
©2010 INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS (0975 - 8887)

VOLUME 1 – NO. 16

87

A Novel Utility and Frequency Based Itemset Mining
Approach for Improving CRM in Retail Business

 Shankar S
Sri Krishna College of
Engg and Tech,
Coimbatore,India.

Dr.T.Purusothaman
Government College of

Tech,
Coimbatore, India

Kannimuthu S
Sri Krishna College of
Engg and Tech,
Coimbatore,India.

Vishnu Priya K
Sri Krishna College of
Engg and Tech,
Coimbatore,India.

ABSTRACT
The paradigm shift from ‘data-centered pattern mining’ to

‘domain driven actionable knowledge discovery’ has increased the

need for considering the business yield (utility) and demand or

rate of recurrence of the items (frequency) while mining a retail

business transaction database. Such a data mining process will

help in mining different types of itemsets of varying business

utility and demand. We here present a set of algorithms for mining

all types of utility and frequency based itemsets from a retail

business transaction database which would significantly aid in

inventory control and sales promotion. This set of algorithms are

also capable of identifying the active customers of each such type

of itemset mined and rank them based on their total or lifetime

business value which would be extremely helpful in improving

Customer Relationship Management (CRM) processes like

campaign management and customer segmentation.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms, Design, Experimentation, Performance, Human

Factors

Keywords
Data Mining, Utility and Frequency Based Itemset Mining,

Customer Relationship Management, Domain Driven Data

Mining, High Utility High Frequency Itemsets, High Utility Low

Frequency Itemsets, Low Utility High Frequency Itemsets, Low

Utility Low Frequency Itemsets, Semantic Intelligence, Active

Customer List Generation.

1 INTRODUCTION
Traditional data mining processes concentrate on extracting

knowledge from large databases irrespective of its significance to

the user or the business contexts. The large number of patterns

mined during knowledge discovery makes it cumbersome for the

user to understand and identify the patterns that are interesting to

him. In the due course, the need for considering the economic

utility of the itemsets in the data mining process has gained wide

acceptance. The quantitative measures like the support measure

used in the traditional Association Rules Mining (ARM) [1,2],

which is used to identify frequently occurring patterns of itemsets,

reflects only the statistical correlation of items. It does not reflect

their semantic significance. Such measures reflecting the

statistical correlation may not measure how useful an itemset is in

accordance with a user’s preferences (i.e., profit). The profit of an

itemset depends not only on the support (the ratio of total count of

the corresponding itemset occurrence to the total number of

transactions) of the itemset, but also on the prices of the items in

that develop a utility based itemset mining approach [14], to

enable the user to conveniently express his or her preferences

centered around the economic usefulness of itemsets as utility

values and then find itemsets with utility values higher than a

minimum threshold utility value as set by the user.

The paradigm shift from ‘data-centered pattern mining’ to

‘domain driven actionable knowledge discovery’ has increased the

need for considering the business yield (utility) and demand of the

items (frequency) while mining a retail business transaction

database. Such a data mining process will help in mining different

types of itemsets of varying business utility and demand. Data

mining has the potential to aid the companies in their quest to

become more customers’ oriented [4]. It plays a critical role in the

overall CRM process, which includes interaction with the

datamart or warehouse in one direction, and interaction with

campaign management software in the other direction [4]. Today

the trend is to integrate the data mining and campaign

management process in order to gain a competitive advantage

[12]. Keeping this in mind, we here present a set of algorithms for

mining all types of utility and frequency based itemsets from a

retail business transaction database which would significantly aid

in inventory control and sales promotion. These set of algorithms

are also capable of identifying the active customers of each such

type of itemset mined and rank them based on their total business

value which would be extremely helpful in improving Customer

Relationship Management (CRM) processes like campaign

management and customer segmentation. Utility based data

mining is a new research area entranced in all types of utility

factors like profit, significance, subjective interestingness,

aesthetic value etc., which add economic and business utility to

existing data mining processes and techniques. A research area

within utility based data mining known as high utility itemset

mining is aimed at finding itemsets that interpose high utility. The

proposed set of algorithms is built using a combination of our

previously developed efficient Fast Utility Mining (FUM)

algorithm [11] and the existing Fast Frequent Utility Mining

(FUFM)[13] algorithm. The Fast Utility Mining FUM or

(Umining_New) algorithm employed for finding all high utility

©2010 INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS (0975 - 8887)

VOLUME 1 – NO. 16

88

itemsets which satisfies the given utility constraint threshold, is

faster and simpler than the original UMining algorithm [14] which

is based on utility upper bound property.

