm checks whether both the 

CC[i] and the QC[i] are positive or not. If either of them is 0 or 

negative, the algorithm does a context swap (so that other 

threads get a chance to run) and then tries to serve the next 

active flow. Otherwise, the algorithm calls an SRAM API (e.g., 

sram dequeue) to dequeue a packet info from the SRAM queue 

corresponding to flow i and it waits for the dequeue completion 

signal. After dequeue, it decrements the queue count for flow i 

and then it checks the validity of the dequeued buffer handle 

(i.e., the packetNext ptr as enqueued in the enqueue operation). 

If the buffer handle is invalid, it does a context swap and then 

tries to serve the next packet from the same flow i. For a valid 

dequeue of a packet, the code calls another SRAM API to read 

the resource requirement (RR, which is the CPU requirement 

plus bandwidth requirement in nano seconds) from the 7th LW 

of the packet metadata in SRAM (as it was stored there during 

enqueue operation) and waits for the read operation to 

complete. On completion of the SRAM read, the system 

signals the thread and the code then decrements the CC [i] by 

the value of RR. The thread then generates a scheduler-to-

processor message and enqueues the message to the scratchpad 

ring 2 (SR-2). However, before enqueuing the message in SR-

2, it checks the fullness of the ring using IXP library API and 

waits if the ring is full. After sending the message to the 

processor, the thread swaps out and tries to serve the next 

packet from the same flow i. 

 

 5.2.5CPU Prediction Thread 
This thread waits for the signal from the initialization thread 

before it starts its infinite loop. In each turn, the thread calls an 

SRAM API to read the processor-to-scheduler message from 

scratchpad ring 3 (SR-3) and specifies a signal number to wait 

on and then swaps out so that other threads can work while it is 

waiting for the read to complete. After reading the message, the 

thread validates the message and if it's a valid message, then it 

updates the estimated CPU requirement of the specified flow 

using SES estimation technique. The estimated CPU 

requirements (per packet) per flow are kept in global variables.  

 

5.3 Packet Processor to CBCS Scheduler 

Feedback Message Structure 
After processing of a packet is completed, the processor 

microengine sends a feedback message to the scheduler (via 

SR-3) that contains two long words of data. The   packet 

processor to CPU scheduler message structure also uses the 

same data structure. 

 

5.4 Packet Processor to Packet TX Message 

Structure 
After processing of a packet is completed, the processor 

microengine sends a packet transmission message to the Packet 

TX micro engine (via SR-4) that contains just one long word of 

data. 

 

6. CONCLUSION 
CBCS is a low complexity scheduler, which has better fairness 

and performance characteristics as compared to an 
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implementation consisting of separate schedulers of similar 

complexity. With the rapid growth in link bandwidth, the 

duration of time that is available to a router for making a 

scheduling decision is diminishing rapidly. Hence it is 

imperative that a scheduling algorithm can be easily 

implementable in real hardware systems. So we developed a 

real world implementation of the CBCS scheduler using a 

network processor such as the Intel IXP2800.This algorithm 

can be readily adapted for the joint allocation of a combination 

of different heterogeneous resources such as bandwidth and 

battery power in mobile ad hoc, memory and processor cycles 

in router. 
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