
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 16

108

Resource Management in Ambient Network Using Network
Processor

ABSTRACT
The Ambient Network project aims at designing a future

networking environment where today’s networks (cellular,

wireless, fixed) are seamlessly integrated offering a richer and

smarter networking experience to applications and users. An

efficient resource management method to deal with different

characteristics of the heterogeneous technologies is the need of

the hour. IXP 2800 network processor is the high end device

designed for 10 gigabit data rates with typical usage in high

speed packet forwarding systems and ambient networks. This

project aims at using network processors for solving resource

management issues in ambient networks. The problem of fair

allocation among contending traffic flows on a link has been

extensively reasearched. Moreover, conventional resource

scheduling algorithms depend strongly upon the assumption of

prior knowledge of network parameters and cannot handle

variations or lack of information about these parameters. In this

paper a novel scheduler called the Composite Bandwidth and

CPU Scheduler (CBCS). Which jointly allocates the fair share

of the link bandwidth as well as processing resource to all

competing flows. CBCS also uses a simple and adaptive online

prediction scheme for reliably estimating the processing time

of the packet.

Keywords:

Ambient Network, Network Processor, Scheduling, Distributed

Applications, Packet-Switched networks

1. INTRODUCTION

Recent Technology has become indispensable to human life.

Today number of network offers different kind of services to

unlimited number of end users, but they are not getting

satisfactory services from service provider. For instance

existing mobile and wireless link layer technologies like

Wireless Local Area Network, Global System for Mobile

Communication, in third generation network, etc, lack a

common control plane in order to enable end-users to benefit

fully from the offered access connectivity. In addition access to

these networks is often restricted due to security and business

consideration. Although static, pre-established roaming

agreements can extend the scope of these subscriptions to some

other networks, there is no technology to automatically and

transparently select the best and cost effective link for the end-

user. Major factor that affects the services offered by these

networks is congestion.

The solutions for these problems are provided in next

generation communication networks with coexistence of

multiple technologies and user devices of integrated fashion.

One such technology is Ambient Network. Ambient Network

aims to provide solutions encountered in current mobile and

wireless networks. As ambient network compose and

decompose, topology and traffic patterns changes rapidly and

makes it difficult to rely on long-term network planning and

dimensioning .To overcome these difficulties, mechanisms are

needed to dynamically adapt changes in traffic demand and to

utilize the available resources fairly. In this project a new

networking concept known as Ambient Control Space and its

functionalities are introduced and discussed about the design of

congestion control .In this project we also identify and analyze

the challenges of ambient network pose to resource

management.

The main objective and goal of this project is to make better

use of available resources by adapting the routing function to

the current traffic situations. So that we can

� Maximize the throughput.

� Increase Fairness in resource allocation.

� To increase the packet transmission rate with

minimum delay.

2. AMBIENT NETWORK
The Ambient Network project aims at creating scalable and

affordable network solutions for mobile and wireless systems

beyond 3G.Ambient Network (AN) contains a set of one or

more nodes and devices, which share a common control plane

called the Ambient Control Space (ACS). It aims to enable the

cooperation of heterogeneous networks belonging to different

operator or technology domains to overcome the difficulties

encountered in current generation of network. Norbert Niebert,

Andreas Schieder (April 2004) has analyzed the formation of

Ambient Network based on three-design principle,

Mrs. K.Sashi Rekha
M.E.,Lecturer(Computer Science and

Engineering),
Dr.N.G.P. Institute of Technology,

Coimbatore.

Mrs. Nagalakshmi Venugopal
M.E (P.hd).,Lecturer (Computer
Science and Engineering),

Dr.N.G.P. Institute of Technology,
Coimbatore.

Mr. D.Selvam
M.E. Lecturer (Information

Technology),
Dr.N.G.P. Institute of Technology,

Coimbatore.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 16

109

� Ambient Networks build upon Open Connectivity

and Open Networking functions.

� Ambient Networks are based on Self-Composition

and Self-Management.

� Ambient Network functions can be added to Existing

Networks.

