
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 16

95

A Modern Parallel Register Sharing Architecture for Code
Compilation

 Rajendra Kumar, Dr. P. K. Singh,
 Vidya College of Engineering, Meerut (UP) MMM Engineering College, Gorakhpur

ABSTRACT

The design of many-core-on-a-chip has allowed renewed an intense

interest in parallel computing. On implementation part, it has been

seen that most of applications are not able to use enough parallelism

in parallel register sharing architecture. The exploitation of potential

performance of superscalar processors has shown that processor is

fed with sufficient instruction bandwidth. The fetcher and the

Instruction Stream Buffer (ISB) are the key elements to achieve this

target. Beyond the basic blocks, the instruction stream is not

supported by currents ISBs. The split line instruction problem

depreciates this situation for x86 processors. With the

implementation of Line Weighted Branch Target Buffer (LWBTB),

the advance branch information and reassembling of cache lines can

be predicted by the ISB. The ISB can fetch some more valid

instructions in a cycle through reassembling of original line

containing instructions for next basic block. If the cache line size is

more than 64 bytes, then there exist good chances to have two basic

blocks in the recognized instruction line.

The code generation for parallel register share architecture involves

some issues that are not present in sequential code compilation and

is inherently complex. To resolve such issues, a consistency contract

between the code and the machine can be defined and a compiler is

required to preserve the contract during the transformation of code.

In this paper, we present a correctness framework to ensure the

protection of the contract and then we use code optimization for

verification under parallel code.

Keywords
 ILP, multithreading, fine-grained, Inthreads, ISB

1. Introduction

Instruction-level parallel processing (ILP) has established itself as

the only viable approach for achieving the goal of providing

continuously increasing performance without having to

fundamentally re-write the application. Instruction-level parallelism

allows a sequence of instructions derived from a sequential program

to be parallelized for execution on the processors having multiple

functional units. There are several reasons why the parallelization of

a sequential program is important.

The most frequently mentioned reason is that there are many

sequential programs that would be convenient to explore the

architectural parallelism available with the processor. There are,

however, two other reasons that are perhaps more important. First,

powerful parallelizers should facilitate programming by allowing

the development of much of the code in a familiar sequential

programming language such as C. Such programs would also be

portable across different classes of machines if effective compilers

were developed for each class. The second reason is that it exploits

parallelism without requiring the programmer to rewrite existing

applications. ILP’s success is due to its ability to overlap the execution

of individual operations without explicit synchronization.

Consequently, microprocessor increasingly support coarser thread

based parallelism in the form of simultaneous multithreading (SMT) [6]

and chip multiprocessing (CMP) [12].

Medium to low parallelism is targeted by Inthreads architecture

between the ILP and its multithreaded execution. At this end thread

based parallelism is applied at a fine granularity by providing extremely

light weight threads. A programming model is defined by Inthreads,

which share the context of threads to the maximal possible extent

including most of the architectural registers and memory address space.

The implicit assumption based on compiler employ many of the code

transformations. The registers are local for each thread, and the

correctness is broken if they are applied to multithreaded code sharing

registers [2]. The compilation techniques necessary to preserve the

correctness are also described in this paper.

2. Related work

By applying Amdahl’s formulation to the programs in the PARSEC and

SPLASH-2 benchmark suites, the applications may not have enough

parallelism for modern parallel machines. However, value prediction

techniques may allow the parallelization of the sequential portion by

predicting values before they are produced. [16] extends Amdahl’s

formulation to model the data redundancy inherent to each benchmark.

The analysis in [16] shows that the performance of PARSEC suite

benchmarks may improve by a factor of 180.6% and 232.6% for the

SPLASH-2 suite, compared to when only the intrinsic parallelism is

considered. This demonstrates the immense potential of fine-grained

value prediction in enhancing the performance of modern parallel

machines.

