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ABSTRACT 

Current TCP Protocols have lower throughput performance in 

satellite networks mainly due to the effect of long propagation 

delays and high link error rates. In this paper a new congestion 

control protocol for satellite networks is proposed. The protocol 

uses a proactive approach and is composed of novel ideas like 

Proactive Slow Start, Proactive Congestion Avoidance and 

Decision based Error handling policies that are combined with 

traditional TCP algorithms like Fast Retransmit. The mainstay of 

our protocol is that the nature of the RTT pattern can give us 

probable indication of an incipient congestion in the network. 

This changing pattern of RTT is incidentally used to differentiate 

between congestion or link error, thus avoiding unnecessary rate 

throttle. In the initial phase necessary augmentation of ns2 

simulator pertaining to the proposed protocol is carried out. This 

was essential to create a necessary test bed for exhaustive 

simulation of the protocol considering a GEO network with 

different congestion level and packet error rate. Simulation results 

show that the protocol always outperforms other TCP schemes in 

terms of goodput and in cases an improvement of 80% to 120% is 

observed especially when the packet error rate is very high. 

Evaluation of the protocol shows a high fairness property and 

excellent adaptability to high levels of congestion and errors.  

General Terms 

Algorithms, Performance, Design, Experimentation, Verification. 

Keywords 
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1. INTRODUCTION 
Over the years, TCP has become the de-facto protocol standard 

for congestion control in the existing terrestrial Internet. However, 

experimental and analytical studies [18] confirm that the current 

TCP protocols variants have performance problems in networks 

with long propagation delays and relatively high link error rates 

such as satellite networks [21], [20], [22]. From the view of TCP, 

the throughput is reciprocal to the round-trip time (RTT) of a 

connection, and is approximately proportional to the congestion 

window (cwnd), which represents the amount of unacknowledged 

data the sender can have in transit to the receiver [23]. In satellite 

networks, TCP throughput decreases because [21], [20], [22] the  

long  propagation delays cause longer duration of the Slow Start 

phase during which the sender may not use the available 

bandwidth.  

One of the major problem in a Satellite based Network is the 

random packet errors which are not common in the wired 

counterpart. TCP protocols react to the lack of arrival of 

acknowledgements or duplicate ACK as a sign of congestion. So 

the congestion window is reduced which leads to unnecessary 

throughput degradation. It is a challenge for the network 

researchers and protocol developers to find means to differentiate 

the cause of the DUP ACK arrival. Generally probing is done in 

protocols like Peach [1], Peach+ [2], TP-Planet [3] and RCS [4]. 

The TCP Protocols can be broadly classified into two categories, 

reactive protocols and proactive protocols. The reactive protocols 

do not take any action unless and until the problem really 

happens. The congestion window is allowed to grow as long as 

the acknowledgements return, signaling allowable capacity in the 

network till the point when Duplicate ACKs start coming 

signifying a loss of packet due to congestion or channel error. At 

that point corrective actions are taken mainly by reducing the 

congestion window and slow start threshold by different amounts 

with the intent to allow the network to come out of the congested 

state. The reactive protocols with a view to maximize the 

throughput always drives the network to the maximum capacity 

after which every connections suffer the collateral damage caused 

by the overestimation of the channel capacity. All the AIMD TCP 

protocol variants like Tahoe, Reno, New Reno, SACK, FACK, 

Peach, Peach+, TP-Planet fall in this category. Reactive 

algorithms tries to solve the problem but don’t consider why the 

problem happens.  On the other hand the proactive protocol tries 

to anticipate the overestimation of the network capacity and start 

taking corrective action to avoid the incipient congestive 

meltdown of the network. TCP Vegas [5] is a proactive protocol, 

which is also recommended by the CCSDS SCPS-TP [17] for use 

in satellite-based networks.   

In this paper, we introduce a new congestion control scheme for 

satellite networks, which is an end-to-end solution to improve the 

throughput performance in satellite networks. The paper is 

organized as follows. We introduce the new TCP Protocol in 

Section2. In Section3, we evaluate the performance of the 

proposed protocol   through simulation. Finally, in Section4 we 

conclude the paper 
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2. PROACTIVE CONGESTION CONTROL 
The main philosophy of this work is that congestion in a network 

does not grow all of a sudden. The queue in the routers start 

growing and that leads to more packet delay or an increase in the 

experienced RTT. The nature of the pattern of the RTT can give 

us some indication of the incipient congestion in the network. 