Architecture and Components of Ambient Networks

Fig. 1: Components of Ambient Network

2.1 Ambient Control Space
The ACS (Ambient Control Space) is the internal of an

Ambient Network. It has the functions that can be accessed and

it is in full control of the resources of the network. Ambient

control space can be subdivided into the actual control

functions and the control space framework functions, which are

not explicitly shown but assumed to implement the loop

surrounding the connectivity plane. Today’s Internet

Networking Technology according to Norbert Niebert, Andreas

Schieder (April 2004) lack this common plane .The control

space framework comprises all functions necessary to allow the

control functions to plug into control space, execute their

control tasks and coordinate with other functions present in the

control space as said by Chen .Z, M.Mohamed ali (2004).

These ACS functions can be used as a plug and play feature in

existing networks.

There are three interfaces present to communicate with an

ACS. These are:

� ANI: Ambient Network Interface. If a network wants

to join in, it has to do so through this interface.

� ASI: Ambient Service Interface. If a function needs

to be accessed inside the ACS, this Interface is used.

� ARI: Ambient Resource Interface. If a resource

inside a network needs to be accessed, this interface

is used.

2.2 Functional Area (FA)
FA is a concept to group functions into topic – related sets for

easier reference and discussion. In this project, network

processor is used inside gateways i.e. inside ANI and performs

functions such as Traffic management, Queue management,

Packet Processing, Packet classification etc. Network Processor

used here mainly concerns with congestion control Functional

Area. Congestion control Functional Area consists of

connectivity plane (ACY) with some functionality as depicted

in Figure 2 .In this project these functions are assumed to be

performed by network processor. Collections of these

functionalities are called CC-FA-CY (congestion control

Functional area connectivity) and CC-FA-CS (Congestion

control Functional Area Control space) respectively. CC-FA-

CY includes mechanisms and techniques to interact with

legacy solution such as TCP.CC-FA-CS includes all the

functions that are necessary to interact with all other functional

areas.

Fig. 2: Congestion control Functional Area.

2.3 Network Composition
Network Composition as demonstrated by Jorge Andres Colas

(2005) is a new architectural concept introduced in ambient

Networks to enable control – planes inter working and sharing

of control functions among networks. Different networks may

cooperate with each other dynamically for various purposes.

The main intention as analyzed by Jorge Andres Colas (2005)

is to provide inter working without manual intervention and

prior signing of agreements between different network

operators. To ensure a smooth and seamless cooperation

agreement has to be made among all networks involved. A new

composed network may be created when individual AN make

an agreement to compose.

Generic Ambient Network signaling protocol suggested by

Jorge Andres Colas (2005) is used to exchange signaling

information of functional areas inside ACS.A composed

network consists of all logical and physical resources and

services each of its members contribute according to the

composition agreement.

2.4 Characteristics of Ambient Networks
The characteristics of Ambient Networks are:

� Heterogeneity: Ambient Networks are based on a

federation of multiple networks of different operators

and technologies.

� Mobility: In dynamically composed network

architectures, mobility of user group clusters would

support effective local communication.

� Composability: An Ambient Network can be

dynamically composed of several other networks.

Cooperating Ambient Networks could potentially

belong to separate administrative or economic

entities. Hence, Ambient Networks provide network

services in a cooperative as well as competitive way.

Ambient

Connectivity

Context

Information

Routing
Group

Information

Composition

Agreement
Traffic

engineering

Naming

Overlay
 Support

 Layer

Multi-Radio
Resource

Management

ASI

ARI

ACS

CC-FA-CY

 ACY

CC-FA-CC

Networks

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 16

110

The Ambient Network Interface (ANI) facilitates

cooperation across different Ambient Networks.

� Explicit Control Space: Provisioning (at least a

subset of) the Ambient control.

� Space Functions: When Ambient Networks and their

control functions are composed, care must be taken

that each individual function controls the same

resources as before: by composing two Ambient

Networks, resources shall not become a common

asset but rather an asset that can be traded.

3. Network Processor
Network Processor (NP) are network devices specifically

designed to store, process and forward large volumes of data

packets at wire speed with strong programmability. Processing

of packet at wire speed has resulted in the creation of

Integrated Circuits that are optimized to deal with this form of

packet data, such as ASIC-based switches and routers. General-

purpose processor offer programming flexibility, but they lack

packet-processing performance. Network Processor has

specific features or architecture that is provided to enhance and

optimize packet processing within these networks.

