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ABSTRACT 
The paradigm shift from ‘data-centered pattern mining’ to 

‘domain driven actionable knowledge discovery’ has increased the 

need for considering the business yield (utility) and demand or 

rate of recurrence of the items (frequency) while mining a retail 

business transaction database. Such a data mining process will 

help in mining different types of itemsets of varying business 

utility and demand. We here present a set of algorithms for mining 

all types of utility and frequency based itemsets from a retail 

business transaction database which would significantly aid in 

inventory control and sales promotion. This set of algorithms are 

also capable of identifying the active customers of each such type 

of itemset mined and rank them based on their total or lifetime 

business value which would be extremely helpful in improving 

Customer Relationship Management (CRM) processes like 

campaign management and customer segmentation. 
 

Categories and Subject Descriptors 
H.2.8 [Database Applications]: Data Mining 
 

General Terms 
Algorithms, Design, Experimentation, Performance, Human 

Factors 
 

Keywords 
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1 INTRODUCTION 
Traditional data mining processes concentrate on extracting 

knowledge from large databases irrespective of its significance to 

the user or the business contexts. The large number of patterns 

mined during knowledge discovery makes it cumbersome for the 

user to understand and identify the patterns that are interesting to 

him. In the due course, the need for considering the economic 

utility of the itemsets in the data mining process has gained wide 

acceptance. The quantitative measures like the support measure 

used in the traditional Association Rules Mining (ARM) [1,2], 

which is used to identify frequently occurring patterns of itemsets, 

reflects only the statistical correlation of items. It does not reflect 

their semantic significance. Such measures reflecting the 

statistical correlation may not measure how useful an itemset is in  

 

accordance with a user’s preferences (i.e., profit). The profit of an 

itemset depends not only on the support (the ratio of total count of 

the corresponding itemset occurrence to the total number of 

transactions) of the itemset, but also on the prices of the items in           

that develop a utility based itemset mining approach [14], to 

enable the user to conveniently express his or her preferences 

centered around the economic usefulness of itemsets as utility 

values and then find itemsets with utility values higher than a 

minimum threshold utility value as set by the user. 

The paradigm shift from ‘data-centered pattern mining’ to 

‘domain driven actionable knowledge discovery’ has increased the 

need for considering the business yield (utility) and demand of the 

items (frequency) while mining a retail business transaction 

database. Such a data mining process will help in mining different 

types of itemsets of varying business utility and demand. Data 

mining has the potential to aid the companies in their quest to 

become more customers’ oriented [4]. It plays a critical role in the 

overall CRM process, which includes interaction with the 

datamart or warehouse in one direction, and interaction with 

campaign management software in the other direction [4]. Today 

the trend is to integrate the data mining and campaign 

management process in order to gain a competitive advantage 

[12]. Keeping this in mind, we here present a set of algorithms for 

mining all types of utility and frequency based itemsets from a 

retail business transaction database which would significantly aid 

in inventory control and sales promotion. These set of algorithms 

are also capable of identifying the active customers of each such 

type of itemset mined and rank them based on their total business 

value which would be extremely helpful in improving Customer 

Relationship Management (CRM) processes like campaign 

management and customer segmentation. Utility based data 

mining is a new research area entranced in all types of utility 

factors like profit, significance, subjective interestingness, 

aesthetic value etc., which add economic and business utility to 

existing data mining processes and techniques.  A research area 

within utility based data mining known as high utility itemset 

mining is aimed at finding itemsets that interpose high utility. The 

proposed set of algorithms is built using a combination of our 

previously developed efficient Fast Utility Mining (FUM) 

algorithm [11] and the existing Fast Frequent Utility Mining 

(FUFM)[13] algorithm. The Fast Utility Mining FUM or 

(Umining_New) algorithm employed for finding all high utility 
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itemsets which satisfies the given utility constraint threshold, is 

faster and simpler than the original UMining algorithm [14] which 

is based on utility upper bound property.  

The remainder of the paper is organized as follows. The existing 

and the proposed algorithms for mining high utility itemsets are 

explained in section 2 along with the results and findings of the 

experimental evaluation. The utility and frequency based itemset 

mining algorithms are explained in the section 3. The method of 

identifying and ranking the customers of each type of utility 

frequent itemsets mined is also explained in the sub sections of 

section 3.  