Many commercially available embedded processors are capable of

extending their base instruction set for a specific domain of

applications. While steady progress has been made in the tools and

methodologies of automatic instruction set extension for configurable

processors, recent study has shown that the limited data bandwidth

available in the core processor (e.g., the number of simultaneous

accesses to the register file) becomes a serious performance bottleneck.

[10] proposes a new low-cost architectural extension and associated

compilation techniques to address the data bandwidth problem. [10]

also present a novel simultaneous global shadow register binding with a

hash function generation algorithm to take full advantage of the

extension. The application of this approach leads to a nearly-optimal

performance speedup (within 2% of the ideal speedup).

To balance multiple scheduling performance requirements on parallel

computer systems, traditional job schedulers are configured with many

parameters for defining job or queue priorities. Using many parameters

seems flexible, but in reality, tuning their values is highly challenging.

To simplify resource management, [19] proposes goal-oriented policies,

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 16

96

which allow system administrators to specify high-level

performance goals rather than tuning low-level scheduling

parameters.

EPIC (Explicitly Parallel Instruction Computing) architectures,

exemplified by the Intel Itanium, support a number of advanced

architectural features, such as explicit instruction-level parallelism,

instruction predication, and speculative loads from memory. [14]

describes techniques to undo some of the effects of such

optimizations and thereby improve the quality of reverse

engineering such executables.

In [7] a compilation framework is presented that allows the compiler

to maximize the benefits of predication as a compiler representation

while delaying the final balancing of control flow and predication to

schedule time. In [18] a heuristic is presented developed by using

the Trimaran simulator. The results are compared to those of the

current hyperblock formation heuristic. Weaknesses of the heuristic

are exploited and further development is examined. [13] explores

how to utilize loop cache to relieve the unnecessary pressure placed

on the trace cache by loops. [8] introduces a technique to enhance

the ability of dynamic ILP processors to exploit (speculatively

executed) parallelism.

 [17] presents a performance metric that can be used to guide the

optimization of nested loops considering the combined effects of

ILP, data reuse and latency hiding techniques. [20] represents the

impact of ILP processors on the performance of shared-memory

multiprocessors, both without and with the latency hiding

optimization of software pre-fetching.

One of the critical goals in code optimization for Multiprocessor-

System-on-a-Chip (MPSoC) architectures is to minimize the

number of off-chip memory accesses. [9] proposes a strategy that

reduces the number of off-chip references due to shared data. It

achieves this goal by restructuring a parallelized application code in

such a fashion that a given data block is accessed by parallel

processors within the same time frame so that its reuse is maximized

while it is in the on-chip memory space.

3. Inthreads Architecture

The key elements of Inthreads architecture are a fixed number of

lightweight thread contexts. These lightweights are executed over a

shared register file. The thread scheduling and management to be

performed in the hardware internally is supported by the fixed

nature of Inthreads model. The threads initiate scheduling for using

the registers in such a manner to avoid conflicts, rather they dedicate

a subset of registers for local use of each thread. The registers are

communicated by threads in the same manner as shared memory

locations are communicated by the conventional threads. For safe

communication, the architecture incorporates dedicated

synchronization instructions which operate on a set of conditional

register of 1-bit. Synchronization registers behave as binary

semaphores. The summary of these instructions is given in [2].

The programs required by Inthreads model are supposed to be free

from data-race in both memory and register access. The model

assigns release semantics to thread inth.start, inth.halt, inth.set, and

inth.resume instructions and the required semantics are inth.wait and

inth.suspend.

The Inthreads code generation process [2] is divided into two stages.

We extend this process in three steps as shown in figure 1.

 Fig. 1 Stages in Inthreads compilation

The parallelization step creates Inth-C code from given source code.