3.1 Intel IXP2800 Network Processor
The IXP2800 is the high-end device of a family of network

processors developed by Intel Corporation. It is designed for 10

Gigabit/sec data rates, with typical usage in packet forwarding

systems. According to Matthew Adiletta, Mark Rosenbluth,

Debra Bernstein (Aug 2002), It can be configured with large

amounts of dynamic and static storage for buffering hundreds

of thousands of packets for up to a million Internet

Transmission Control Protocol (TCP) connections.

3.2 The XScale™ Processor
The XScale processor is compliant with the ARM Version 5TE

(Advanced Risc Machines), and runs at 700MHz.Normally, it

is used as a system control plane processor, handling exception

packets and doing management tasks. It contains independent

32KB instruction and data caches, and a full capability memory

management unit. The XScale has uniform access to all system

resources, so it can efficiently communicate with the

microengine though data structures in shared memory.

3.3 The IXP2XXX Microengine
Several goals guided the specification of the ME:

� High frequency to allow for sufficient instructions per

packet. The ME has a six-stage pipeline and runs at 1.4

GHz.

� Large register set. Having many registers minimizes the

need to shuffle program variables back and forth between

registers and memory.

� Multiple threads. Given the disparity in processor cycle

times vs. external memory times, a single thread of

execution often blocks waiting for external memory

operations to complete. Having multiple threads available

allows for threads to interleave operation—there is often

at least one thread ready to run while others are blocked.

This makes more productive use of the other ME

resources, which would otherwise be idle. There are eight

hardware threads available in the ME. Each of the eight

threads will always be in one of four states.

� Inactive—some applications may not require all eight

threads. Unused threads can be kept in an inactive state by

setting the appropriate value in a configuration register.

� Executing—the executing thread is the one in control of

the ME. Its PC is used to fetch the instructions that are

executed. A thread will stay in this state until it executes

an instruction that causes it to go to sleep state (there is no

hardware interrupt or pre-emption; thread swapping is

completely under software control). At most, one thread

can be in executing state at any time.

� Ready—In this state, a thread is ready to execute but is

not because a different thread is executing. When the

executing thread goes to sleep state, the MEs thread

arbiter selects the next thread to go to the executing state

from among all the threads in the ready state. The

arbitration is round robin.

� Sleep—In this state, the thread is waiting for some

external event(s) to occur (typically, but not limited to, an

IO access). In this state the thread does not arbitrate to

enter the executing state. At most, one thread can be in

executing state at a time; any number of threads can be in

any of the other states.

3.4 Registers
Each ME contains four types of 32-bit data path registers:

� 256 general-purpose registers

� 512 transfer registers

� 128 next neighbor registers

� 640 32-bit words of local memory

GPRs are used for general programming purposes. They are

read and written exclusively under program control. GPRs,

when used as a source in an instruction, supply operands to the

execution data path. When used as a destination in an

instruction, they are written with the result of the execution

data path.

Transfer registers are used for transferring data to and from the

ME and locations external to the ME (for example, DRAMs,

SRAMs, etc).

Next Neighbor (NN) registers are used as an efficient method

to pass data from one ME to the next, for example, when

implementing a data-processing pipeline.

 Local Memory (LM) is addressable storage located in the ME.

LM is read and written exclusively under program control.The

distinction between LM and the registers described above is

that the LM address is computed by the program at run-time,

whereas the register addresses are determined at compile time

and bound in the instruction.

3.5 The DRAM Cluster
The DRAM cluster provides three independent DRAM

controllers, each of which controls external Rambus DRAMs

(RDRAMs). The reason for three channels is to provide

sufficient data buffering bandwidth for 10Gb network

applications. DRAMs are a good choice for a data buffer

because they offer excellent burst bandwidth and are much

denser and cheaper per bit relative to SRAM. Each DRAM

controller, running at 133MHz provides 17Gb/s of bandwidth,

shared between reads and writes. The three DRAM controllers

provide hardware interleaving of the DRAM address space

(often referred to as striping). This is done to spread accesses

evenly to prevent “hot spots” in the memory.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 16

111

3.6 The SRAM cluster
The SRAM cluster consists of four independent SRAM

controllers, each of which controls external Quad-Data-Rate

(QDR) SRAMs. The reason for four channels is to provide

sufficient control information bandwidth for 10 GB network

applications. SRAMs are a good choice for control

information, which tends to have many small data structures

such as queue descriptors and linked lists. Each SRAM

controller, running at 200MHz, provides 800MB/s of read

bandwidth and 800MB/s of write bandwidth. In addition to the

normal read and write access, the IXP2800 SRAM controllers

provide three additional hardware functions.