There exists some empirical value or limits on the RTT, which can 

signal an incipient congestion. If this changing pattern of the RTT 

is used to take decision in whether a packet loss is because of 

congestion or link error, then the unnecessary rate throttle need 

not be done. We have carried out simulation to verify the impact 

of congestion and channel errors on the RTT experienced by a 

connection. First the network is kept within is allowable limit and 

connections are allowed with congestion window that the network 

can very well handle and the pattern of RTT is observed. It is seen 

that the mean RTT remains within a limit. Then the network is 

slowly congested by increasing the congestion window of the 

prevailing connections, keeping packet error rates to zero. It is 

observed that in majority of the cases an increase in mean RTT 

occurs before a congestive loss is encountered. Then the 

connections are kept within the capacity and packet error rates are 

introduced. In this case duplicate acks start coming but the mean 

RTT is found to be within a limit. This confirmed that the pattern 

of the RTT could be used to take decisions in a proactive way to 

avoid congestion and handle errors.  

The protocol proposed in this paper is a Proactive protocol and it 

measures the mean RTT for every congestion window. If an 

increase in the mean RTT is experienced for three successive 

congestion window then it can be anticipated that the network is 

getting in to the congested state. Here the decision-making criteria 

are that how many congestion window should be checked for 

successive increase to conclude an incipient congestion. If more 

number of windows is considered for deriving at the conclusion 

that the network is moving to a congested state, then the decision 

may be more accurate but it may lead to a point where the 

network is so much congested that even taking corrective 

measures does not help. So it is decided that we take decision 

based on the mean RTT increase for three successive congestion 

windows. Out of the three windows the second window will 

detect an increase and gives us a direction and the next increase 

will confirm that detection so that corrective action can be taken. 

If we take a decision just by considering two windows then that 

may lead to false decisions. We have considered to take the 

increase in mean RTT rather than considering individual RTT 

because of the fact that the variation in individual RTT may be 

attributed by other factors like the choice of the different 

optimized path by the router, processing delays which are very 

much temporary and taking decision on that basis creates more 

frequent oscillations on the congestion window. But when a 

successive increase in the mean RTT is observed it signals of 

some major change happening in the network condition.  

2.1 Determination of Penalty Factor 
After an incipient congestion is detected, the congestion window 

is reduced by a penalty factor. Now the choice of the penalty 

factor is very important for the throughput of the protocol, which 

means how much the window should be decreased so that the 

incipient congestion can be avoided and the network returns to a 

stable condition from the congested state. There is a tradeoff, if 

the penalty is too high then the throughput of the protocol will 

decrease and if it is too low, then the corrective action necessary 

for avoiding the congestion will not happen. A simulation has 

been carried out with different value of the penalty factor from 0.1 

to 1 as shown in Fig 1. Penalty factor of 0.1 means a 90% 

decrease of the congestion window and 1 signified no change to 

the window, which means not using this logic of proactive 

congestion avoidance algorithm. The simulation of throughput 

with different values of penalty factor is plotted and it is seen that 

with penalty factor 1 the throughput degrades drastically which 

shows the justification of the proactive approach. A peak in the 

throughput is at .85 and .90, which corresponds to 15% to 10% 

decrease. Therefore, the protocol uses a penalty factor of 0.85 

with detection of an incipient congestion thereby removing the 

extra amount of data getting into the network. This will try to 

keep the overall network load within the tolerable limit and avoid 

a congestive loss and an eventual congestive meltdown of the 

network.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Evaluation of Throughput for different Penalty Factor 
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2.2 Proactive Slow Start 
In the beginning of a new connection, the sender executes the 

Slow Start algorithm to probe the availability of bandwidth along 

the path [27]. During the slow start phase the window doubles 

itself every RTT and quickly captures the channel bandwidth till 

the slow start threshold is reached. After that it increases linearly. 