The remainder of the paper is organized as follows. The existing

and the proposed algorithms for mining high utility itemsets are

explained in section 2 along with the results and findings of the

experimental evaluation. The utility and frequency based itemset

mining algorithms are explained in the section 3. The method of

identifying and ranking the customers of each type of utility

frequent itemsets mined is also explained in the sub sections of

section 3.

2 ALGORITHMS FOR MINING HIGH
UTILITY ITEMSETS
A high Utility itemset is the one with utility value greater than the

minimum threshold utility as specified by the user depending

upon his context of usage. A well known model for mining such

high-utility itemset was defined by Yao, Hamilton and Butz [15]

which is a generalization of the share-mining model [3, 6]. A well

known algorithm for mining such high utility itemset is the

UMining algorithm [14]. However this algorithm bears great

disadvantages especially when it is applied to large transaction

databases with numerous distinct items. In a real time business

scenario say a retail supermarket, the number of distinct items

present in the supermarket will be considerably large. However

any transaction performed by a customer will contain only a

fraction of all the distinct items present in the supermarket.

UMining algorithm takes into account all distinct items in the

supermarket, regardless of whether they are bought by the

customer or not. Hence it results in the calculation of the utility

values for all combinations of all distinct items present in the

supermarket using the information obtained from the transactions

in a transactional database. In the case of very large transactional

databases, this will lead to unacceptable execution time delays. It

will also require expensive vast main memory storage to

accommodate all possible combinations of all the distinct items

every time the UMining algorithm executes. UMining algorithm

does not provide an obvious provision for dealing with duplicate

itemsets which could occur in any transactional database. In our

experimental evaluations, we also found that there are some

instances where UMining algorithm may fail to find some of the

high utility itemsets from the available transactions in the

transactional database. These drawbacks prevent UMining

algorithm from providing maximum speed, accuracy, reliability

and cost effectiveness in domain driven data mining applications.

In order to overcome the drawbacks encountered in UMining

algorithm and to develop an algorithm best suitable for mining

High Utility Itemsets (HUI) in domain driven data mining

applications, we developed the Fast Utility Mining (FUM)

algorithm[11]. FUM algorithm demonstrates an appreciable

semantic intelligence by considering only the distinct itemsets

involved or defined in a transaction and not the entire set of

available itemsets. FUM algorithm efficiently handles the

duplicate itemsets. It checks whether a transaction containing the

combination of items purchased in it, repeats its occurrence in a

later transaction. If a later transaction also contains same itemset

purchased in any of the previous transactions, then that transaction

is ignored from processing. From the experiments conducted on

the partially artificial datasets, we clearly observed that FUM

algorithm provides absolute accuracy and proves to be extremely

efficient in finding every possible high utility itemset from the

transactions in the database.

FUM ALGORITHM

Task: Discovery of High Utility Itemsets

Input: Database DB {Set of Transactions} Transaction

DBT ∈ Minimum Utility value threshold minUtil

Output: High Utility Itemsets H

[1] Compute the utility value ∀ single itemset

[2] For each DBT ∈

[3] begin

[4] if T ∉ S {where S ⊆ DB | S = [0 .. T-1]}

[5] begin

[6] Candidateset = CombinationGenerator(T)

[7] For each C ∈ CandidateSet

[8] begin

[9] if (HC ∉))min),((UtilTCU ≥∧

[10] H.add (C);

[11] end

[12] end

[13] end

[14] return (H);

CombinationGenerator(T) - Generate all possible combinations of

itemset ∈ T

Figure. 1. Pseudo code of the FUM algorithm

The miss rate of FUM algorithm is nil when compared to that of

the UMining algorithm. In these ways, in a domain driven data

mining application, FUM algorithm fits itself perfectly by mining

all the High Utility Itemsets(HUI) with maximum speed,

accuracy, reliability and cost effectiveness[11].

2.1 Discussion of the FUM Algorithm
Let us consider Table 1 and Table 2 as input to the proposed FUM

algorithm. In step 1 of the algorithm (Pseudo code given in the

Figure.1.); we compute the utility values of all single itemsets say

A, B, C, D and E [13].