 

2 ALGORITHMS FOR MINING HIGH 
UTILITY ITEMSETS 
A high Utility itemset is the one with utility value greater than the 

minimum threshold utility as specified by the user depending 

upon his context of usage. A well known model for mining such 

high-utility itemset was defined by Yao, Hamilton and Butz [15] 

which is a generalization of the share-mining model [3, 6]. A well 

known algorithm for mining such high utility itemset is the 

UMining algorithm [14]. However this algorithm bears great 

disadvantages especially when it is applied to large transaction 

databases with numerous distinct items. In a real time business 

scenario say a retail supermarket, the number of distinct items 

present in the supermarket will be considerably large. However 

any transaction performed by a customer will contain only a 

fraction of all the distinct items present in the supermarket. 

UMining algorithm takes into account all distinct items in the 

supermarket, regardless of whether they are bought by the 

customer or not. Hence it results in the calculation of the utility 

values for all combinations of all distinct items present in the 

supermarket using the information obtained from the transactions 

in a transactional database. In the case of very large transactional 

databases, this will lead to unacceptable execution time delays. It 

will also require expensive vast main memory storage to 

accommodate all possible combinations of all the distinct items 

every time the UMining algorithm executes. UMining algorithm 

does not provide an obvious provision for dealing with duplicate 

itemsets which could occur in any transactional database. In our 

experimental evaluations, we also found that there are some 

instances where UMining algorithm may fail to find some of the 

high utility itemsets from the available transactions in the 

transactional database. These drawbacks prevent UMining 

algorithm from providing maximum speed, accuracy, reliability 

and cost effectiveness in domain driven data mining applications. 

In order to overcome the drawbacks encountered in UMining 

algorithm and to develop an algorithm best suitable for mining 

High Utility Itemsets (HUI) in domain driven data mining 

applications, we developed the Fast Utility Mining (FUM) 

algorithm[11]. FUM algorithm demonstrates an appreciable 

semantic intelligence by considering only the distinct itemsets 

involved or defined in a transaction and not the entire set of 

available itemsets. FUM algorithm efficiently handles the 

duplicate itemsets. It checks whether a transaction containing the 

combination of items purchased in it, repeats its occurrence in a 

later transaction. If a later transaction also contains same itemset 

purchased in any of the previous transactions, then that transaction 

is ignored from processing. From the experiments conducted on 

the partially artificial datasets, we clearly observed that FUM 

algorithm provides absolute accuracy and proves to be extremely 

efficient in finding every possible high utility itemset from the 

transactions in the database. 

FUM ALGORITHM 

Task: Discovery of High Utility Itemsets  

Input: Database DB {Set of Transactions} Transaction 

DBT ∈ Minimum Utility value threshold minUtil 

Output: High Utility Itemsets  H  

[1] Compute the utility value ∀  single itemset 

[2] For each DBT ∈  

[3]         begin 

[4]    if  T  ∉ S  {where S ⊆ DB |  S = [0 .. T-1]}    

[5]    begin 

[6] Candidateset  = CombinationGenerator(T) 

[7]  For each C ∈  CandidateSet 

[8]  begin 

[9]  if  ( HC ∉ ) )min),(( UtilTCU ≥∧  

[10]     H.add (C); 

[11]                  end 

[12]    end 

[13]  end 

[14] return (H); 

CombinationGenerator(T) - Generate all possible combinations of 

itemset ∈  T 

Figure. 1.  Pseudo code of the FUM algorithm 

The miss rate of FUM algorithm is nil when compared to that of 

the UMining algorithm. In these ways, in a domain driven data 

mining application, FUM algorithm fits itself perfectly by mining 

all the High Utility Itemsets(HUI) with maximum speed, 

accuracy, reliability and cost effectiveness[11].  

2.1 Discussion of the FUM Algorithm 
Let us consider Table 1 and Table 2 as input to the proposed FUM 

algorithm. In step 1 of the algorithm (Pseudo code given in the 

Figure.1.); we compute the utility values of all single itemsets say 

A, B, C, D and E [13].  