The Inth-C compiler converts the parallel code into Inth-C object code

(Inthreads compliant machine language). The Inth-C linker converts the

Inth-C object code in to Inthreads executable code. For each thread

there exists a parallel region, which is enclosed within a block of code

marked with directive #pragma inthread. Following is an example of

such code:

 Fig. 2 An Inth-C code

Source Code

Explicit Parallelizer

or

Parallelizing Compiler

 Inth-C Code

Inth-C Compiler

 Inth-C Object Code

Inth-C Linker

Inthreads Executable Code

INTH_START (1, T1)
#pragma inthread
{
y = …..;
INTH_WAIT(1);
x+ = y;
}
return(x);
T1: # pragma inthread
{
x = …..;
INTH_SET(1);
INTH_HALT();
x+ = y;
}

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 16

97

3.1 The ISB Architecture
Figure 3 shows the architecture of Instruction Stream Buffer (ISB):

 Fig. 3 The ISB Architecture

It consists of five key components namely: instruction identifier,

fetch sequencer, prefetch buffer, LWBTB logic, and reassembly

unit. The fetch sequencer directs the instructions for fetch direction

as per the branch information maintained by it. The read address of

LWBTB, prefetch buffer and instructions are generated by fetch

sequencer. The ISB in most of current processors does not support

instruction streaming beyond the basic blocks. The major

components of reassembly units are: the next PC generator, the

buffer line reassembly unit, and the pointer reorder unit. Two buffer

lines can be reassembled by buffer line reassembly unit according to

the design of ISB.

3.2 The Structure of ISB

In the design of LWBTB, the branch target buffer (BTB) can be

redesigned to provide sufficient reassembling information for

instruction stream buffer to have the reassembling ability. Figure 4

shows the structure of ISB illustrating an example of how the

instruction stream is directed by fetch sequencer.

There is no branch information in fetch sequencer in cycle 1. Following

two read addresses are supplied by the fetch sequencer to the prefetch

buffer: (i) PC1, and (ii) the starting address of the next buffer line after

PC1. PC1 is also accessed by fetch sequences to access LWBTB to get

two branch information, say ‘A’ and ‘B’. If the branch ‘A’ is not the

fetched instructions in cycle 1, it is stored in fetch sequencer, otherwise

the information of branch ‘B’ is stored and the branch ‘A’ is assigned
the next PC as target address. In cycle 2, it is assumed that branch ‘A’

is the fetched instruction in cycle 1 and the information of branch ‘B’ is

stored in the fetch sequencer with PC2 as the target address of branch

‘A’.

Instruction

Identifier-1
Instruction

Identifier-0

Pre fetch

Buffer

:

Reassembly Unit

Next PC generator

Buffer Line

reassembly unit

Pointer reorder unit

Fetch

Sequencer

LWBTB

logic
 BTB

Bnaks

LWBTB Fetch

Sequencer

Empty

 Pre-fetch Buffer

Reassembled line

PC1

Branch A (First branch after PC1)
Branch B (first branch after target

address of branch A)

PC1

 Start address of next buffer line of PC1

Cycle 1

LWBTB Fetch

Sequencer

Empty

 Pre-fetch Buffer

Reassembled line

PC2

Branch C (First branch after target address ob B)
Branch D (first branch after target address of C)

PC2

 Target address of branch B

Cycle 2

Fig. 4 The ISB structure

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 16

98

4. Parallel code Compilation

The implicit assumption taken by conventional compilers, as the

result of execution of threads in shared context, do not hold for

Inthreads parallelized code. Let us consider the code given in

section 3. the variable ‘x’ is assigned in thread T1 which is read

later in main thread. It would not be aware of communication

through ‘x’ separately if the compiler processed the code T12

independently, and it could erroneously identify assuming ‘x’ in T1

as dead code. The incorrect code generated by ‘x’ is then removed.

4.1 Internal Code Representation

Control flow graph (CFG) [15] is the best way for compilers to use

internal code representation. The nodes of control flow graph

represent basic blocks of the program and the edges represent the

possibility of control flow path between various basic blocks.

Control flow graph with information on parallel execution semantics

is extended by concurrent control flow graph (CCFG) [5]. The

CCFG introduces two additional edges which connect the outgoing

edges of an INTH_START to the code of the starting thread.

Second, the synchronization edges, which connect INTH_SET

instruction to the corresponding INTH_WAIT in parallel threads.