� Atomic read-modify-write operations: increment,

decrement, add, subtract, bit-set, bit-clear, and

swap.

The atomic operations are useful for implementing software

semaphores. They can also be used for multiple processes that

modify a shared variable without using conventional mutex to

obtain ownership. This is more efficient, since it eliminates the

mutex operation altogether in this case.

� Linked-list queue operations.

This hardware accelerates enqueue and dequeue to linked-list

operations by eliminating the read-to-write or read-to-read

latency. For example, to do an enqueue, software must read the

current list tail and then use it as an address to write the new

link to memory. The SRAM controller keeps the tail address in

on-chip registers and does the enqueue write locally; this saves

the time that would have been spent by the microengine to get

the tail value and then simply use it as the address for the write.

� Ring operations.

A ring is also sometimes called a circular buffer. It consists of

a block of SRAM addresses, which are referenced through a

head and tail pointer. Data is inserted at the tail of the ring and

removed from the head .The SRAM controller keeps the head

and tail pointers in on chip registers and increments them as

they are used. The advantage is that multiple processors can

add data to and remove data from the rings without having to

use a mutex to obtain ownership.

3.7 The Media-Switch-Fabric Interface
The Media and Switch Fabric (MSF) Interface is used to

connect an IXP to a physical layer device (PHY) and/or a

switch fabric. The MSF consists of separate receive and

transmit interfaces. Each of the receive and transmit interfaces

can be separately configured. The receive and transmit ports

are unidirectional and independent of each other. Each

IXP2800 port has 16 data signals, a clock, a control signal, and

parity signals. There is also a flow control port consisting of a

clock, data, parity, and ready status bits, and it is used to

communicate between two IXP2800 chips, or an IXP2800 and

a switch fabric interface. The IXP2800 supports 10Gb/s

inbound traffic and 15Gb/s outbound or 15Gb/s inbound and

10Gb/s outbound.

Incoming packets are received into the Receive Buffer

(RBUF). Outgoing packets are held in the Transmit Buffer

(TBUF). The RBUF and TBUF are both RAMs and store data

in sub-blocks (referred to as elements), and are accessed by

either the microengines or XScale™.The RBUF and TBUF

each contain 8KB of data. The element size is programmable

as 64 bytes, 128 bytes, or 256 bytes per element. The

microengine can read data from the RBUF to the microengine

inbound registers using the MSF [read] instruction. The

microengine can promote data from RBUF to DRAM directly

using the DRAM [rbuf_rd] instruction. The microengine can

promote data into the TBUF along with status via writes from

the outbound transfer registers using the MSF [write]

instruction. The microengine can control movement of data

from DRAM directly to the TBUF using the DRAM [tbuf_wr]

instruction.

3.8 Resource Allocation
Fair allocation of shared network resources among multiple

users is an intuitively desirable property. The Link bandwidth

is not the only resource that is shared by the traffic flows as

they traverse the network. A routers processor is often also a

critical resource to which all competing flows should have fair

access. For each incoming packet the router has to perform

several activities like computing checksum, performing a

forwarding table lookup, processing variable length option, etc.

As the processing requirement of different packet vary widely,

the issue of fairness in the allocation of the processing

resources gains significance.

The overall fairness cannot be achieved by fair sharing of the

link bandwidth alone or merely through fair allocation of

processing resource alone. Therefore, for better QoS and

overall fairness in resource allocations for the contending

flows, it is vital that the processor and bandwidth scheduling

schemes should be integrated. A Novel scheduler called the

Composite Bandwidth and CPU Scheduler (CBCS) Algorithm

as discussed by Fariza Sabrina, Salil S. Kanhere and Sanjay

K.Jha is used to allocate resource fairly.