Table 1. Database with 5 Transactions and 5 distinct Items 

TID A B C D E 

1 0 0 18 0 1 

2 0 6 0 1 1 

3 5 0 4 0 2 

4 2 3 1 1 1 

5 0 0 4 0 3 

 

Table 2. External Utilities of Items Given in Table 1 

Item A B C D E 

Profit 2 11 4 7 5 

In the second step, we begin a loop for processing each and every 

transaction present in the DB one by one. In the fourth step, the 

algorithm generates the itemsets in the current transaction. For 

example in Table I, the first transaction is represented as CE 

according to our algorithm, since only those two items were 
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purchased in that transaction. Our algorithm omits the remaining 

items A, B and D. This is in contrast to the existing Umining 

algorithm, where all the items are taken into account, regardless 

whether they are bought by the customer or not. Our algorithm 

introduces more semantics in this aspect by considering only the 

items and their combinations which are actually purchased by the 

customers. In a similar way, the remaining transactions are 

processed. In this way, the execution time required for the 

generation of high utility itemsets is considerably reduced, which 

is illustrated through various graphs in section 2.2.  

The algorithm also checks (step 4), whether a transaction defined 

by an itemset purchased in it, repeats its occurrence in a later 

transaction. If a later transaction also contains the same itemset 

purchased in any of the previous transactions, then that transaction 

is ignored from processing. In this way, the duplicate itemsets are 

removed.  

In Step number 6, the candidate itemsets are generated using the 

CombinationGenerator(T) function, which takes itemset, 

purchased in a particular transaction as input and generate the 

various possible combinations of the itemset.  

The combination generation is based on the concept proposed by 

Kenneth H. Rosen, Discrete Mathematics and Its applications [8]. 

Firstly, the items for which the combination is to be generated is 

put in the form of an array. Then the getNext() method is called 

until there are no more combinations left. The getNext() method 

returns an array of integers, which tells the order in which to 

arrange the original array of letters. For e.g if an itemset ∈ T is 

say, ABC the function generates {A, B, C, AB, AC, BC, and 

ABC}. 

In the consecutive steps, the algorithm analyzes each candidate 

belonging to the candidate itemsets generated. In step number 9, 

the algorithm computes the utility value of each and every 

candidate, U(C, T) [13]. If the utility value of a candidate is found 

to be more than the minimum utility threshold, which is given as 

input by the user, (say a sales manager) then that particular 

candidate is added to the set of High Utility Itemsets {H} (in step 

10 of the proposed algorithm). The condition HC∉  in step 9 

simply ensures no duplicate high utility itemsets are generated. 

 

2.2 Experimental Evaluations of FUM 

Algorithm 
Both the algorithms Umining [14] and the proposed FUM 

algorithm were implemented in the Java programming language 

with Microsoft SQL Server 2000 as the backend. All experiments 

were performed on a PC with Intel Pentium D series 2.80 GHz 

processor and 1GB of main memory. The tests were conducted on 

a dataset with 200 transactions. This dataset was extracted from 

the transactional database of a leading retail supermarket. We 

performed necessary pre-processing to obtain a dataset that suits 

our need in the desired form. The experiments were conducted by 

varying the minimum utility threshold from 0.25 % to 2% on 200 

transactions with 20 distinct items (see Table 3). It can be 

observed that when the minimum utility threshold is 0.25%, the 

number of high utility itemsets mined using UMining algorithm 

and Fast Utility Mining (FUM) algorithm are same. But there is a 

huge difference in the execution time of the two algorithms. 

FUM algorithm executes almost 18 times faster than the UMining 

algorithm. Similarly we observed that the execution time of FUM 

algorithm proved to be extremely less than that of UMining 

algorithm especially when large numbers of itemsets are identified 

as high utility itemsets.  Even as the minimum utility threshold is 

varied from 0.25% to 2%, FUM algorithm continues to identify all 

the possible high utility itemsets from the given dataset, 

considerably faster than that identified using UMining algorithm. 