The slow start phase creates performance degradation in cases the 

RTT is high. Peach [1], Peach+ [2] uses dummy packets to 

acquire the available capacity within two RTT by a technique 

named emulated slowstart. This is an efficient technique but 

requires special capability of the routers to discard low priority 

packets. Moreover during time of congestion this will add to the 

wastage of bandwidth. Vegas [5] uses a more conservative 

approach by increasing the congestion window every alternate 

RTT to avoid overestimation of network capacity. In the proposed 

protocol as the principle is a slow and steady rise of the 

congestion window we propose to retain the old slow start 

mechanism. The difference is that Proactive Slow Start phase will 

consider the incipient congestion algorithm. Before doubling its 

congestion window it will check if an incipient congestion is 

detected by an increase in the RTT. In that case the congestion 

window will not be doubled but rather decreased by the penalty 

factor. 

This will lead to a very controlled way of capturing the network 

capacity. When a connection starts if the network is not congested 

slow start will perform normally but if congestion exists in the 

network, the new connection will not pump too much packet in 

the network. The logic behind the proactive approach is that the 

collateral damage has to be avoided i.e. if the network is already 

getting into congested state a new connection in the process of 

getting too much resource should not create performance 

degradation to other connections in the network.  

 

2.3 Decision Based Error Recovery 

TCP was initially developed for wire line networks where the link 

error rate is low, such that the majority of the segment losses are 

due to network congestions. Thus, the sender assumes that all 

segment losses are caused by congestions and accordingly it 

decreases its transmission rate.   

Although the application of forward error correction (FEC) 

algorithms can increase the reliability of satellite links, satellite 

networks have several orders of magnitude higher error rates than 

the wireline networks [21]. As a result, we cannot ignore the 

errors in satellite links and assume that all segment losses occur 

due to congestion. This assumption may lead to drastic and 

unnecessary decrease in resource utilization [25], [26], [24], [21]. 

This problem could be solved if TCP could distinguish whether 

segment losses occur due to network congestion or due to link 

errors [20]. However, this is currently infeasible in [21], the 

authors suggest to decouple error and congestion control. TCP 

would then be responsible only for congestion control while the 

error control is handled by the link layer. However, this solution 

is impractical because the link layers of all sub networks 

composing the Internet need to be redesigned. An alternative 

solution is that the sender could contain an algorithm, which can 

distinguish between congestion and errors. 

However, such an algorithm must be very reliable. In fact, if this 

algorithm does not respond correctly to actual network 

congestion, the network utilization decreases drastically [21]. To 

our knowledge, such a reliable algorithm does not exist to date.  

Peach [1], Peach+ [2], TP-Planet [3] distinguishes errors and 

congestion by physically probing the network to confirm whether 

there is capacity in the network by sending low priority dummy 

packets and monitoring the reception of their Acknowledgement. 

These dummy packets add a high overhead of 17% [1] on the 

satellite channel and require special capability of the routers to 

drop low priority packets. This leads to wastage of the precious 

satellite bandwidth and its deployment also requires a change in 

routers along the path.   

In the proposed protocol we have considered the protocol to be 

moving through two broad states. An incipient congestion state 

which is signaled by the increase in RTT and an un-congested 

state. This state information is used by the protocol to handle the 

losses due to channel errors. So whenever three duplicate ACKs 

are received the protocol will check whether the protocol is in an 

incipient congestion state or not. If yes the congestion window 

and slow start threshold will be reduced to half. But if there is no 

sign of an incipient congestion the congestion window and slow 

start threshold will be kept unchanged only a Fast Retransmit will 

be done for the packet lost. Then the congestion window can 

increase linearly with each received ACK.  

It has been seen that a considerable amount of time is taken to 

gain an appreciable congestion window. So in this protocol the 

approach we have taken is that we will increase very 

conservatively and once an appreciable value is reached the 

protocol will proactively try to sense the network condition by 

measuring the mean RTT values and take action at the earliest 

opportunity. It will also try to avoid a reduction in congestion 

window if the loss is caused by channel error so that the protocol 

can maintain the gained congestion window value.  

2.4 Overall Working of Proactive TCP 

In Fig 2 the overall mechanism of the proposed Proactive TCP 

scheme is depicted. The protocol starts with the Proactive Slow 

Start phase where the slow start threshold is kept at half the 

receiver window, the congestion window to one and the state of 

the protocol is un-congested state. The receiver window signifies 

the maximum number of segments the receiver can accommodate. 