Table 1. Database with 5 Transactions and 5 distinct Items

TID A B C D E

1 0 0 18 0 1

2 0 6 0 1 1

3 5 0 4 0 2

4 2 3 1 1 1

5 0 0 4 0 3

Table 2. External Utilities of Items Given in Table 1

Item A B C D E

Profit 2 11 4 7 5

In the second step, we begin a loop for processing each and every

transaction present in the DB one by one. In the fourth step, the

algorithm generates the itemsets in the current transaction. For

example in Table I, the first transaction is represented as CE

according to our algorithm, since only those two items were

©2010 INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS (0975 - 8887)

VOLUME 1 – NO. 16

89

purchased in that transaction. Our algorithm omits the remaining

items A, B and D. This is in contrast to the existing Umining

algorithm, where all the items are taken into account, regardless

whether they are bought by the customer or not. Our algorithm

introduces more semantics in this aspect by considering only the

items and their combinations which are actually purchased by the

customers. In a similar way, the remaining transactions are

processed. In this way, the execution time required for the

generation of high utility itemsets is considerably reduced, which

is illustrated through various graphs in section 2.2.

The algorithm also checks (step 4), whether a transaction defined

by an itemset purchased in it, repeats its occurrence in a later

transaction. If a later transaction also contains the same itemset

purchased in any of the previous transactions, then that transaction

is ignored from processing. In this way, the duplicate itemsets are

removed.

In Step number 6, the candidate itemsets are generated using the

CombinationGenerator(T) function, which takes itemset,

purchased in a particular transaction as input and generate the

various possible combinations of the itemset.

The combination generation is based on the concept proposed by

Kenneth H. Rosen, Discrete Mathematics and Its applications [8].

Firstly, the items for which the combination is to be generated is

put in the form of an array. Then the getNext() method is called

until there are no more combinations left. The getNext() method

returns an array of integers, which tells the order in which to

arrange the original array of letters. For e.g if an itemset ∈ T is

say, ABC the function generates {A, B, C, AB, AC, BC, and

ABC}.

In the consecutive steps, the algorithm analyzes each candidate

belonging to the candidate itemsets generated. In step number 9,

the algorithm computes the utility value of each and every

candidate, U(C, T) [13]. If the utility value of a candidate is found

to be more than the minimum utility threshold, which is given as

input by the user, (say a sales manager) then that particular

candidate is added to the set of High Utility Itemsets {H} (in step

10 of the proposed algorithm). The condition HC∉ in step 9

simply ensures no duplicate high utility itemsets are generated.

2.2 Experimental Evaluations of FUM

Algorithm
Both the algorithms Umining [14] and the proposed FUM

algorithm were implemented in the Java programming language

with Microsoft SQL Server 2000 as the backend. All experiments

were performed on a PC with Intel Pentium D series 2.80 GHz

processor and 1GB of main memory. The tests were conducted on

a dataset with 200 transactions. This dataset was extracted from

the transactional database of a leading retail supermarket. We

performed necessary pre-processing to obtain a dataset that suits

our need in the desired form. The experiments were conducted by

varying the minimum utility threshold from 0.25 % to 2% on 200

transactions with 20 distinct items (see Table 3). It can be

observed that when the minimum utility threshold is 0.25%, the

number of high utility itemsets mined using UMining algorithm

and Fast Utility Mining (FUM) algorithm are same. But there is a

huge difference in the execution time of the two algorithms.

FUM algorithm executes almost 18 times faster than the UMining

algorithm. Similarly we observed that the execution time of FUM

algorithm proved to be extremely less than that of UMining

algorithm especially when large numbers of itemsets are identified

as high utility itemsets. Even as the minimum utility threshold is

varied from 0.25% to 2%, FUM algorithm continues to identify all

the possible high utility itemsets from the given dataset,

considerably faster than that identified using UMining algorithm.

Table 3. Performance Comparison of UMINING

and FUM Algorithm

Minimum

Utility

Threshold

Umining FUM

HUI Execution

Time

(milli

seconds)

HUI Execution

Time

(milli

seconds)

0.25% 409 3694.76 409 210.13

0.5% 274 2112.0 275 279.44

0.75% 188 1540.55 190 333.42

1% 163 1326.59 163 330.75

1.25% 147 661.37 147 350.27

1.5% 132 849.91 132 368.68

1.75% 117 927.09 117 427.22

2% 108 967.45 108 471.61

Table 4. Miss Rate Comparison of UMining and FUM

Algorithms

Minimum

Utility

Threshold

HUI

(Umining)

HUI

(FUM)

Umining

Miss rate

1% 163 163 0%

0.75% 188 190 1%

0.5% 274 275 0.3%

0.25% 409 409 0%

0.1% 479 479 0%

From the results of the above experiment, we also noted another

interesting fact. FUM algorithm provides absolute accuracy and

proves to be extremely efficient in finding every possible high

utility itemset from the dataset. The miss rate of FUM algorithm is

an absolute zero when compared to that of the UMining algorithm

as shown in Table 4. Though this failure of UMining algorithm is

of negligible significance, it may at times prove to be a costly

failure especially if the high utility itemset missed to be found by

the UMining algorithm means the most significant and most

potential high utility itemset to the user in a specific business

scenario.