CBCS can schedule multiple resources adaptively, fairly, and

efficiently among all the competing flows. Scheduler employs

a simple and adaptive online prediction scheme called modified

Single Exponential Smoothing (SES) for determining the

packet execution times. Packets from each flow are first

processed by the processor and then transmitted onto the output

link. The joint allocation of the processing and bandwidth

resource is accomplished by the composite scheduler, which

selects a packet from the input buffers and passes it onto the

CPU for processing. No scheduling action takes place after the

processing; the packets processed by the CPU are stored in the

buffer between the processor and the link and are transmitted in

a first come first serve order.

4. ARCHITECTURE

ME 0.0 ME 1.0

 Scheduler

Packet Processing

ME 1.3

SR-2

SR-3

SR-4

Feed back CPU used and

Flow id for a packet

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 16

112

4.1 System Design
The design consists of modules for packet reception,

processing and transmission. This design is implemented using

Intel Network Processor IXP2800.Purpose of using Intel

Network Processor is that, when compare to Motorola and IBM

Intel Network Processor has flexibility in programming so that

it can adapt to changing technologies. In addition Intel

Network Processor provides high performance. The pipeline

consist of following modules

� RX Block

� Packet Classification Block

� Queue Management Block

� Decision Making Block

� TX Block

The Proposed system comprises of Network Processor IDE that

provide a real time environment and are designed to use inside

gateway. Here gateway is used as network interface that is used

to exchange information about various networks. The

checkpoint node functionalities are embedded within this

network processor. Different types of real time and non real

time data are given as input to different ports. The incoming

packets are classified based in TCP port as real time and non

real time data and are placed in separate queues. These queues

are served based on weighted round robin scheduling

algorithm. The selection of routes and packets are transmitted

in such a way that network congestion is reduced. The

efficiency of packet transmission is also increased

considerably.

4.2 Allocation of Microengine
The checkpoint node functionalities are assigned to each

microengine as below; For example: Microengine 0:0 is

assigned to receive block. Microengine 1:0 is assigned for

CBCS scheduler, Microengine 0:1,0:2,1:1,1:2 is assigned for

packet processing and forwarding block, Microengine 1:3 is

assigned for transmitter block.

 4.3 System Function
The sequence of traffic monitoring, packet processing and

optimum route selection in order to avoid packet loss and

hence to decrease the overall latency is given below.

� System is configured. Script files are added in startup

menu.
� Data stream from external packet generator or

packgen are assigned to input ports.

� Start Simulation

� Receive packet from MSF.Signal indicates

occurrence of packet at MSF interface.

� Only after signaling, buffers and thread are allocated

to incoming packets. If payload is large additional

buffers are allocated from buffer pool.

� Address of header and metadata are stored in queue

descriptor. Only metadata information is handed over

to classification block. This metadata information is

written in SRAM memory using command

sram_write.

� Packets are validated. Packets should follow

RFC1812 rule. Some of the rules are packet header

should be five bytes of length, Time to live field

should not be zero, source and destination address

should not be class D or class E address, Packets

with zero address should be dropped.

� Packets are serviced using CBCS algorithm.

� Packets are then handed over to transmit block using

dispatch loop and are then transmitted Processing of

next packet is done. If no packet is present in the

interface its stop processing.

 5. System Modules

 5.1Packet Rx to CBCS Scheduler Message

Structure
On receiving a new packet, each thread in this block checks the

Start of Packet (SOP) and End of Packet (EOP) bits of the

packet, identifies the port of the packet, allocates a DRAM

buffer for the packet on start of a new packet. Moves the data

from the receive buffer to DRAM buffer, signals the next stage

of the pipeline on EOP, and cleans up the state for the next

round. This stage requires the following four operations. They

are 1) SRAM read to allocate a new buffer; 2) DRAM write to

move the packet data into the DRAM buffer; 3) SRAM write to

update the packet descriptor information; and 4) a scratch ring

write to signal the next pipeline stage when the entire packet

has been reassembled with the packet data.

The packet Rx microengine sends enqueue messages to the

CBCS scheduler microengine via SR-1 contain three long

words of data.

5.2 CBCS Scheduler to Packet Processor

Message Structure
The CBCS scheduler to the packet processor messages (via

SR-2) contains 2 long words of data. The packet processor

microengines cache (i.e., store) the first long word data in local

memory and uses the same data to generate transmit message

to the packet transmitter microengine. Also the

sopBufferOffset value is used to access the packet metadata

from the SRAM memory using the dispatch loop functions.

The second long word value is used later as a part of Packet

Processor to Scheduler feedback message.

