
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

99

A Hybrid Genetic Algorithm Approach to a Departmental
Class Timetabling Problem Using Efficient Data

Structures

Arvind.S.Babu

Protechsoft Technologies
Pvt Ltd, Chennai- 600 029.

R.Chockalingam

Syncfusion Software Pvt. Ltd
Chennai- 600 040

S.Kavitha

SSN College of Engineering
Kalavakkam-603 110

ABSTRACT
The application of Genetic Algorithm with a local search

operation performed within its loop has provided very accurate

results, but the algorithm take a lot of time to arrive at an

optimal solution. This paper describes the use of a Hybrid

Genetic Algorithm using efficient data structures to automate the

construction of a departmental class timetable. This problem is

concerned with the allocation of faculty resources to concerned

studentgroups and their corresponding timeslots. The quality of

the solution is determined in terms of a penalty value which

determines the degree to which various constraints are satisfied.

This algorithm is tested over established datasets and the

performance of the algorithm over different datasets. The result

has confirmed that this algorithm in conjuncture with efficient

data structures is able to produce high quality solutions for a

departmental class timetable with short span of time. It is thus

concluded that organization of data plays a major role in the

performance of the Hybrid Genetic Algorithm to produce high

quality solutions.

Keywords
Hash, Hard and soft constraints, Hybrid GA, Local search.

1. INTRODUCTION
In Timetabling literature, there has been numerous works done

in automating the construction of a University Timetables. Over

time various methods have been employed in constructing a

timetable. One such successful approach to scheduling and

timetabling problems [1, 2] is represented by the combination of

Genetic algorithm with local search algorithm (this type of

algorithm also referred to as Memetic Algorithm). This paper is

organized as follows: The next section gives a slight overview of

a departmental class timetabling problem and all of the

constraints involved in it. Section 3 gives a detailed description

of the working of the Hybrid Genetic Algorithm. Section 4

describes the data structures used and the representation of the

data. Section 5 showcases the experimental results. The

performance of the algorithm for varied input sizes and varied

Genetic algorithm parameters and some brief concluding

comments are presented in Section 6.

2. THE DEPARTMENTAL CLASS

TIMETABLING PROBLEM

This problem involves assignment of faculty members to

Studentgroups and their corresponding timeslots. In this domain

students are registered to various courses and are grouped to

classes based on the similarity of these courses. When a faculty

is assigned to a timeslot of a particular Studentgroup, a lot of

hard constraints are needed to be satisfied first. When a

timetable satisfies all the hard constraints it is a feasible

solution. In this paper, the Hybrid Genetic Algorithm is tested

with real time constraints provided by the Department of

Computer Science and Engineering, SSN College of

Engineering. The constraints are classified into two types, Hard

and Soft constraints.

The following represent the hard constraints,

• No faculty should take more than one subject at a particular

timeslot

• No faculty should be allocated different Studentgroups on

the same timeslot

• No more than two double periods(continuous two timeslots

having the same course) will be allocated in a day

• The sum of all hours allocated for all subjects in a week

should not exceed the total number of timeslots available

• Certain timeslots must be reserved for special activities

• A subject should not be scheduled for a class more than the

maximum timeslots to be allocated for a week

• No faculty must be overloaded with more than four

timeslots in a day

The following represents the soft constraints taken into account,

• Faculty from other departments should be given topmost

priority when allocating timeslots

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

100

• Other department faculties should not be allocated a

timeslot that should come in the 1st timeslot of the day

• The core courses listed out for a Studentgroup (except other

department subjects) will be evenly spread out in the 1st

timeslot

• Subjects handled by other department lecturers will be

allocated based upon the timeslots requested/given by that

lecturer.

• Continuous periods of same course on same day should be

split such a way that there exists some timeslots between

the two timeslots

• Classes that require special features such as lab must also

be taken into account

• Allocation of lab classes to first two hours of a day should

be avoided.

The objective of this problem is to avoid the violation of the

above stated hard constraints and minimize the violation of soft

constraints.

In recent years, several University course timetabling papers

have come in literature. In 2002, Socha et.al [3] applied an ant

based approach to the various datasets. A fuzzy approach to the

problem was introduced by Asmuni et. al. 2005 [4]. Rossi Doria

et. al. [5] considered the same datasets and presented a

comparison of a number of meta heuristic methods. In [6]

Burke et al employed a tabu search within a graph based hyper-

heuristic benchmark datasets. The aims in all these papers were

to raise the level of generality by operating on different problem

domains .In 2007, Salwani Abdullah. Edmund burke and Barry

Mc Collum presented a paper [7] to solve University Course

timetabling problem with hybrid evolution approach. In [8], a

randomized iterative method for a local search operation was

discussed. The results produced were very accurate. This paper

employs the concepts of Hybrid Evolutionary algorithm in

conjuncture with efficient data structures for a departmental

class timetable to produce accurate results in a very short time.