©2010 INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS (0975 - 8887)

VOLUME 1 – NO. 16

90

Table 5. Performance Comparison of UMining and FUM

Algorithms Based on Number of Distinct Items

Number of

distinct items

Execution Time(milli seconds)

FUM Umining

15 389.42 484.76

20 330.75 1326.59

30 362.84 4493.17

50 377.29 *

100 365.91 *

* Indicates that, we have to manually stop the system as it hanged

while executing the Umining algorithm. Hence the execution time

could not be measured for 50 and 100 items respectively.

The strength of FUM algorithm lies in the fact that it demonstrates

semantic intelligence by considering only the distinct itemsets

involved or defined in a transaction and not the entire set of

available itemsets. To ensure our claim we conducted another

experiment by continuously varying the number of distinct items

that are totally available keeping the minimum utility threshold

constant at 1% throughout the experiment.

Figure. 2. Number of Items Vs Execution Time

(FUM vs. Umining)

From the real time database that we obtained from the retail

supermarket, we performed pre-processing in such a way to

extract the required dataset with increasing number of distinct

items that are taken into account. As shown in the Table 5 and

graph in Figure.2, as the number of distinct items increased, the

execution time of the UMining algorithm also increased

drastically. When we experimented with 200 transactions and 50

distinct items, on a PC with Intel Pentium D series 2.80 GHz

processor and 1GB of main memory, the system got hanged

during the execution of UMining algorithm. Compared to

UMining algorithm, the execution time of FUM algorithm was

very less and exhibited a decreasing trend as the number of

distinct items increased.

3 FRAMEWORK FOR GENERATION OF

THE DIFFERENT TYPES OF ITEMSETS
Mining of Utility Frequent Itemsets is another interesting area that

emerged with the rise of Utility Based Data Mining. In addition to

subjectively defined utility, we also take into account the

frequency of itemsets in utility frequent itemset mining [13]. Well

known algorithms used in this type of mining are 2P-UF

algorithm [7] and Fast Utility Frequent Mining (FUFM) [13]

algorithm as we have observed in our literature review.

Fast Utility Frequent Mining - FUFM algorithm [13] treats

utility-frequent itemsets as a special form of frequent itemsets

which is in contrast with 2P-UF algorithm (based on the quasi

support measure) since it treats them as a special form of high

utility itemsets. It proves to be efficient because support measure

has anti-monotone property and assures efficient mining approach

by introducing a special form of support called as extended

support. It also uses efficient frequent itemset mining methods to

improve the speed of the algorithm.

Figure. 3. Proposed System Architecture for Different Utility

Frequent Itemset Mining

FUFM algorithm does not have disadvantages and inefficiencies

of the 2P-UF algorithm such as huge space consumption and

extremely slow candidate generation. FUFM algorithm finds High

Utility High frequency (HUHF) items. From the discussions with

our clients, we learnt and understood their knowledge

requirements. Using HUHF itemsets generated by the FUFM

algorithm and the High Utility Itemsets (HUI) generated using our

FUM algorithm, we have generated three new itemsets namely

High utility and low frequency itemsets (HULF), Low utility and

high frequency itemsets (LUHF) and Low utility and low

frequency itemsets (LULF). Based on our experiments, we have

proposed system architecture for the generation of different kinds

of utility frequent itemsets which is self explanatory as in Figure.

3.

3.1 Mining of the HUHF Itemsets
We made our efforts to incorporate support consideration in the

FUM algorithm in order to mine the HUHF itemsets from a

transaction database.

In the Fast Utility Mining with Frequency consideration algorithm

(FUM-F algorithm), the High Utility Itemsets (HUI) are mined

using the FUM algorithm initially. Then for each HUI mined,

corresponding support is calculated and checked with the

minimum support threshold (minSup). Those HUI with support

greater than the minSup are added to the HUHF itemset list.

FUFM and FUM-F algorithms were tested on the same datasets

Yao et al.’s
measure

Support

measure

HUHF

UMining/FUM

Data & Utility

function

Utility

Measures

Generation

of different

itemsets

FUFM

HUI

HULF,

LUHF,

LULF

©2010 INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS (0975 - 8887)

VOLUME 1 – NO. 16

91

used for testing the FUM algorithm. The experiments were

conducted by varying the minimum support threshold and

minimum utility threshold for many sets of different number of

transactions and distinct items.

