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ABSTRACT 
 

The design of many-core-on-a-chip has allowed renewed an intense 

interest in parallel computing. On implementation part, it has been 

seen that most of applications are not able to use enough parallelism 

in parallel register sharing architecture. The exploitation of potential 

performance of superscalar processors has shown that processor is 

fed with sufficient instruction bandwidth. The fetcher and the 

Instruction Stream Buffer (ISB) are the key elements to achieve this 

target. Beyond the basic blocks, the instruction stream is not 

supported by currents ISBs. The split line instruction problem 

depreciates this situation for x86 processors. With the 

implementation of Line Weighted Branch Target Buffer (LWBTB), 

the advance branch information and reassembling of cache lines can 

be predicted by the ISB. The ISB can fetch some more valid 

instructions in a cycle through reassembling of original line 

containing instructions for next basic block. If the cache line size is 

more than 64 bytes, then there exist good chances to have two basic 

blocks in the recognized instruction line. 
 

The code generation for parallel register share architecture involves 

some issues that are not present in sequential code compilation and 

is inherently complex. To resolve such issues, a consistency contract 

between the code and the machine can be defined and a compiler is 

required to preserve the contract during the transformation of code. 

In this paper, we present a correctness framework to ensure the 

protection of the contract and then we use code optimization for 

verification under parallel code. 
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1. Introduction 
 

Instruction-level parallel processing (ILP) has established itself as 

the only viable  approach for achieving the goal of providing 

continuously increasing performance without having to 

fundamentally re-write the application. Instruction-level parallelism 

allows a sequence of instructions derived from a sequential program 

to be parallelized for execution on the processors having multiple 

functional units. There are several reasons why the parallelization of 

a sequential program is important.  

The most frequently mentioned reason is that there are many 

sequential programs that would be convenient to explore the 

architectural parallelism available with the processor. There are, 

however, two other reasons that are perhaps more important. First, 

powerful parallelizers should facilitate programming by allowing 

the development of much of the code in a familiar sequential 

programming language such as C. Such programs would also be  

portable across different classes of machines if effective compilers 

were developed for each class. The second reason is that it exploits 

parallelism without requiring the programmer to rewrite existing  

 

 

applications. ILP’s success is due to its ability to overlap the execution 

of individual operations without explicit synchronization. 
 

Consequently, microprocessor increasingly support coarser thread 

based parallelism in the form of simultaneous multithreading (SMT) [6] 

and chip multiprocessing (CMP) [12]. 
 

Medium to low parallelism is targeted by Inthreads architecture 

between the ILP and its multithreaded execution. At this end thread 

based parallelism is applied at a fine granularity by providing extremely 

light weight threads. A programming model  is defined by Inthreads, 

which share the context of threads to the maximal possible extent 

including most of the architectural registers and memory address space. 
 

The implicit assumption based on compiler employ many of the code 

transformations. The registers are local for each thread, and the 

correctness is broken if they are applied to multithreaded code sharing 

registers [2]. The compilation techniques necessary to preserve the 

correctness are also described in this paper. 
 

2. Related work 
 

By applying Amdahl’s formulation to the programs in the PARSEC and 

SPLASH-2 benchmark suites, the applications may not have enough 

parallelism for modern parallel machines. However, value prediction 

techniques may allow the parallelization of the sequential portion by 

predicting values before they are produced. [16] extends Amdahl’s 

formulation to model the data redundancy inherent to each benchmark. 

The analysis in [16] shows that the performance of PARSEC suite 

benchmarks may improve by a factor of 180.6% and 232.6% for the 

SPLASH-2 suite, compared to when only the intrinsic parallelism is 

considered. This demonstrates the immense potential of fine-grained 

value prediction in enhancing the performance of modern parallel 

machines. 
 

Many commercially available embedded processors are capable of 

extending their base instruction set for a specific domain of 

applications. While steady progress has been made in the tools and 

methodologies of automatic instruction set extension for configurable 

processors, recent study has shown that the limited data bandwidth 

available in the core processor (e.g., the number of simultaneous 

accesses to the register file) becomes a serious performance bottleneck. 

[10] proposes a new low-cost architectural extension and associated 

compilation techniques to address the data bandwidth problem. [10] 

also present a novel simultaneous global shadow register binding with a 

hash function generation algorithm to take full advantage of the 

extension. The application of this approach leads to a nearly-optimal 

performance speedup (within 2% of the ideal speedup). 
 

To balance multiple scheduling performance requirements on parallel 

computer systems, traditional job schedulers are configured with many 

parameters for defining job or queue priorities. Using many parameters 

seems flexible, but in reality, tuning their values is highly challenging. 

To simplify resource management, [19] proposes goal-oriented policies, 
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which allow system administrators to specify high-level 

performance goals rather than tuning low-level scheduling 

parameters. 
 