Figure 5 shows the CCFG of code given in section 3:

 Fig. 5 CCFG of figure 2

4.2 Identification of Shared Variables

The detection of shared variables is discussed in [2]. The detection

of shared variable conservatively considers all possible pairs of

synchronized instructions as edges of flow graph.

4.3 Correctness Requirement for Compilers

There are mainly two stages in which compiler conceptually

proceeds. The compiler can introduce new temporary variables,

roughly corresponding to the set of transformation of compiler

optimization during first stage. During the second stage, the

compiler performs a mapping of statements from the set of program

variables to the set location corresponding to register allocation. To

show the correctness of compilation of context sharing

multithreaded code [2], the generated data should be data-race-free.

That means the execution is sequentially consistence and execution

results of the compiled code are possible under the execution of the

input source program.

4.4 Compilation optimization

In general, the optimization can be classified into data-flow-sensitive

and data-flow-insensitive [15]. The data flow insensitive optimization

has little interface with parallel execution of code but data flow

sensitive optimization needs some significant adjustments. Dead code

elimination tries to eliminate the code involving useless computation. A

statement is said to be useless if it is never used in any of the following

execution part. Common sub-expression elimination [1] eliminates

duplicate steps of computation.

5. Mapping of Register Allocation

Register allocation has been uased by most of modern compilers. It is

mapping of virtual registers to the limited set of architectural registers.

Graph coloring [2] is the dominant approach for register allocation. It

represents the problem by an inference graph. The inference graph uses

nodes by representation of virtual registers and edges connect any two

conflict nodes.

6. Implementation

Inth-C compiler is implemented for code compilation [2]. For this

purpose a simulator based on SimpleScalar tool set [4] is used. A set of

benchmarks is used for evaluation including benchmarks Spec2000

suite [11]. The benchmarks used from [11] are Mcf, Art, and Twolf,

and remaining from Mediabench suite [3]. The following figure shows

the effect of register file size on speedup achieved by comparison of

benchmearks

with original

sequential

versio

Fig. 6 Slow down of serial code as a function of register file size

INTH_START()

y = …… x = ……
z = ……
INTH_SET(1)

INTH_WAIT()
x = x + y

INTH_HALT(1)

return(x)

R
el
at
iv
e
ex
ec
u
ti
o
n
 s
p
ee
d

0
.5

 0
.6

0
.7

0
.8

0
.9

1
.0

1
.1

 10 20 30 40 50 60 70

 * *

 Gsm *

 Mesa

 Mcf

R
el
at
iv
e
ex
ec
u
ti
o
n
 s
p
ee
d

0
.5

 0
.6

0
.7

0
.8

0
.9

1
.0

1
.1

 10 20 30 40 50 60 70

 Epic
 Gsm

 Mesa

 Mcf

 Art

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 16

99

It was observed that the result depends upon the register pressure in

the original sequential code. For comparatively complex code like

Epic, Art, and Mesa, the performance is improved significantly as

per the number of registers. The remaining benchmarks are

unchanged. When the effect of register file size on execution speed

of original one is compared we find that only significantly affected

sequential code is Mesa, which is slowed down by 30% while using

twelve registers. The pressure is more prominent in parallel version

where Mesa is slowed down by 50%.

7. CONCLUSION

In this paper we have shown that the integration of programming

model with architecture benefits the hardware as well as the

compiler. We have given a framework that performs the correctness

analysis of compiler optimization. We have also applied a

framework to prove correctness of compiler that supports register

sharing architecture. The integration of compilation model with

architecture can pave both sides. The limitations imposed on code

can reduce the amount of conflict between the instruction of various

threads and the hardware implementation can be simplified. Apart

from this the consistency assurance supported by the architecture

results in a simplified programming model.

REFERENCES
[1] Aho, A. V., R. Sethi, and J. D. Ullman, “Compilers. Principles,

Techniques and Tools”, Addison Wesley, 2000.