As shown in the Table 6 and 7, though the number of HUHF

Itemsets (HUHFI) found using FUM-F were slightly higher than

that identified by FUFM, we can observe that FUFM executes

very much faster than the FUM-F even when the number of

transactions and distinct items increases.

FUM-F ALGORITHM
Task: Discovery of High Utility and High Frequency Itemsets

Input: Database DB; Constraints minUtil and minSup

Output: High Utility and High Frequent Itemsets (HUHF)

[1] Compute high utility itemsets H using FUM algorithm.

[2] For each itemset I in H

[3] begin

[4] Compute support s

[5] if s > = minSup

[6] HUHF.add (I)

[7] end

[8] return (HUHF)

Figure. 4. Pseudo code of the FUM-F algorithm

Table 6 Performance Comparison of FUM and FUFM

Algorithms For 100 Transactions & 15 Distinct Items

Thus FUM-F is reliable and accurate but not as fast as FUFM in

finding the HUHF itemsets. If the business user lays importance

on absolute accuracy and reliability, he can use FUM-F for mining

all the HUHF itemsets. Instead if stress is on the execution time

then FUFM algorithm would be the best fit to mine all the HUHF

itemsets.

3.2 Generation of HUHFI Customer List
Once the HUHF itemsets are mined, the associated customers who

buy HUHF items can also be identified and ranked based on their

value. The customer who buys the maximum number of HUHF

items will have the highest customer value and hence will be

ranked at the top. The algorithm for the HUHFI customer list

generation is given below which is self-explanatory.

HUHFI CUSTOMER LIST GENERATION

ALGORITHM

Task: Generation of HUHFI customer list.

Input: Database DB; Constraints minUtil and minSup

Output: Ranked list of customers who buy HUHF items

[1] Compute High utility and high frequent (HUHF) itemsets

using FUFM algorithm

[2] For each I ∈ HUHF itemset, scan the database DB to find

the customers who buy that itemset

[3] Increment the count value associated with the customer

who is a buyer of I.

[4] Stop if the HUHF is empty else Go to [2]

[5] List the HUHF customers in descending order of the count

value associated with each customer

[6] return (list of HUHF customers)

Figure. 5. Pseudo code of the HUHFI customer list generation

algorithm

Table 7.

Performance Comparison of FUM AND FUFM Algorithms

for 200 Transactions & 100 Distinct Items

To illustrate the mining of HUHF itemsets and the corresponding

ranked customer list, we consider the following simple set of

transactions as shown in Table 8. There are 10 transactions with 5

distinct items in the sample database. The external utilities of

these items are given in the Table 9.

Table 8. Sample Database with 10 Transactions & 5 Distinct

Items

TID 1 2 3 4 5 Cust

ID

1 0 0 18 0 1 2

2 0 6 0 1 1 5

3 2 0 1 0 1 2

4 1 0 0 1 1 3

5 0 0 4 0 2 4

6 1 1 0 0 0 1

7 0 10 0 1 1 2

8 3 0 25 3 1 3

9 1 1 0 0 0 4

10 0 6 2 0 2 2

Minimum

Support

Threshold

(α)

Minimum

Utility

Threshold

(µ)

FUFM FUM-F

H

U

H

F

I

Execution

Time

(seconds)

H

U

H

F

I

Execution

Time

(seconds)

2 10 16 17.563 20 287.766

2 15 10 13.297 13 265.203

3 10 14 16.437 16 324.891

5 15 4 11.781 4 410.968

Minimum

Support

Threshold

(α)

Minimum

Utility

Threshold

(µ)

FUFM FUM-F

H

U

H

F

I

Execution

Time

(sec)

H

U

H

F

I

Execution

Time

(sec)

2 10 52 15.75 60 169.484

3 10 44 15.891 52 139.156

5 15 15 8.422 16 279.718

5 20 7 4.125 9 198.953

©2010 INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS (0975 - 8887)

VOLUME 1 – NO. 16

92

Table 9. External utilties of Items in the Sample Database

Item 1 2 3 4 5

Profit 3 10 1 6 5

The various possible itemsets and their respective utility and

support values are calculated. Considering a minimum utility

threshold (minUtil) of 36 and minimum support threshold

(minSup) of 3, we applied the FUFM algorithm to this sample

database. The list of HUHF itemsets mined using FUFM

algorithm is shown in the Table 10. Then the HUHFI customer list

generation algorithm was applied to this list of HUHF itemsets.

The output is the ranked list of customers of HUHFI as shown in

the Table 11 and 12.