EPIC (Explicitly Parallel Instruction Computing) architectures, 

exemplified by the Intel Itanium, support a number of advanced 

architectural features, such as explicit instruction-level parallelism, 

instruction predication, and speculative loads from memory. [14] 

describes techniques to undo some of the effects of such 

optimizations and thereby improve the quality of reverse 

engineering such executables.  
 

In [7] a compilation framework is presented that allows the compiler 

to maximize the benefits of predication as a compiler representation 

while delaying the final balancing of control flow and predication to 

schedule time. In [18] a heuristic is presented developed by using 

the Trimaran simulator. The results are compared to those of the 

current hyperblock formation heuristic. Weaknesses of the heuristic 

are exploited and further development is examined.  [13] explores 

how to utilize loop cache to relieve the unnecessary pressure placed 

on the trace cache by loops. [8] introduces a technique to enhance 

the ability of dynamic ILP processors to exploit (speculatively 

executed) parallelism.  
 

 [17] presents a performance metric that can be used to guide the 

optimization of nested loops considering the combined effects of 

ILP,  data reuse and latency hiding techniques. [20 ] represents the 

impact of ILP processors on the performance of shared-memory 

multiprocessors, both without and with the latency hiding 

optimization of software pre-fetching. 
 

One of the critical goals in code optimization for Multiprocessor-

System-on-a-Chip (MPSoC) architectures is to minimize the 

number of off-chip memory accesses. [9] proposes a strategy that 

reduces the number of off-chip references due to shared data. It 

achieves this goal by restructuring a parallelized application code in 

such a fashion that a given data block is accessed by parallel 

processors within the same time frame so that its reuse is maximized 

while it is in the on-chip memory space.  
 

3. Inthreads Architecture 
 

The key elements of Inthreads architecture are a fixed number of 

lightweight thread contexts. These lightweights are executed over a 

shared register file. The thread scheduling and management to be 

performed in the hardware internally is supported by the fixed 

nature of Inthreads model. The threads initiate scheduling for using 

the registers in such a manner to avoid conflicts, rather they dedicate 

a subset of registers for local use of each thread. The registers are 

communicated by threads in the same manner as shared memory 

locations are communicated by the conventional threads. For safe 

communication, the architecture incorporates dedicated 

synchronization instructions which operate on a set of conditional 

register of 1-bit. Synchronization registers behave as binary 

semaphores. The summary of these instructions is given in [2]. 
 

The programs required by Inthreads model are supposed to be free 

from data-race in both memory and register access. The model 

assigns release semantics to thread inth.start, inth.halt, inth.set, and 

inth.resume instructions and the required semantics are inth.wait and 

inth.suspend. 
 

The Inthreads code generation process [2] is divided into two stages. 

We extend this process in three steps as shown in figure 1. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 1 Stages in Inthreads compilation 
 

The parallelization step creates Inth-C code from given source code. 

The Inth-C compiler converts the parallel code into Inth-C object code 

(Inthreads compliant machine language). The Inth-C linker converts the 

Inth-C object code in to Inthreads executable code. For each thread 

there exists a parallel region, which is enclosed within a block of code 

marked with directive #pragma inthread. Following is an example of 

such code: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 2 An Inth-C code 

 

 

 
 

Source Code 

Explicit Parallelizer 

or 

Parallelizing Compiler 

 Inth-C Code 

Inth-C Compiler 

 Inth-C Object Code 

Inth-C Linker 

Inthreads Executable Code 

INTH_START (1, T1) 
#pragma inthread 
{ 
y = …..; 
INTH_WAIT(1); 
x+ = y; 
} 
return(x); 
T1: # pragma inthread 
{ 
x = …..; 
INTH_SET(1); 
INTH_HALT(); 
x+ = y; 
} 
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3.1 The ISB Architecture 
Figure 3 shows the architecture of  Instruction Stream Buffer (ISB): 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 3 The ISB Architecture 
 
 

It consists of five key components namely: instruction identifier, 

fetch sequencer, prefetch buffer, LWBTB logic, and reassembly 

unit. The fetch sequencer directs the instructions for fetch direction 

as per the branch information maintained by it. The read address of 

LWBTB, prefetch buffer and instructions are generated by fetch 

sequencer. The ISB in most of current processors does not support 

instruction streaming beyond the basic blocks. The major 

components of reassembly units are: the next PC generator, the 

buffer line reassembly unit, and the pointer reorder unit. Two buffer 

lines can be reassembled by buffer line reassembly unit according to 

the design of ISB. 

 

 

 

 

 

 

 

 
 
 
 

3.2 The Structure of ISB 
 

In the design of LWBTB, the branch target buffer (BTB) can be 

redesigned to provide sufficient reassembling information for 

instruction stream buffer to have the reassembling ability. Figure 4 

shows the structure of ISB illustrating an example of how the 

instruction stream is directed by fetch sequencer. 
 