[2] Alex G., Avi M. Assaf S., Gregory S., Code Compilation for an

Explicitly Parallel Register-Sharing Architecture, IEEE

International Conference on Parallel Processing, 2007

[3] C. Lee, M. Potkonjak, W. H. Mangoine-Smith, “Mediabench: A

Tool for Evaluating and Synthesizing Multimedia and

Communications Systems”, 30th Annual ACM International

Symposium on Microarchitecture, 1997

[4] D. Burger, T. M. Tustin, S. Bennet, “Evaluating Future

Microprocessors: The SimpleScalar Tool Set”, Technical

Report CS-TR, University of Wisconsin Madison, 1996

[5] D. Grunwald, H. Srinivasan, “Data Flow Equations for

Explicitly Parallel Programs”, Fourth ACM SIGPLAN

symposium on Principles and Practice of Parallel

Programming, 1993

[6] D. M. Tullsen, S. Eggers, H. M. Levy, “Simultaneous

Multithreading: Maximizing on-chip Parallelism”, Proceeding

of the 22th Annual International Symposium on Computer

Architecture, 1995

[7] David I. August Wen-mei W. Hwu Scott A. Mahlke, The Partial

Reverse If-Conversion Framework for Balancing Control Flow

and Predication, International Journal of Parallel Programming

Volume 27, Issue 5, Pages: 381 – 423, 1999

[8] Dionisios N. Pnevmatikatos Manoj Franklin, Control Flow

Prediction for Dynamic ILP Processors, Proceedings of the 26th

Annual International Symposium on Micro-architecture, 1993

[9] Guilin Chen, Mahmut Kandemir, Compiler-Directed Code

Restructuring for Improving Performance of MPSoCs, IEEE

Transactions on Parallel and Distributed Systems, Vol. 19, No. 9,

2008

[10] J. Cong, Guoling Han, Zhiru Zhang, “Architecture and

compilation for data bandwidth improvement in configurable

embedded processors”, IEEE International Conference on

Computer Aided Design, Proceedings of the 2005

[11] J. L. Henning, “SPEC CPU 2000: Measuring CPU Performance in

the new Millennium”, Computer 33(7), 2000

[12] L. Hammond, B. A. Nayfeh, K. Olukotun, “A single chip

Multiprocessor”, IEEE Computer Special Issue on Billion-

Transistor Processor, 30(9), 1997

[13] Marcos, Keali, “Exposing instruction level parallelism in the

presence of loops”, Computation Systems Vol. 8 Number 1, pp.

074-085, 2004

[14] Noah Snavely, Saumya Debray, Gregory R. Andrews,

Unpredication, Unscheduling, Unspeculation: Reverse

Engineering Itanium Executable, IEEE Transactions on

Software Engineering, Volume 31 Issue 2, 2005

[15] S. Muchnik, “Advanced compiler design and implementation”,

Morgan Kaufmann Publishing, 1997

[16] Shaoshan Liu Gaudiot, J. L., The potential of fine-grained value

prediction in enhancing the performance of modern parallel

machines, Computer Systems Architecture Conference, 2008

[17] Steve Car, Combining Optimization for Cache and Instruction-

Level Parallelism, Proceedings of PACT’96, 1996

[18] Siwei Shen, David Flanagan, Siu-Chung Cheung, “An Extended

Heuristic for Hyper-block Selection in If-Conversion”,

Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, Michigan 48109, USA

[19] Su-Hui Chiang and Sangsuree Vasupongayya, Design and

Potential Performance of Goal-Oriented Job Scheduling Policies

for Parallel Computer Workloads, IEEE Transactions on

Parallel and Distributed Systems, Vol. 19, no. 12, December

2008.

[20] Vijay S. Pai, Parthasarathy Ranganathan, Hazim Abdel-Shafi, and

Sarita Adve, “The Impact of Exploiting Instruction-Level

Parallelism on Shared-Memory Multiprocessors”, IEEE

Transactions on Computers, Volume 48, Issue 2, Special issue

on cache memory and related problems, pp 218-226, 1999