Table 10. List of HUHF Itemsets Mined from the Sample

Database using FUFM algorithm with their Utility & Support

Values

Itemsets Utility >= 36 Support >= 3

2 240 5

3 50 5

4 36 4

5 50 8

2, 5 240 3

3, 5 85 5

4, 5 56 4

Identical form of results were obtained when this approach was

tested using the real time retail transaction database as explained

in the section 2.2. The customer details can be then tracked using

the customer ID.

Table 11. List of HUHFI Customer List Generated Using

HUHFI Customer List Generation Algorithm

It
em
se
t

C
o
u
n
t

C
u
st
 1

C
u
st
 2

C
u
st
 3

C
u
st
 4

C
u
st
 5

2 5 1 2 0 1 1

3 5 0 3 1 1 0

4 4 0 1 2 0 1

5 8 0 4 2 1 1

2, 5 3 0 2 0 0 1

3, 5 5 0 3 1 1 0

4, 5 4 0 1 2 0 1

Total 34 1 16 8 4 5

Table 12. Ranked List of HUHFI Customers

RANK CUSTOMER ID

1 2

2 3

3 5

4 4

5 1

3.3 Mining of the HULF Itemsets
Once the HUHF itemsets are generated using either FUFM or

FUM-F algorithm, all the other three types of itemsets can be

mined easily. The algorithm for mining HULF itemsets follows

the combined framework of FUM and FUFM algorithm. In all our

experiments, we chose FUFM algorithm for mining HUHF

itemsets. Here, the first phase is to generate High Utility Itemsets

(HUI) using FUM algorithm. In the second phase High Utility

High Frequent Itemsets (HUHFI) are generated using FUFM.

Then using set difference function high utility low frequent

itemsets are generated from HUI and HUHFI.

Algorithm HULFM

Task: Discovery of High Utility and Low Frequency

 (HULF) Itemsets

Input: Database DB; Constraints minUtil and minSup

Output: High Utility and Low Frequency Itemsets (HULF)

[1] Compute High utility itemsets HU using FUM algorithm.

[2] Compute High utility and high frequent itemsets HUHF using

FUFM algorithm.

[3] HULF = HU \ HUHF /*set difference operation*/

[4] return (HULF)

Figure. 6. Pseudo code of the HULF itemsets mining

algorithm

3.4 Mining of the LUHF Itemsets
This algorithm designed to generate Low Utility and High

Frequency itemsets from transactional databases, follows the basic

framework of FUFM algorithm with the extended support to mine

the itemsets with low utility(reverse of high utility) but of high

frequency.

ALGORITHM LUHFM
Task: Discovery of Low Utility and High Frequency (LUHF)

Itemsets

Input: Database DB; Constraints minUtil and minSup

Output: Low Utility and High Frequency Itemsets (LUHF)

[1] L = 1

[2] Find the set of candidates of length L with sup port >=minSup

[3] Compute extended support as explained in [13] where TS,µ =

 {T|S ⊆ T ∧ u(S, T) < µ ∧ T ∈ DB } for all candidates and

 output low utility high frequent itemsets

[4] L += 1

[5] Use the frequent itemset mining algorithm to obtain new set of

 frequent candidates of length L from the old set of frequent

candidates

[6] Stop if the new set is empty otherwise go to [3]

[7] return (LUHF)

Figure. 7. Pseudo code of the LUHF itemsets mining

algorithm

3.5 Mining of the LULF Itemsets
This algorithm designed to generate Low Utility and Low

Frequency itemsets from transactional databases has two phases

as shown in Figure. 8. In the first phase low utility itemsets are

determined using exhaustive search. In the second phase the low

utility and high frequency itemsets are removed from the low

utility itemsets which results in the generation of Low Utility and

Low Frequency (LULF) itemsets. It is built mainly using the

©2010 INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS (0975 - 8887)

VOLUME 1 – NO. 16

93

framework of FUM algorithm with the concept of utility

consideration reversed.

ALGORITHM LULFM

Task: Discovery of Low Utility and Low Frequency (LULF)

Itemsets

Input: Database DB; Constraints minUtil and minSup, LUHF

Output: Low Utility and Low Frequency Itemsets (LULF)

[1] Compute the utility value ∀ single itemset

[2] For each DBT ∈

[3] begin

[4] if T ∉ S {where S ⊆ DB | S = [0 .. T-1]}

[5] begin

[6] Candidateset = CombinationGenerator (T)

[7] For each C ∈ CandidateSet

[8] begin

[9] if (HC ∉) ^ U(C,T) < minutil)

[10] LU.add (C);

[11] end

[12] end

[13] end

[14] LULF = LU \ LUHF /*set minus operation*/

[15] return (LULF)

CombinationGenerator(T) - Generate all possible combinations of

itemset ∈ T

Figure. 8. Pseudo code of the LULF itemsets mining

algorithm

3.6 Generation of Customer List for Each

Type of Itemset
The method of generating the ranked customer list for each type

of itemsets is similar to the method explained in the section 3.2.