 

Table 3. Performance Comparison of UMINING 

and FUM Algorithm 

Minimum 

Utility 

Threshold 

Umining FUM 

HUI Execution 

Time 

(milli 

seconds) 

HUI Execution 

Time 

(milli 

seconds) 

0.25% 409 3694.76 409 210.13 

0.5% 274 2112.0 275 279.44 

0.75% 188 1540.55 190 333.42 

1% 163 1326.59 163 330.75 

1.25% 147 661.37 147 350.27 

1.5% 132 849.91 132 368.68 

1.75% 117 927.09 117 427.22 

2% 108 967.45 108 471.61 

 

Table 4.  Miss Rate Comparison of UMining and FUM 

Algorithms 

Minimum 

Utility 

Threshold  

# HUI 

(Umining)  

# HUI 

 

(FUM)  

Umining  

Miss rate  

1%  163  163  0%  

0.75%  188  190  1%  

0.5%  274  275   0.3%  

0.25%  409 409  0%  

0.1%  479  479  0%  

 

From the results of the above experiment, we also noted another 

interesting fact. FUM algorithm provides absolute accuracy and 

proves to be extremely efficient in finding every possible high 

utility itemset from the dataset. The miss rate of FUM algorithm is 

an absolute zero when compared to that of the UMining algorithm 

as shown in Table 4. Though this failure of UMining algorithm is 

of negligible significance, it may at times prove to be a costly 

failure especially if the high utility itemset missed to be found by 

the UMining algorithm means the most significant and most 

potential high utility itemset to the user in a specific business 

scenario.  
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Table 5. Performance Comparison of UMining and FUM 

Algorithms Based on Number of Distinct Items 

Number of 

distinct items 

Execution Time(milli seconds) 

FUM Umining 

15 389.42 484.76 

20 330.75 1326.59 

30 362.84 4493.17 

50 377.29 * 

100 365.91 * 

 

* Indicates that, we have to manually stop the system as it hanged 

while executing the Umining algorithm. Hence the execution time 

could not be measured for 50 and 100 items respectively. 

The strength of FUM algorithm lies in the fact that it demonstrates 

semantic intelligence by considering only the distinct itemsets 

involved or defined in a transaction and not the entire set of 

available itemsets. To ensure our claim we conducted another 

experiment by continuously varying the number of distinct items 

that are totally available keeping the minimum utility threshold 

constant at 1% throughout the experiment. 

 
Figure. 2.  Number of Items Vs Execution Time  

(FUM vs. Umining) 

From the real time database that we obtained from the retail 

supermarket, we performed pre-processing in such a way to 

extract the required dataset with increasing number of distinct 

items that are taken into account. As shown in the Table 5 and 

graph in Figure.2, as the number of distinct items increased, the 

execution time of the UMining algorithm also increased 

drastically. When we experimented with 200 transactions and 50 

distinct items, on a PC with Intel Pentium D series 2.80 GHz 

processor and 1GB of main memory, the system got hanged 

during the execution of UMining algorithm. Compared to 

UMining algorithm, the execution time of FUM algorithm was 

very less and exhibited a decreasing trend as the number of 

distinct items increased. 

 

3 FRAMEWORK FOR GENERATION OF 

THE DIFFERENT TYPES OF ITEMSETS 
Mining of Utility Frequent Itemsets is another interesting area that 

emerged with the rise of Utility Based Data Mining. In addition to 

subjectively defined utility, we also take into account the 

frequency of itemsets in utility frequent itemset mining [13]. Well 

known algorithms used in this type of mining are 2P-UF 

algorithm [7] and Fast Utility Frequent Mining (FUFM) [13] 

algorithm as we have observed in our literature review.  

Fast Utility Frequent Mining - FUFM algorithm [13] treats 

utility-frequent itemsets as a special form of frequent itemsets 

which is in contrast with 2P-UF algorithm (based on the quasi 

support measure) since it treats them as a special form of high 

utility itemsets. It proves to be efficient because support measure 

has anti-monotone property and assures efficient mining approach 

by introducing a special form of support called as extended 

support. It also uses efficient frequent itemset mining methods to 

improve the speed of the algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 3. Proposed System Architecture for Different Utility 

Frequent Itemset Mining 

FUFM algorithm does not have disadvantages and inefficiencies 

of the 2P-UF algorithm such as huge space consumption and 

extremely slow candidate generation. FUFM algorithm finds High 

Utility High frequency (HUHF) items. From the discussions with 

our clients, we learnt and understood their knowledge 

requirements. Using HUHF itemsets generated by the FUFM 

algorithm and the High Utility Itemsets (HUI) generated using our 

FUM algorithm, we have generated three new itemsets namely 

High utility and low frequency itemsets (HULF), Low utility and 

high frequency itemsets (LUHF) and Low utility and low 

frequency itemsets (LULF). Based on our experiments, we have 

proposed system architecture for the generation of different kinds 

of utility frequent itemsets which is self explanatory as in Figure. 