The congestion window is increased by one with each received 

ACK so that the congestion window doubles every RTT until the 

slow start threshold is reached. However, the mean RTT is also 

checked during this phase and if RTT increase is detected the 

congestion window is reduced by the penalty factor. After slow 

start threshold is crossed the protocol moves to the Proactive 

Congestion Avoidance phase where it increases the congestion 

window by 1/cwnd for every reception of ACK as in traditional 

Congestion Avoidance Algorithm.  
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Fig. 2: Proactive TCP Scheme   

 

If an acknowledgement is not received for a transmitted segment 

within its retransmission timeout period, the timer expires and the 

Proactive Slow Start phase is again initiated. During the Proactive 

Congestion Avoidance phase, the mean RTT is checked every 

time and if an increase in RTT for three successive congestion 

windows is detected; the congestion window is reduced by the 

penalty factor, and the state of the protocol changes to incipient 

congestion state. After this if three duplicate ACKs are received 

the protocol calls the Fast Retransmit algorithm, a retransmission 

of the lost segment is done, and the protocol moves to the 

Decision based Error Recovery Phase. In this phase if the protocol 

is in an incipient congestion phase, which signals that the network 

is in a congested state and a packet is not received by the receiver 

then the chance of the packet being lost by congestion is more. 

Moreover it is seen that even though the Proactive Congestion 

Avoidance algorithm has already taken action to avoid congestion 

in the network the segment loss is detected. So the congestion 

window is reduced to half and protocol moves to the Proactive 

Congestion avoidance phase. If the state of the protocol is in un-

congested state then no reduction in congestion window is done 

and protocol moves to Proactive Congestion avoidance as it is 

anticipated to be a loss due to error in the channel. The state of a 

protocol is changed from incipient congestion state to un-

congested state when a decrease in RTT for three successive 

congestion windows is observed. In case that a segment is 

retransmitted by Fast Retransmit, but again it gets lost or its 

acknowledgement gets lost because of either congestion or 

corruption the retransmission timer will expire which signals a 

major problem in the network and the congestion window is 

reduced to one and slow start threshold reduced to half of its 

previous value and Proactive Slow Start starts which will increase 

the congestion window in a fast but conservative manner to adapt 

to the available capacity.  

The algorithms described above are implemented in ns2 Simulator 

[16] inheriting the in built objects available in ns2 and adding the 

necessary functionality.   

3. SIMULATION AND ANALYSIS                     
We evaluate the performance of the proposed TCP in terms of 

goodput and fairness through simulations when several 

connections share the same link. We simulate the system as shown 

in the Fig3 below where N senders transmit data to N receivers 

through a satellite channel. The N streams are multiplexed in 

Earth Station A, whose buffer can accommodate K segments. The 

segments may get lost with a packet error rate PER. In this 

experiment all the N senders are each connected to the Earth 

station A with a link of bandwidth 500kbps and RTT of 10ms. All 

the N receivers are connected to Earth station B with a 500kbps 

link with RTT 10ms. We have taken N = 10, K = 25 segments, 

receiver window rwnd = 64 segments, the link between Earth 

Station A to B via satellite to be 5Mb and the RTT between the 

two stations as 550 ms.  
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Fig. 3: Simulation Scenario 

 

All the results in this section have been obtained by considering 

the system behavior for 550s, which is 1000 times the round trip 

time value. All the ten connections share a common satellite 

channel between Station A and B with a link capacity of five 

Mbps. In the Fig4, the throughput obtained by the individual 

connections for increasing RTT is plotted. The plot corresponds 

also to different PER values ranging from 0.001 to 0.1.It can be 

seen that the throughput degrades with increasing values of RTT. 

It can also be seen that when the RTT is small even a high PER 

does not significantly degrade the throughput. In the left hand it 

can be seen that the curves for different PER are closer on the 

other hand with high RTT the curves all highly dependent on the 

PER rates also. Another significant advantage of the protocol is 

that even with high error rates of 10-2 and 10-1 the throughput is 

not degraded drastically. 
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Fig. 4: New TCP Throughput for varying RTT for different PER 
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Throughtput Vs PER for GEO Network
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Fig. 5: New TCP Throughput for increasing PER 

 

In the test simulation 10 senders communicating to 10 receivers 

each using 500kbps channel and eventually multiplexed in an 

Earth station and sent to a GEO satellite with bandwidth of 

5Mbps is used for the generation of the plot shown in above Fig 

5. The Packet Error Rate of the link between Earth Station A to B 

is varied from 0.001 to 0.1. The mean throughput obtained by all 

the 10 connections is used in generating the graph. From the 

graph it can be seen that the throughput is quite high is case of 

PER less than 0.01. Theoretically each connection can get a 

maximum throughput of 500kbps as 10 connections share a 5Mb 

bottleneck link and from the graph it can be seen that more than 

300 kbps is achieved for PER of less than 0.01. The high 

significant reduction in throughput occurs when the PER 

approaches 0.1 is very uncommon as the BER of the channel is 

generally maintained with FEC to have PER of 0.01. 