3. HYBRID GENETIC ALGORITHM
A Hybrid Genetic Algorithm is a combination of Genetic

Algorithm and local search operation performed within the loop

of the Genetic algorithm. Though Genetic Algorithm is a search

technique used in computing to find exact or approximate

solutions, the results are often not the best optimal solution but

generally “acceptably good” solutions. Hence a local search

operation is employed within the loop of the Genetic Algorithm.

A local search algorithm [9] moves from solution to solution in

a space of candidate solutions until an optimal solution is found.

But the result is not always the optimal solution, but local search

tend to climb the hill of a search space and produce optimality

very quickly. The method described in [1] employed a Memetic

algorithm for university examination timetabling where two

evolutionary operations were used in initial phase followed by a

hill climbing algorithm. A set of Genetic algorithm parameters

define the working condition of the algorithm. The Hybrid

Genetic Algorithm is applied to a Departmental class

timetabling problem. The schematic overview of the algorithm

is given below in Figure.1

Figure.1 Hybrid Genetic Algorithm for a departmental class

timetable

The Hybrid Genetic Algorithm first generates a set of

chromosomes (abstract representation of the department

timetable). This set of chromosomes generated is collectively

called as Initial population. Once the Initial population is

generated the chromosomes are encoded into a suitable data

structure such as a hash, described later in Section 4. A fitness

value is calculated for every chromosome. The algorithm then

employs a selection method which chooses a pair of

chromosomes and depending on the elitism rate decides to

perform crossover and mutation operations or just carry over the

chromosome to the next generation. The rate is a probability at

which the chromosome will be selected for crossover or

reproduction and is random. After crossover and mutation

operations are performed, a local search is applied to bring the

best possible candidate solution to the top. The local search

applied here is a simple sort function due to use of data

structures like hash and arrays. These steps are repeated till and

end criterion is satisfied. Once it is reached the chromosome

with best fitness value is chosen as the optimized timetable.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

101

3.1. Genetic Algorithm operations

The Genetic algorithm operations are Selection, Crossover and

Mutation

3.1.1. Selection

Roulette wheel selection [10] is the most preferred selection

method which can be imagined as a biased wheel as shown in

Figure.2. The Chromosomes in the selection pool are arranged

in the roulette wheel based upon their fitness value. Thus when

the wheel is rotated to the number of chromosomes present in

the population pool the chromosome with the highest fitness has

the highest probability of getting selected for crossover or

mutation.

Figure.2 Roulette wheel selection

3.1.2. Crossover

Crossover is a genetic operator used to vary the programming of

a chromosome or chromosomes from one generation to the next.

One-point crossover randomly selects a point in two

chromosomes. Everything after the point is swapped between

the parent organisms, rendering two child organisms as shown

in Figure.3. Since the population size is fixed, the child will be

replacing the first parent. Crossover will not be applied to the

best chromosomes. The major fact to be noticed is that when

applying crossover operation it may result in staff clashes and

renders the timetable infeasible; to prevent this repair strategy is

employed to find a feasible timeslot and swap the alleles inside

the chromosome.

Figure.3 Crossover Genetic operation

3.1.3. Mutation

Mutation is a genetic operator used to maintain genetic diversity

from one generation of a population of chromosomes to the

next. The purpose of mutation in GAs is to allow the algorithm

to avoid local minima by preventing the population of

chromosomes from becoming too similar to each other, thus

slowing or even stopping evolution of chromosomes to a better

fitness. In this paper a flip mutation was established where two
alleles are flipped changing the composition of the timetable as

shown in Figure.4.

Figure.4 Mutation Genetic operation

4. DATA STRUCTURES USED AND

THEIR SIGNIFICANCE IN THE

ALGORITHMS

As far as a departmental class timetable is concerned, it involves

the automation of the construction of the timetable for individual

Studentgroups. The collection of all the individual Studentgroup

timetables makes up the entire departmental class timetable. In

terms of Hybrid Genetic Algorithm, all data are abstractly

represented known as a chromosome. The chromosome is

organized in such a way that it can be broken down into traits

and further into alleles. The entire departmental class timetables

form the chromosome for the Hybrid Genetic Algorithm to work

on. The individual class timetable represents the traits of a

chromosome. Since the Hybrid Genetic Algorithm assigns

faculties such a way that there are no hard constraint violations

when traits are exchanged, this allows the application of

crossover operation where primarily the traits are being

exchanged between the chromosomes. The timeslots under each

timetable forms the alleles of the chromosome. The different

combination of alleles gives the chromosome its distinct identity

shown in Figure5.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

102

Figure.5 Chromosome representation of a departmental

class timetable added to a hash

Due to the organization of data into a hash structure the Hybrid

Genetic Algorithm performs operations in such a way that the

results are produced very quickly. Crossover genetic operation

involves exchange of traits between chromosomes. The data is

organized in a manner that individual Studentgroup timetables

are distinct and are switched at the crossover point which is

determined by a crossover rate. The timetables in Initial

population are generated with no hard constraint violations, but

it is not the case in crossover operation. Therefore a repair
strategy is employed, which looks for a possible timeslot to

which course can be exchanged and the hard constraint violation

be eliminated. If too many violations persist that particular

chromosome is discarded. Since the entire timetable is stored in

a hash function, the retrieval of a individual class timetable or

individual timeslot be performed by manipulation of array

index. This enables a direct addressing and exchange of traits

during crossover operation. The use of pointers also helps in a

quick exchange of traits.