3.  

3.1 Mining of the HUHF Itemsets 
We made our efforts to incorporate support consideration in the 

FUM algorithm in order to mine the HUHF itemsets from a 

transaction database.  

In the Fast Utility Mining with Frequency consideration algorithm 

(FUM-F algorithm), the High Utility Itemsets (HUI) are mined 

using the FUM algorithm initially. Then for each HUI mined, 

corresponding support is calculated and checked with the 

minimum support threshold (minSup). Those HUI with support 

greater than the minSup are added to the HUHF itemset list. 

FUFM and FUM-F algorithms were tested on the same datasets 

 

Yao et al.’s 
measure 

 

Support 

measure 

HUHF 

UMining/FUM 

Data & Utility 

function 

Utility 

Measures 

Generation 

of different 

itemsets 

FUFM 

HUI 

HULF, 

LUHF, 

LULF 
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used for testing the FUM algorithm. The experiments were 

conducted by varying the minimum support threshold and 

minimum utility threshold for many sets of different number of 

transactions and distinct items.  

As shown in the Table 6 and 7, though the number of HUHF 

Itemsets (HUHFI) found using FUM-F were slightly higher than 

that identified by FUFM, we can observe that FUFM executes 

very much faster than the FUM-F even when the number of 

transactions and distinct items increases. 

 

FUM-F ALGORITHM 
Task: Discovery of High Utility and High Frequency Itemsets 

Input: Database DB; Constraints minUtil and minSup 

Output: High Utility and High Frequent Itemsets (HUHF) 

[1] Compute high utility itemsets H using FUM algorithm. 

[2] For each itemset I in H 

[3] begin 

[4] Compute support s 

[5] if s > = minSup 

[6]  HUHF.add (I) 

[7] end  

[8] return (HUHF) 

Figure. 4.  Pseudo code of the FUM-F algorithm 
 

Table 6 Performance Comparison of FUM  and FUFM   

Algorithms For 100 Transactions & 15 Distinct Items  

Thus FUM-F is reliable and accurate but not as fast as FUFM in 

finding the HUHF itemsets. If the business user lays importance 

on absolute accuracy and reliability, he can use FUM-F for mining 

all the HUHF itemsets. Instead if stress is on the execution time 

then FUFM algorithm would be the best fit to mine all the HUHF 

itemsets.  

 

3.2 Generation of HUHFI Customer List  
Once the HUHF itemsets are mined, the associated customers who 

buy HUHF items can also be identified and ranked based on their 

value. The customer who buys the maximum number of HUHF 

items will have the highest customer value and hence will be 

ranked at the top.  The algorithm for the HUHFI customer list 

generation is given below which is self-explanatory. 

 

HUHFI CUSTOMER LIST GENERATION  

ALGORITHM 

Task:  Generation of HUHFI customer list. 

Input: Database DB; Constraints minUtil and minSup 

Output: Ranked list of customers who buy HUHF items 

[1] Compute High utility and high frequent (HUHF) itemsets 

using FUFM algorithm 

[2]  For each I ∈  HUHF itemset, scan the database DB to find 

the customers who buy that itemset 

[3] Increment the count value associated with the customer 

who is a buyer of I.  

[4] Stop if the HUHF is empty else Go to [2] 

[5] List the HUHF customers in descending order of the count 

value associated with each customer 

[6] return (list of HUHF customers) 

Figure. 5.  Pseudo code of the HUHFI customer list generation                

algorithm 

Table 7.                                                                                               

Performance Comparison of FUM AND FUFM Algorithms 

for 200 Transactions & 100 Distinct Items  

To illustrate the mining of HUHF itemsets and the corresponding 

ranked customer list, we consider the following simple set of 

transactions as shown in Table 8. There are 10 transactions with 5 

distinct items in the sample database. The external utilities of 

these items are given in the Table 9. 