3.1 Goodput Evaluation with TCP SACK and 

TCP Vegas 
Goodput is the effective amount of data delivered through the 

network. It is a direct indicator of network performance. We 

expect that a good TCP scheme transmit as much data as possible, 

while behaving friendly to other TCP flows in terms of 

consuming the network resource, e.g., bandwidth. In the 

following graphs shown the throughput of the protocol is 

compared to TCP SACK [6] and TCP Vegas [5] in the same test 

bed of 10 senders communicating to 10 receivers using a 5Mb 

bottleneck link via satellite. To artificially induce congestion the 

bandwidth between Earth Station A and B is stepwise reduced to 

see the reaction of the protocol to congestion. Here all ten 

different connections are connected to the Earth Station with 500 

kbps bandwidth.  
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Fig. 6: Throughput with Bandwidth PER = 0.001 
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Throughput Vs Bandwidth for GEO (PER=0.01)
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Fig. 7: Throughput with Bandwidth PER = 0.01 
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Fig. 8: Throughput with Bandwidth PER = 0.1 

 

Therefore, the minimum aggregate bandwidth required for all the 

connections to perform optimally is 5Mbps. When we reduce the 

satellite link bandwidth this will lead to congestion in the network 

and it is the job of the protocol to handle the congestion and 

reduce the data rate and adapt to the changing network condition 

and available bandwidth. In the first case, a PER of 0.001 is 

assumed and it can be seen from Fig 6 that at 5Mbps bandwidth, 

which signifies the minimum capacity, needed, the proposed TCP 

outperforms TCP SACK and TCP Vegas. In all the figures it can 

be noticed than when the congestion is very high as 1Mbps 

bottleneck link the protocol performs smoothly and gets a 

throughput close to 100 kbps so the effect of congestion is 

removed. In Fig 6, it can be seen as we go on reducing the 

bandwidth the protocol adapts to the new available capacity 

outperforming the SACK and Vegas. This is possible because of 

the proactive nature of the protocol, which detects an incipient 

congestion very quickly and takes corrective measures. When 

PER of 0.1 is used as shown in Fig. 8 it can be seen that the 

protocol outperforms SACK and Vegas by 100%. This is because 

of the fact that the protocol uses the prediction logic for 

differentiating the cause of loss of packet or arrival of duplicate 

ACKs between congestion and error. 

3.2 Impact on the congestion window 
Normally in TCP Protocols, the congestion window is increased 

with each successful delivery of data, which leads to a larger share 

of the bandwidth available for the corresponding connection, until 

a point is reached that the network gets so overloaded than its 

capacity that packets are dropped from the router queue and the 

congestion window is drastically reduced. It may also happen that 

the network is not congested, but due to channel error, data is lost 

and TCP unable to detect the cause of the error reduces the 

congestion window. Therefore, the congestion window grows 

initially remains at a certain level for some time and then falls 

drastically.  
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Fig. 9: Congestion Window Variation for GEO 
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Fig. 10: Congestion Window for GEO for PER = 0.001 

 

This total time called the congestion epoch determines the 

throughput of the connection. The larger the congestion epoch 

better is the utilization of the channel capacity. In Fig 9 is shown 

the behavior of the congestion window for the proposed protocol 

and it is seen that the congestion epoch is increased appreciably. 

Due to the proactive nature of the protocol, the congestion 

window during an excessive congested condition is found to 

oscillate below its maximum allowable limit. This gives the 

necessary performance enhancement the protocol achieves than its 

peers. Moreover, in this proposed protocol an attempt has been 

made to distinguish between congestive and corruptive loss. 

Therefore, in cases where a packet is lost due to channel error the 

protocol detects the channel error and no reduction is done on the 

congestion window. This retains the value of the congestion 

window and avoids unnecessary rate throttle. 