The customer who buys the maximum number of items of a

particular type of itemset will have the highest customer value

with regard to that type of itemset and hence will be ranked at the

top in the respective category.

HULFI CUSTOMER LIST GENERATION

ALGORITHM

Task: Generation of HULFI customer list.

Input: Database DB; Constraints minUtil and minSup

Output: Ranked list of customers who buy HULF items

[1] Compute High utility and low frequent (HULF) itemsets using

HULFM algorithm

[2] For each I ∈ HULF itemset, scan the database DB to find the

customers who buy that itemset

[3] Increment the count value associated with the customer who

is a buyer of I.

[4] Stop if the HULF is empty else go to [2]

[5] List the HULF customers in descending order of the count

value associated with each customer

[6] return (list of HULF customers)

Figure. 9. Pseudo code of the HULFI customer list generation

Algorithm

LUHFI CUSTOMER LIST GENERATION

ALGORITHM

Task: Generation of LUHFI customer list.

Input: Database DB; Constraints minUtil and minSup

Output: Ranked list of customers who buy LUHF items

[1] Compute Low utility and high frequent (LUHF) itemsets using

LUHFM algorithm

[2] For each I ∈ LUHF itemset, scan the database DB to find the

customers who buy that itemset

[3] Increment the count value associated with the customer who is

a buyer of I.

[4] Stop if the LUHF is empty else go to [2]

[5] List the LUHF customers in descending order of the count

value associated with each customer

[6] return (list of LUHF customers)

Figure. 10. Pseudo code of the LUHFI customer list

generation Algorithm

LULFI CUSTOMER LIST GENERATION

ALGORITHM

Task: Generation of LULFI customer list.

Input: Database DB; Constraints minUtil and minSup

Output: Ranked list of customers who buy LULF items

 [1] Compute Low utility and low frequent (LULF) itemsets

using LULFM algorithm

[2] For each I ∈ LULF itemset, scan the database DB to

find the customers who buy that itemset

[3] Increment the count value associated with the customer

who is a buyer of I.

[4] Stop if the LULF is empty else go to [2]

[5] List the LULF customers in descending order of the

count value associated with each customer

[6] return (list of LULF customers)

Figure. 11. Pseudo code of the LULFI customer list generation

Algorithm

3.7 Significance of the Proposed Approach
The generation of different types of itemsets based on their

business utility and rate of recurrence in the transactions made by

the customer can greatly aid in the inventory control and sales

promotion. Identifying the corresponding customers will greatly

benefit in customer segmentation, campaign management and

Customer Relationship Management (CRM). Inventory control is

a function of materials management, and the objective is to keep

the total cost associated with the system to a minimum. Out of

thousands of items held in an inventory of a typical organization,

only a small percentage of them deserve management's closest

attention and tightest control [9].

The High Utility and High Frequency Itemsets like say Basumati

Rice can be stocked to a greater extent in order to meet the greater

demand. Stringent safety measures can be followed in storing

such items. This will ensure definite and increased profits.

The Low Utility and Low Frequency Items are also of importance

to the sales and inventory management. From the view of

©2010 INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS (0975 - 8887)

VOLUME 1 – NO. 16

94

inventory control, LULF items can be stocked less. When there is

an excess availability of LULF items, they can be given as

premium gifts for the active customers who purchase the HUHF

items. Thus, the sales of HUHF items can also be increased.

Moreover the organization will be able to provide premium

service to the highly valuable active customers thereby

strengthening the customer loyalty and such customer retention.

There is a possibility that customers who buy HUHF itemsets may

become responders for LULF itemsets if they feel that certain

LULF items received as gifts are really worth useful to them.

Such customers will start using the LULF items. Thus, its demand

will increase simultaneously thereby increasing the business

value. This also could benefit the business positively.

Certain High Utility and Low Frequency Itemsets can be of

similar value and at times of greater value than the HUHF items.

For example gems like diamonds, platinum etc may not be bought

by the customers frequently. But such items have enormous

business value. Identifying active customers of such HULF items

using the proposed approach will be simple and efficient in

segmenting the most valuable customers and designing a

customized campaign management programme for such

customers.