Table 8. Sample Database with 10 Transactions & 5 Distinct 

Items 

TID 1 2 3 4 5 Cust 

ID 

1 0 0 18 0 1 2 

2 0 6 0 1 1 5 

3 2 0 1 0 1 2 

4 1 0 0 1 1 3 

5 0 0 4 0 2 4 

6 1 1 0 0 0 1 

7 0 10 0 1 1 2 

8 3 0 25 3 1 3 

9 1 1 0 0 0 4 

10 0 6 2 0 2 2 

 

Minimum 

Support 

Threshold  

(α) 

Minimum 

Utility 

Threshold 

(µ) 

FUFM FUM-F 

H 

U 

H 

F 

I 

Execution 

Time 

(seconds) 

H 

U 

H 

F 

I 

Execution 

Time 

(seconds) 

2 10 16 17.563 20 287.766 

2 15 10 13.297 13 265.203 

3 10 14 16.437 16 324.891 

5 15 4 11.781 4 410.968 

Minimum 

Support 

Threshold 

(α) 

Minimum 

Utility 

Threshold 

(µ) 

FUFM FUM-F 

H 

U 

H 

F 

I 

Execution 

Time 

(sec) 

H 

U 

H 

F 

I 

Execution 

Time 

(sec) 

2 10 52 15.75 60 169.484 

3 10 44 15.891 52 139.156 

5 15 15 8.422 16 279.718 

5 20 7 4.125 9 198.953 
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Table 9. External utilties of Items in the Sample Database 

Item 1 2 3 4 5 

Profit 3 10 1 6 5 

The various possible itemsets and their respective utility and 

support values are calculated. Considering a minimum utility 

threshold (minUtil) of 36 and minimum support threshold 

(minSup) of 3, we applied the FUFM algorithm to this sample 

database. The list of HUHF itemsets mined using FUFM 

algorithm is shown in the Table 10. Then the HUHFI customer list 

generation algorithm was applied to this list of HUHF itemsets. 

The output is the ranked list of customers of HUHFI as shown in 

the Table 11 and 12. 

Table 10. List of HUHF Itemsets Mined from the Sample 

Database using FUFM algorithm with their Utility & Support 

Values 

Itemsets Utility >= 36 Support >= 3 

2 240 5 

3 50 5 

4 36 4 

5 50 8 

2, 5 240 3 

3, 5 85 5 

4, 5 56 4 

Identical form of results were obtained when this approach was 

tested using the real time retail transaction database as explained 

in the section 2.2. The customer details can be then tracked using 

the customer ID.  

Table 11. List of HUHFI Customer List Generated Using 

HUHFI Customer List Generation Algorithm 

It
em
se
t 

C
o
u
n
t 

C
u
st
 1
 

C
u
st
 2
 

C
u
st
 3
 

C
u
st
 4
 

C
u
st
 5
 

2 5 1 2 0 1 1 

3 5 0 3 1 1 0 

4 4 0 1 2 0 1 

5 8 0 4 2 1 1 

2, 5 3 0 2 0 0 1 

3, 5 5 0 3 1 1 0 

4, 5 4 0 1 2 0 1 

Total 34 1 16 8 4 5 

 

Table 12. Ranked List of HUHFI Customers 

RANK CUSTOMER ID 

1 2 

2 3 

3 5 

4 4 

5 1 

3.3 Mining of the HULF Itemsets 
Once the HUHF itemsets are generated using either FUFM or 

FUM-F algorithm, all the other three types of itemsets can be 

mined easily. The algorithm for mining HULF itemsets follows 

the combined framework of FUM and FUFM algorithm. In all our 

experiments, we chose FUFM algorithm for mining HUHF 

itemsets. Here, the first phase is to generate High Utility Itemsets 

(HUI) using FUM algorithm. In the second phase High Utility 

High Frequent Itemsets (HUHFI) are generated using FUFM. 

Then using set difference function high utility low frequent 

itemsets are generated from HUI and HUHFI.  

Algorithm HULFM 

Task: Discovery of High Utility and Low Frequency 

 (HULF) Itemsets 

Input:    Database DB; Constraints minUtil and minSup 

Output: High Utility and Low Frequency Itemsets (HULF) 

 

[1] Compute High utility itemsets HU using FUM algorithm. 

[2] Compute High utility and high frequent itemsets HUHF using 

FUFM algorithm. 

[3] HULF = HU \ HUHF          /*set difference operation*/ 

[4] return (HULF) 

Figure. 6.  Pseudo code of the HULF itemsets mining 

algorithm 

3.4 Mining of the LUHF Itemsets 
This algorithm designed to generate Low Utility and High 

Frequency itemsets from transactional databases, follows the basic 

framework of FUFM algorithm with the extended support to mine 

the itemsets with low utility(reverse of high utility) but of high 

frequency.  