   

 

 

 

There is no branch information in fetch sequencer in cycle 1. Following 

two read addresses are supplied by the fetch sequencer to the prefetch 

buffer: (i) PC1, and (ii) the starting address of the next buffer line after 

PC1. PC1 is also accessed by fetch sequences to access LWBTB to get 

two branch information, say ‘A’ and ‘B’. If the branch ‘A’ is not the 

fetched instructions in cycle 1, it is stored in fetch sequencer, otherwise 

the information of branch ‘B’ is stored and the branch ‘A’ is assigned 
the next PC as target address. In cycle 2, it is assumed that branch ‘A’ 

is the fetched instruction in cycle 1 and the information of branch ‘B’ is 

stored in the fetch sequencer with PC2 as the target address of branch 

‘A’. 
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4. Parallel code Compilation 
 

The implicit assumption taken by conventional compilers, as the 

result of execution of threads in shared context, do not hold for 

Inthreads parallelized code. Let us consider the code given in 

section 3. the variable ‘x’ is assigned in thread T1 which is read 

later in main thread. It would not be aware of communication 

through ‘x’ separately if the compiler processed the code T12 

independently, and it could erroneously identify assuming ‘x’ in T1 

as dead code. The incorrect code generated by ‘x’ is then removed. 
 

4.1 Internal Code Representation 
 

Control flow graph (CFG) [15] is the best way for compilers to use 

internal code representation. The nodes of control flow graph 

represent basic blocks of the program and the edges represent the 

possibility of control flow path between various basic blocks. 

Control flow graph with information on parallel execution semantics 

is extended by concurrent control flow graph (CCFG) [5]. The 

CCFG introduces two additional edges which connect the outgoing 

edges of an INTH_START to the code of the starting thread. 

Second, the synchronization edges, which connect INTH_SET 

instruction to the corresponding INTH_WAIT in parallel threads. 

Figure 5 shows the CCFG of code given in section 3: 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

  Fig. 5 CCFG of figure 2 
 

4.2 Identification of Shared Variables 
 

The detection of shared variables is discussed in [2]. The detection 

of shared variable conservatively considers all possible pairs of 

synchronized instructions as edges of flow graph. 

 
 

4.3 Correctness Requirement for Compilers 
 

There are mainly two stages in which compiler  conceptually 

proceeds. The compiler can introduce new temporary variables, 

roughly corresponding to the set of transformation of compiler 

optimization during first stage. During the second stage, the 

compiler performs a mapping of statements from the set of program 

variables to the set location corresponding to register allocation. To 

show the correctness of compilation of context sharing 

multithreaded code [2], the generated data should be data-race-free. 

That means the execution is sequentially consistence and execution 

results of the compiled code are possible under the execution of the 

input source program. 

 
 

4.4 Compilation optimization 
 

In general, the optimization can be classified into data-flow-sensitive 

and data-flow-insensitive [15]. The data flow insensitive optimization 

has little interface with parallel execution of  code but data flow 

sensitive optimization needs some significant adjustments. Dead code 

elimination tries to eliminate the code involving useless computation. A 

statement is said to be useless if it is never used in any of the following 

execution part. Common sub-expression elimination [1] eliminates 

duplicate steps of computation.  

 
 

5. Mapping of Register Allocation 
 

Register allocation has been uased by most of modern compilers. It is 

mapping of virtual registers to the limited set of architectural registers. 

Graph coloring [2] is the dominant approach for register allocation. It 

represents the problem by an inference graph. The inference graph uses 

nodes by representation of virtual registers and edges connect any two 

conflict nodes. 

 
 

6. Implementation 
 

Inth-C compiler is implemented for code compilation [2]. For this 

purpose  a simulator based on SimpleScalar tool set [4] is used. A set of 

benchmarks is used for evaluation including benchmarks Spec2000 

suite [11]. The benchmarks used from [11] are Mcf, Art, and Twolf, 

and remaining from Mediabench suite [3]. The following figure shows 

the effect of register file size on speedup achieved by comparison of 

benchmearks 

with original 

sequential 

versio  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Slow down of serial code as a function of register file size 
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It was observed that the result depends upon the register pressure in 

the original sequential code. For comparatively complex code like 

Epic, Art, and Mesa, the performance is improved significantly as 

per the number of registers. The remaining benchmarks are 

unchanged. When the effect of register file size on execution speed 

of original one is compared we find that only significantly affected 

sequential code is Mesa, which is slowed down by 30% while using 

twelve registers. The pressure is more prominent in parallel version 

where Mesa is slowed down by 50%.  

 
 

7. CONCLUSION 
 

In this paper we have shown that the integration of programming 

model with architecture benefits the hardware as well as the 

compiler. We have given a framework that performs the correctness 

analysis of compiler optimization. We have also applied a 

framework to prove correctness of compiler that supports register 

sharing architecture. The integration of compilation model with 

architecture can pave both sides. The limitations imposed on code 

can reduce the amount of conflict between the instruction of various 

threads and the hardware implementation can be simplified. Apart 

from this the consistency assurance supported by the architecture 

results in a simplified programming model. 
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