5. EXPERIMENTS

The approach described in Section 4 was implemented in Visual

C++ 2008 under Windows Vista Ultimate in an AMD Dual Core

4000+. The algorithm is run for 20000 iterations till an

optimized result is obtained. If there is no improvement in

fitness of the best chromosome the algorithm stops execution

and presents with the optimal results. The results presented here

are best out of 5 run for each dataset. It has been found that time

taken to find the accurate solution increases with increase in

number of Studentgroups and the variation in number of faculty

members or the number of rooms does not affect the time taken

to compute and arrive at the optimized result. The algorithm is

run under different parameters are presented in Table 1.

Table 1- Parameters values for departmental class

timetabling problem

Category Small Medium Large

Chromosome

population size
100 100 200

No of Studentgroups 2 6 8

No of Courses 15 54 70

No of Faculty 12 54 58

No of Rooms 2 6 8

The comparison in our approach with these parameters is shown

in Table 2. The algorithm is run for 20000 iterations till a stop

criterion is encountered.

Table 2- Comparison results with different parameters

Category Small Medium Large

Execution time 15 sec
1 min

32 sec
4 min

Initial population fitness

(Best chromosomes

fitness)

10 82 134

Optimized timetable

fitness 0 4 7

Final generation

(Iteration at which

algorithm came to halt)

90 200 264

Legend: min : minutes

 sec : seconds

From Table 2 we can observe that the use of efficient data

structures like hash and arrays has made the Hybrid Genetic

Algorithm to work efficiently and produce accurate results. The

Fitness value represents the degree to which the solution

satisfies the soft constraints. The algorithm has managed to

reduce the high fitness in Initial population chromosomes to a

minimal number of soft constraint violations. Also it has been

observed that the algorithm reaches optimality in very few

generations and does not run all 20000 iterations. It can also be

noted that the time taken increases exponentially for increase in

number of Studentgroups.

6. CONCLUSIONS

From the results obtained we can justify that the Hybrid

Evolutionary Algorithm produces one of the most significant

and accurate results. The initial fitness values and final fitness

values shows the efficiency of the algorithm in optimizing

timetable. Also the use of such data structures does not limit the

addition of new Studentgroups into the dataset. It can be

extended to a University level Class timetabling. Also the final

fitness value shows that it is less than the total number of

Studentgroups which indicates there might be a violation of one

soft constraint per Studentgroup. The performance of the

algorithm is improved by the use of efficient data structures and

data organization which results in a faster result.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

103

REFERENCES

[1] E. K. Burke, J.P. Newall, R.F Weare, “A Memetic

Algorithm for University Exam timetabling”, The Practice

and Theory of Automated Timetabling I, Springer Lecture

Notes in Computer Science Vol 1153, Springer Verlag,

241-256, 1996

[2] B. Patcher, A. Cunning. M G Norman, H. Luchian,

“Extension to a Memetic Timetabling System”, The

Practice and Theory of Automated Timetabling I, Springer

Lecture Notes in Computer Science Vol 1153, Springer

Verlag, 251-265, 1996

[3] Socha, J Knowles, M. Samples, “A Max Min Ant system

for the University course timetabling Problem”. In the

proceedings of 3rd International Workshop on Ant

algorithms, ANTS2002, Springer Lecture Notes in

Computer Science Vol. 2463 Springer Verlag. 1-13,2002

[4] B. Patcher available at http:///www.dcs.napier.ac.uk/~benp

[5] O. Rossi Doria, M. Samples, M. Bittari, M. Chiarandini, M.

Dorigo, Paetche. L . Paquete and T. Suzzle, “ A

comparison of performance of different meta heuristics on

the timetabling problem”, Practice and Theory of

Automated Timetabling V, Springer Lecture Notes in

Computer Science, Vol 2740, Springer Verlag, 241-256,

1996

[6] E. K. Burke, G. Kendall, E. Soubeiga, “A Tabu –Search

Hyperheuristic for Timetabling and Rostering”. Journal of

heuristics Volume 9, No:6,451-470.2003

[7] Salwani Abdullah. Edmund Burke and Barry Mc Collum,

“A Hybrid Evolutionary Approach to University Course

Timetabling Problem”, proceedings of IEEE, 2007.

[8] S. Abdullah, E. K. Burke, B. Mc Collum, “Using a

randomized iterative Improvement Algorithm with

composite Neighbourhood structures for the University

Course timetabling problem”, Metaheuristics International

Conference MIC 2005 Vienna, Austria 22nd-26th June, 2007

[9] W.E .Hart. N. Krasnogor, JE Smith, “Memetic

Evoultionary Algorithms”, Recent Advances in Memetic

algorithms: Studies in Fuzziness and soft computing.

Springer-Verlag 3-27, 2004

[10] Selection Methods from “Genetic Algorithms in Search,

Optimization, and Machine Learning”. ISBN 978-

0201157673 by David .E. Goldberg.