ALGORITHM LUHFM 
Task: Discovery of Low Utility and High Frequency (LUHF) 

Itemsets 

Input: Database DB; Constraints minUtil and minSup 

Output: Low Utility and High Frequency Itemsets (LUHF) 
 

[1] L = 1 

[2] Find the set of candidates of length L with sup port >=minSup 

[3] Compute extended support as explained in [13] where TS,µ =  

      {T|S ⊆ T ∧ u(S, T) <  µ  ∧ T ∈ DB }  for all candidates and  

      output low utility high frequent itemsets 

[4] L += 1 

[5] Use the frequent itemset mining algorithm to obtain new set of  

      frequent candidates of length L from the old set of frequent 

candidates 

[6] Stop if the new set is empty otherwise go to [3] 

[7] return (LUHF) 

Figure. 7.  Pseudo code of the LUHF itemsets mining 

algorithm 
 

3.5 Mining of the LULF Itemsets 
This algorithm designed to generate Low Utility and Low 

Frequency itemsets from transactional databases has two phases 

as shown in Figure. 8. In the first phase low utility itemsets are 

determined using exhaustive search. In the second phase the low 

utility and high frequency itemsets are removed from the low 

utility itemsets which results in the generation of Low Utility and 

Low Frequency (LULF) itemsets. It is built mainly using the 
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framework of FUM algorithm with the concept of utility 

consideration reversed. 

 

 

ALGORITHM LULFM 
 

Task: Discovery of Low Utility and Low Frequency (LULF)  

Itemsets 

Input: Database DB; Constraints minUtil and minSup,  LUHF 

Output: Low Utility and Low Frequency Itemsets (LULF) 

[1] Compute the utility value ∀  single itemset 

[2] For each DBT ∈  

[3] begin 

[4]    if  T  ∉ S  {where S ⊆ DB |  S = [0 .. T-1]}    

[5]    begin 

[6] Candidateset  =  CombinationGenerator (T) 

[7] For each C ∈  CandidateSet 

[8] begin 

[9]             if  ( HC ∉ ) ^ U(C,T) < minutil ) 

[10]     LU.add (C); 

[11]          end 

[12]   end 

[13]  end 

[14]  LULF = LU \ LUHF     /*set minus operation*/ 

[15] return (LULF) 

CombinationGenerator(T) - Generate all possible combinations of 

itemset ∈  T 

Figure. 8.  Pseudo code of the LULF itemsets mining 

algorithm 

 

3.6 Generation of Customer List for Each 

Type of Itemset  
The method of generating the ranked customer list for each type 

of itemsets is similar to the method explained in the section 3.2. 

The customer who buys the maximum number of items of a 

particular type of itemset will have the highest customer value 

with regard to that type of itemset and hence will be ranked at the 

top in the respective category. 

 

HULFI CUSTOMER LIST GENERATION  

ALGORITHM 
 

Task: Generation of HULFI customer list. 

Input: Database DB; Constraints minUtil and minSup 

Output: Ranked list of customers who buy HULF items 

[1] Compute High utility and low frequent (HULF) itemsets using  

HULFM algorithm 

[2]  For each I ∈  HULF itemset, scan the database DB to find the  

customers who buy that itemset 

[3]  Increment the count value associated with the customer who  

is a buyer of I.  

[4]  Stop if the HULF is empty else go to [2] 

[5]  List the HULF customers in descending order of the count  

value associated with each customer 

[6]  return (list of HULF customers) 

Figure. 9.  Pseudo code of the HULFI customer list generation  

Algorithm 
 

LUHFI CUSTOMER LIST GENERATION 

ALGORITHM 

 
Task: Generation of LUHFI customer list. 

Input: Database DB; Constraints minUtil and minSup 

Output: Ranked list of customers who buy LUHF items 

[1] Compute Low utility and high frequent (LUHF) itemsets using  

LUHFM algorithm 

[2] For each I ∈  LUHF itemset, scan the database DB to find the  

customers who buy that itemset 

[3] Increment the count value associated with the customer who is  

a buyer of I.  

[4] Stop if the LUHF is empty else go to [2] 

[5] List the LUHF customers in descending order of the count  

value associated with each customer 

[6] return (list of LUHF customers) 

Figure. 10.  Pseudo code of the LUHFI customer list 

generation Algorithm 

 

LULFI CUSTOMER LIST GENERATION  

ALGORITHM 

Task: Generation of LULFI customer list.   