Advantage of LUHF itemset generation is that, it will increase the

revenue of the business substantially. LUHF items are the most

commonly purchased items. The maximization of the life time

business value of the entire customer base is the prime objective

of CRM. The key to attain this objective is to understand the

behavior of the customer. Clear Customer Understanding requires

properly focused customer segmentation and actions to maximize

customer convention, retention, loyalty and profitability. As per

the law of diminishing return in economics, unfocussed actions

like unrestricted attempts to access or retain all the customers may

impact the customer lifetime business value in a negative manner

[10]. By using our approach several classes of customers can be

segmented easily. Each class of customers has a unique

importance. Within each class, the customers are once again

ranked in the descending order of their current lifetime business

value. Thus the proposed approach makes this entire process

extremely simple. The changes in the customer behavior like the

lift, shift and retention [10] can be studied effectively and

appropriate campaign management programmes and other CRM

programmes can be designed.

4 CONCLUSION
In this paper, we have explained about the novel Fast Utility

Mining (FUM) algorithm. The experimental evaluations show that

FUM algorithm is faster, more accurate, more reliable and best

suited for domain driven data mining applications than the

existing UMining algorithm. We discussed the method of

incorporating the frequency consideration in FUM algorithm. A

novel approach to mine different types of utility and frequency

based itemsets using a framework of FUM and Fast Utility

Frequent Mining (FUFM) algorithm has been explained with a

simple illustration. Algorithms for identifying and ranking active

customers of each type of itemsets and their significance in

Customer Relationship Management (CRM) processes in retail

business has also been discussed.

REFERENCES
[1] Agrawal R, Srikant R, ‘Fast algorithms for mining

association rules’, Proceedings of 20th International

Conference on Very Large Databases, Santiago, Chile, pp.

487–499, 1994.

[2] Agrawal R., Imielinski T., Swami A.: Mining association

rules between sets of items in large databases. Proceedings of

the ACM SIGMOD Intl. Conf. on Management of Data,

Washington, D.C., may 1993, pp. 207–216.

[3] Carter C, Hamilton H J, Cercone N, ‘Share based measures

for itemsets’, Proceedings of First European Conference on

the Principles of Data Mining and Knowledge Discovery, pp.

14–24, 1997.

[4] Chris Rygielski, Jyun-Cheng Wang, David C. Yen, “Data

Mining Techniques for Customer Relationship Management

(CRM)”, Technology in Society, Elsevier Science Ltd, pp.

483-502, 2002.

[5] Han J, Pei J, Yin. Y. “Mining Frequent Patterns without

Candidate Generation”. Proc. of ACM-SIGMOD, 2000.

[6] Hilderman R J Carter C L Hamilton H J Cercone N, ‘Mining

market basket data using share measures and characterized

itemsets’, Pacific-Asia Conference on Knowledge Discovery

and Data Mining, pp. 159–170, 1998.

[7] Jieh-shan yeh, Yu-Chiang Li and Chin – Chen Chang, ‘Two-

Phase Algorithms for a Novel Utility-Frequent mining

Model’, PAKDD Workshop, pp. 433-444, 2007.

[8] Kenneth H. Rosen, “Discrete Mathematics and Its

applications”, Mc Graw Hill. 4th edition, 298-300.

[9] Pradip Kumar Bala, “Mining Association Rules for Selective

Inventory Control”, Journal of the Academy of Business and

Economics, Feb 2008 available at

http://findarticles.com/p/articles/mi_m0OGT/is_2_8/ai_n312

15552

[10] Richard Boire, “Data Mining for Customer Loyalty”, Direct

Marketing, March 2009.

[11] S.Shankar, Dr.T.Purusothaman, S.Jayanthi, Nishanth Babu,

“A Fast Algorithm for Mining high Utility Itemsets”,

Proceedings of the IEEE International Advance Computing

Conference (IACC 09), Patiala, India, 2009.

[12] Thearling K, “Increasing customer value by integrating data

mining and campaign management software”, Exchange

Applications White Paper, Exchange Applications, Inc.1998

available at http://www.crmforum.com/crm—forum—

white—papers/icv/sld01.htm

[13] Vid Podpecan, Nada Lavra and Igor Kononenko, ‘A Fast

Algorithm for Mining Utility-Frequent Itemsets’, The

Eleventh European Conference on Principles and Practice of

Knowledge Discovery in Databases, 2007.

[14] Yao H and Hamilton H J, ‘Mining itemset utilities from

transaction databases’, Data & Knowledge Engineering, pp.

59: 603-626, 2006.

[15] Yao H, Hamilton H J, Butz C J, ‘A foundational approach to

mining itemset utilities from databases’, Proceedings of the

Third SIAM International Conference on Data Mining,

Orlando, Florida, pp. 482–486, 2004.