 5.2.1CBCS Implementation Details
 Microengine local memory is used for keeping CBCS

scheduler variable such as Quantum (or credit increment),

packet counts for the flows or queues, credit counter per flow,

estimated CPU requirements (per packet per flow) etc. The

local memory is used, as it's the fastest to access. However,

SRAM can be used for allocating the variables when number of

flows is extremely high. The CBCS scheduler is implemented

using 4 threads e.g., initialization thread, enqueue thread,

dequeue thread, and CPU prediction thread. After initialization

is completed, the initialization thread sends signals to the

enqueue, dequeue, and CPU prediction threads to begin their

tasks as they wait on the initialization thread's completion

signal.

5.2.2 Initialization Thread
Initialization thread sets the SRAM channel CSR to indicate

that packet based enqueue and dequeue would be done, i.e.,

enqueue and dequeue of a full packet is done every time. The

thread also initializes SRAM queue descriptors (and queue

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 16

113

array) and the scheduler variables (e.g., it initializes the value

of quantum, credit counter for the flows, estimated CPU

requirements per flow etc). After initializing the scheduler

variables, the thread terminates itself so that the microengine

thread arbiter excludes this thread from its list.

5.2.3 Enqueue Thread
The enqueue thread waits for the signal from the initialization

thread before starting its infinite loop. In each turn, the thread

calls an SRAM API (e.g. scratch get ring) to read an enqueue

message from SR-1 and specifies a signal number (as a

parameter to the API call). The thread then swaps out to allow

other threads to run as the SRAM read operation would take

some time. After receiving the control back, the thread checks

the presence of the signal (i.e., checks whether the enqueue

message read operation is completed or not. Once the enqueue

message is read, it checks the validity of the enqueue message,

as there may not be any message in the ring. If the thread

receives an invalid message, it does context swap and then

goes for the next turn. As shown earlier in table 1, the third LW

of packet metadata contains the packet size field. So, if the

enqueue message is a valid message, the thread reads the third

LW of the packet metadata from the SRAM using another API

(e.g. sram read) and extracts the packet size for calculating the

total resource requirement (i.e. both the CPU and bandwidth)

for the packet. The CPU requirement data is taken from the

global variable (per flow), which is constantly updated by the

CPU prediction thread. The calculated total resource

requirement is used by the dequeue thread for scheduling

purposes, and therefore it needs to be stored. The enqueue

thread calls an SRAM API (e.g., sram write) to write back the

resource requirement data to the SRAM and specifies a signal

number. While the write operation is in progress, the thread

calls another API to enqueue the packet info in the SRAM

queue corresponding to the flow-id. It may be mentioned that

the enqueue is done using the packet Next pointer (calculated

using the sopBufHandle member of the enqueue message). The

thread increments the packet counts for the queue and waits for

the SRAM write operation to be completed. The thread then

does a context swap and goes for the next round.

RR Calculations
The total resource requirement (RR) for the incoming packets

is calculated in nano seconds (ns) using the following equation.

RR= CPU Cost of the packet (ns) + Transmission cost of

the packet (ns)

= CPU cost (ns) per CPU Cycle * Estimated CPU

Cycles Requirement +

Transmission cost per byte (ns) * Packet size in Bytes

 Each microengine has clock frequency of 600 MHZ i.e., 600

millions cycles per sec. Therefore, CPU cost (ns) per CPU

Cycle =5/3 ns. For a 100 Mbits network interface, the

transmission cost per byte would be = 80 ns.

5.2.4 Dequeue Thread
Dequeue thread waits for signal from initialization thread

before starting its infinite loop. In each CBCS round, the

algorithm serves all the active or backlogged flows (i.e., the

flows having one or more packets in the queue). So for each

flow i, the algorithm checks whether the Queue Count i.e., QC

[i] (stored in global variables) is positive or not. If QC[i] is

positive, it adds quantum to the value of the Credit Counter of

the flow i (i.e. CC[i]), otherwise it resets the CC[i] to 0 and

tries to serve the next active flow. While serving flow I within

each CBCS round, the algorithm checks whether both the

CC[i] and the QC[i] are positive or not. If either of them is 0 or

negative, the algorithm does a context swap (so that other

threads get a chance to run) and then tries to serve the next

active flow. Otherwise, the algorithm calls an SRAM API (e.g.,

sram dequeue) to dequeue a packet info from the SRAM queue

corresponding to flow i and it waits for the dequeue completion

signal. After dequeue, it decrements the queue count for flow i

and then it checks the validity of the dequeued buffer handle

(i.e., the packetNext ptr as enqueued in the enqueue operation).