Input: Database DB; Constraints minUtil and minSup 

Output: Ranked list of customers who buy LULF items 

 [1] Compute Low utility and low frequent (LULF) itemsets 

using LULFM algorithm 

[2]  For each I ∈  LULF itemset, scan the database DB to 

find the customers who buy that itemset 

[3] Increment the count value associated with the customer 

who is a buyer of I.  

[4] Stop if the LULF is empty else go to [2] 

[5] List the LULF customers in descending order of the 

count value associated with each customer 

[6] return (list of LULF customers) 

Figure. 11. Pseudo code of the LULFI customer list generation  

Algorithm 

3.7 Significance of the Proposed Approach  
The generation of different types of itemsets based on their 

business utility and rate of recurrence in the transactions made by 

the customer can greatly aid in the inventory control and sales 

promotion. Identifying the corresponding customers will greatly 

benefit in customer segmentation, campaign management and 

Customer Relationship Management (CRM). Inventory control is 

a function of materials management, and the objective is to keep 

the total cost associated with the system to a minimum. Out of 

thousands of items held in an inventory of a typical organization, 

only a small percentage of them deserve management's closest 

attention and tightest control [9].  

The High Utility and High Frequency Itemsets like say Basumati 

Rice can be stocked to a greater extent in order to meet the greater 

demand. Stringent safety measures can be followed in storing 

such items. This will ensure definite and increased profits.  

The Low Utility and Low Frequency Items are also of importance 

to the sales and inventory management. From the view of 
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inventory control, LULF items can be stocked less. When there is 

an excess availability of LULF items, they can be given as 

premium gifts for the active customers who purchase the HUHF 

items. Thus, the sales of HUHF items can also be increased. 

Moreover the organization will be able to provide premium 

service to the highly valuable active customers thereby 

strengthening the customer loyalty and such customer retention. 

There is a possibility that customers who buy HUHF itemsets may 

become responders for LULF itemsets if they feel that certain 

LULF items received as gifts are really worth useful to them. 

Such customers will start using the LULF items. Thus, its demand 

will increase simultaneously thereby increasing the business 

value. This also could benefit the business positively.  

Certain High Utility and Low Frequency Itemsets can be of 

similar value and at times of greater value than the HUHF items. 

For example gems like diamonds, platinum etc may not be bought 

by the customers frequently. But such items have enormous 

business value. Identifying active customers of such HULF items 

using the proposed approach will be simple and efficient in 

segmenting the most valuable customers and designing a 

customized campaign management programme for such 

customers.  

Advantage of LUHF itemset generation is that, it will increase the 

revenue of the business substantially. LUHF items are the most 

commonly purchased items. The maximization of the life time 

business value of the entire customer base is the prime objective 

of CRM. The key to attain this objective is to understand the 

behavior of the customer. Clear Customer Understanding requires 

properly focused customer segmentation and actions to maximize 

customer convention, retention, loyalty and profitability. As per 

the law of diminishing return in economics, unfocussed actions 

like unrestricted attempts to access or retain all the customers may 

impact the customer lifetime business value in a negative manner 

[10]. By using our approach several classes of customers can be 

segmented easily. Each class of customers has a unique 

importance. Within each class, the customers are once again 

ranked in the descending order of their current lifetime business 

value. Thus the proposed approach makes this entire process 

extremely simple. The changes in the customer behavior like the 

lift, shift and retention [10] can be studied effectively and 

appropriate campaign management programmes and other CRM 

programmes can be designed.   
 

4 CONCLUSION  
In this paper, we have explained about the novel Fast Utility 

Mining (FUM) algorithm. The experimental evaluations show that 

FUM algorithm is faster, more accurate, more reliable and best 

suited for domain driven data mining applications than the 

existing UMining algorithm. We discussed the method of 

incorporating the frequency consideration in FUM algorithm. A 

novel approach to mine different types of utility and frequency 

based itemsets using a framework of FUM and Fast Utility 

Frequent Mining (FUFM) algorithm has been explained with a 

simple illustration. Algorithms for identifying and ranking active 

customers of each type of itemsets and their significance in 

Customer Relationship Management (CRM) processes in retail 

business has also been discussed. 
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