In Fig 10, it can be seen that the congestion window drops at 

certain points, which is attributed when duplicate ACKS are 

received when the protocol is in an incipient congestion phase. In 

the protocol the timeout algorithm is not changed, the binary 

backoff algorithm is used which doubles the timeout value with 

every timeout expiry. The timeout algorithm is kept unchanged 

keeping in view of its stable and proven nature and in case, that 

there in a false alarm in the decision making process the 

congestion window will be reduced with the timeout expiry. This 

will keep the network capacity under control in cases of heavy 

congestion or high error condition. The timer expiry will overrule 

the decisions taken by the proactive algorithm. But it can be seen 

that the congestion epoch is appreciable increased in Fig 10 which 

is attributed by the decision based error recovery and proactive 

congestion control algorithms. 
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3.3 Fairness of Proposed TCP 
The fairness of a protocol is ability of the connection to equally 

share the available bandwidth so that it does not happen that the 

connection, which starts first, takes an appreciable proportion of 

the bandwidth and does not release the capacity even when other 

connections are active in the network. This property is very much 

desirable in any new protocol and in the process of enhancement 

of throughput the fairness property should not be violated. So 

multiple connections of the same TCP scheme must interoperate 

nicely and converge to their fair share. The fairness index function 

(1) is proposed in [15], to justify the fairness of TCP schemes. 

The fairness index function is expressed as 

N

i

i

N

i

i

xN

x

xF

1

2

1

2

)(*

)(

)(
  (1) 

Where xi is the throughput of the ith connection, and n is the 

number of connections. F(x) ranges from 1/n to 1.0. A perfectly 

fair bandwidth allocation would result in a fairness index of 1.0. 

On the contrary if all bandwidth were consumed by one 

connection, (1) would yield 1/n. In Table 1 the fairness index 

calculated from all the 10 connections for different link capacity 

and packet error rate is shown. It can be seen that all the 

connections get an almost equal chare of bandwidth [14]. In Table 

1, the columns correspond to decreasing levels of bandwidth of 

the satellite link, which will create increasing congestion in the 

routers as the data received in an Earth Station is not getting the 

needed bandwidth to deliver the data to the destination. The rows 

correspond to increasing rates of packet error starting from no 

error to a PER of 0.1 where 1 out of 10 packets get corrupted. The 

protocol is seen to maintain a high degree of fairness even during 

high degree of congestion and error only a very slight degradation 

of fairness with increasing congestion or packet error can be seen.  

Table1 Jain’s Fairness Index for different bandwidth and 

packet error rate 

 5 Mb 4Mb 3Mb 2 Mb 1 Mb 

000 .99972 .99883 .99661 .99196 .98833 

.001 .99918 .99810 .99628 .96653 .97068 

.01 .99372 .99361 .99639 .99504 .98621 

.1 .99999 .99871 .99289 .99495 .98834 

 

4. CONCLUSION  
The distribution of RTT in normal network condition and a 

congested network condition is evaluated. As discussed in this 

paper we propose a new TCP scheme to improve the performance 

of TCP in Satellite based networks. The proactive TCP Protocol 

proposed is found to outperform its peers like Vegas and SACK 

under different levels of congestion and channel errors. The 

proactive nature of the protocol makes it quite robust in handling 

high degree of congestion where the protocol is found to well 

adapt to the available capacity. The advantage obtained by using 

Proactive Slow Start is that connections initiated during 

congested network conditions are restricted of creating collateral 

damage to other ongoing connections. The Decision based error 

recovery is very effective in not letting the congestion window 

degrade by differentiating errors and congestion making the 

protocol suitable for use in satellite based networks. Simulation 

results show that the protocol always outperforms other TCP 

variants, in terms of goodput by 80% to 120% when the packet 

error rate is high.  The most important merit is that the 

performance improvement obtained in this protocol [19] does not 

need any change in the Routers and all changes are restricted to 

the sender and receiver protocol stack. Moreover there is no extra 

overhead associated with the protocol for taking the decisions. 

The protocol is found to have the very good fairness property as 

analyzed in the paper. Though we have evaluated the protocol for 

GEO satellite network the protocol will also perform well in LEO 

or MEO based satellite networks. It can also be used in the 

terrestrial Internet for its good proactive congestion control and 

slow start mechanism.  
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