If the buffer handle is invalid, it does a context swap and then

tries to serve the next packet from the same flow i. For a valid

dequeue of a packet, the code calls another SRAM API to read

the resource requirement (RR, which is the CPU requirement

plus bandwidth requirement in nano seconds) from the 7th LW

of the packet metadata in SRAM (as it was stored there during

enqueue operation) and waits for the read operation to

complete. On completion of the SRAM read, the system

signals the thread and the code then decrements the CC [i] by

the value of RR. The thread then generates a scheduler-to-

processor message and enqueues the message to the scratchpad

ring 2 (SR-2). However, before enqueuing the message in SR-

2, it checks the fullness of the ring using IXP library API and

waits if the ring is full. After sending the message to the

processor, the thread swaps out and tries to serve the next

packet from the same flow i.

 5.2.5CPU Prediction Thread
This thread waits for the signal from the initialization thread

before it starts its infinite loop. In each turn, the thread calls an

SRAM API to read the processor-to-scheduler message from

scratchpad ring 3 (SR-3) and specifies a signal number to wait

on and then swaps out so that other threads can work while it is

waiting for the read to complete. After reading the message, the

thread validates the message and if it's a valid message, then it

updates the estimated CPU requirement of the specified flow

using SES estimation technique. The estimated CPU

requirements (per packet) per flow are kept in global variables.

5.3 Packet Processor to CBCS Scheduler

Feedback Message Structure
After processing of a packet is completed, the processor

microengine sends a feedback message to the scheduler (via

SR-3) that contains two long words of data. The packet

processor to CPU scheduler message structure also uses the

same data structure.

5.4 Packet Processor to Packet TX Message

Structure
After processing of a packet is completed, the processor

microengine sends a packet transmission message to the Packet

TX micro engine (via SR-4) that contains just one long word of

data.

6. CONCLUSION
CBCS is a low complexity scheduler, which has better fairness

and performance characteristics as compared to an

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 16

114

implementation consisting of separate schedulers of similar

complexity. With the rapid growth in link bandwidth, the

duration of time that is available to a router for making a

scheduling decision is diminishing rapidly. Hence it is

imperative that a scheduling algorithm can be easily

implementable in real hardware systems. So we developed a

real world implementation of the CBCS scheduler using a

network processor such as the Intel IXP2800.This algorithm

can be readily adapted for the joint allocation of a combination

of different heterogeneous resources such as bandwidth and

battery power in mobile ad hoc, memory and processor cycles

in router.

7. REFERENCES
[1] N. Niebert, R. Hancock, H. Flinck, H. Karl, C. Prehofer,

“Ambient Networks Research for Communication Networks

Beyond 3G”, IST Mobile Summit Lyon, 2004.

[2] F. Sabrina and S. Jha, "A novel Architecture for resource

management in Active Networks using a directory service",

ICT 2003, Tahiti, French Polynesia, February 23 -1 March,

2003, pp: 45-52.

[3] IXP2800 Framework developer manual, as provided with

the Intel IXA SDK 3.5.

[4] IXA Portability Framework Reference Manual, as provided

with the Intel IXA SDK 3.5.

[5] IXP 2800 Hardware Reference Manual, as provided with

the Intel IXA SDK 3.5.

[6] P. Pappu and T. Wolf, “Scheduling Processing Resources in

Programmable Routers,” Proc. IEEE INFOCOM ’02, June

2002.

[7] A. Demers, S. Keshav, and S. Shenker, “Design and

Analysis of a Fair Queuing Algorithm,” Proc. ACM

SIGCOMM, pp. 1-12, Sept.

1989.

[8] Website,”the Wireless World Research

Forum”,http://www.wireless-world-research.org.

[9] WWI Ambient Networks, http://www.ambient-

networks.org.

[10] “Intel IXP2400 Network Processor Overview,” white

paper,

http://www.intel.com/design/network/products/npfamily/ixp24

00.htm, 2007.

