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ABSTRACT 
In this paper the maximum sidelobe level (SLL) reductions 
without and with central element feeding in various designs of 
three-ring concentric circular antenna arrays (CCAA) are 
examined using Particle Swarm Optimization with Constriction 
Factor Approach (PSOCFA) to finally determine the global 
optimal CCAA design. Binary coded Genetic Algorithm (BGA) is 
also employed for comparative optimization but it proves to be 
suboptimal. The present paper assumes non-uniform excitations 
and uniform spacing of excitation elements in each three-ring 
CCAA design. Among the various CCAA designs, the three-ring 
CCAA containing central element and 4, 6 and 8 elements in three 
successive concentric rings proves to be such global optimal 
design with global minimum SLL (-17.42dB) determined by 
PSOCFA. 

Categories and Subject Descriptors 

B.8.2 [PERFORMANCE AND RELIABILITY]: Performance 
Analysis and Design Aids  

General Terms 
Algorithms, Design, Theory 
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Sidelobe Level; Binary Coded Genetic Algorithm; Particle swarm 
optimization with constriction factor approach. 

1. INTRODUCTION 
An antenna array consists of multiple stationary antenna elements, 
which are often fed coherently. There is abundant open technical 
literatures [1-6], bearing a common target - bridging the gap 
between desired radiation pattern having nil SLL with what is 
practically achievable. The primary method in all these research 
works is improvement of array pattern by manipulating the 
structural geometry to suppress the SLL while preserving the gain 
of the main beam.  
Among the different types of antenna arrays, CCAA [1, 5] have 
become most popular in mobile and wireless communications. In 
this paper optimization of CCAA design having uniform inter-
element separations and non-uniform excitations is performed 
with the help of a novel evolutionary optimization technique. 
 
 In this paper the array factors due to non-uniform excitation in 

various CCAA design structures are examined to find the best 
possible design structure using two evolutionary techniques, BGA 
[4] and PSOCFA [7, 8]. Regarding the comparative effectiveness 
of the techniques, the newly proposed PSOCFA technique proves 
to be better in attaining minimum SLL, reduction of major lobe 
beamwidth and hence minimum “Misfitness” objective function 
values in the optimization of various CCAA designs.  
The rest of the paper is arranged as follows: In section 2, the 
general design equations for the non-uniformly excited CCAA are 
stated. Then, in section 3, brief introductions for RGA and 
PSOCFA are presented. Numerical results are presented in section 
4. Finally the paper concludes with a summary of the work in 
section 5.         

2. DESIGN EQUATION 
Geometrical configuration is a key factor in the design process of 
an antenna array. For CCAA, the elements are arranged in such a 
way that all antenna elements are placed in multiple concentric 
circular rings, which differ in radii and in number of elements.  
Fig. 1 shows the general configuration of CCAA with M 
concentric circular rings, where the mth (m = 1, 2,…, M) ring has 
a radius rm and the corresponding number of elements is Nm.  If all 
the elements in all the rings are assumed to be isotopic sources, 
then the radiation pattern of this array can be written in terms of 
its array factor only.  

Referring to Fig.1, the array factor,  for the CCAA in x-
y plane is expressed as: 

   (1) 

where 
mi
I  denotes current excitation of the ith element of the mth 

ring. λπ= 2K , λ  being the signal wave-length. θ  and φ  
symbolize the zenith angle from the positive z axis and the 
azimuth angle from the positive x axis to the orthogonal 
projection of the observation point respectively. It may be noted 
that if the elevation angle is assumed to be 90 degrees i.e. θ = 900 
then (1) may be written as a periodic function of φ  with a period 

of 2π radian. The angle 
mi
φ  is nothing but element to element 

angular separation measured from the positive x-axis. As the 
elements in each ring are assumed to be uniformly distributed, we 
have, 
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mi
α is the phase difference between the individual elements in the 

array, 
mi

α  may be written as: 

   (3) 

where 0φ  is the value of φ  where peak of the main lobe is 
obtained. 

After defining the array factor, the next step in the design process 
is to formulate the objective function which is to be minimized. 

The objective function “Misfitness”  may be written as (4): 

      (4) 

BWFN is an abbreviated form of first null beamwidth, or, in 
simple terms, angular width between the first nulls on either side 
of the main beam. MF  is computed only if 

 and corresponding solution of 
current excitation weights is retained in the active population 

otherwise not retained. 21  and 
FF

WW  are the weighting factors. 

0φ  is the angle where the highest maximum of central lobe is 

attained in . 1mslφ  is the angle where the maximum 

sidelobe  is attained in the lower band and 2mslφ  

is the angle where the maximum sidelobe  is 

attained in the upper band. 21  and 
FF

WW  are so chosen that  

optimization of SLL remains more dominant than optimization of 

computed
BWFN  and MF  never becomes negative. In (4) the two 

beamwidths, 
computed

BWFN  and  basically refer 

to the computed first null beamwidth in radian for the non-
uniform excitation case and for uniform excitation case 
respectively. Minimization of MF  means maximum reductions 

of SLL both in lower and upper bands and lesser 
computed

BWFN  as 

compared to . The evolutionary optimization 
techniques employed for optimizing the current excitation weights 
resulting in the minimization of MF  and hence reductions in 
both SLL and BWFN are described in the next section. 

3. EVOLUTIONARY TECHNIQUES 

EMPLOYED 

3.1 Binary coded Genetic Algorithm (BGA) 
GA is mainly a probabilistic search technique, based on the 
principles and concept of natural selection and evolution. At each 
generation it maintains a population of individuals where each 
individual is a coded form of a possible solution of the problem at 
hand and called chromosome. Chromosomes are constructed over 
some particular alphabet, e.g., the binary alphabet [0, 1], so that 
chromosomes’ values are uniquely mapped onto the decision 
variable domain. Each chromosome is evaluated by a function 
known as fitness function, which is usually the cost function or 
the objective function of the corresponding optimization problem.  

Steps of BGA as implemented for the optimization of current 
excitation weights are: 

• Initialization of binary chromosome strings of np 
population, each consisting of a set of excitations. 
Size of the set depends on the number of excitation 
elements in a particular CCAA design    

• Decoding of strings and evaluation of “Misfitness” 

 of each string 

• Selection of elite strings in order of increasing 

 values from the minimum value 

• Copying of the elite strings over the non-selected 
strings 

• Crossover and mutation to generate off-springs. 

• Genetic cycle updating 

• The genetic cycle stops when the maximum 
number of generations is reached. The grand 

minimum  and its corresponding 
chromosome string or the desired solution are 
finally obtained. 

3.2 Particle Swarm Optimization (PSO) 
PSO is a flexible, robust population-based stochastic 
search/optimization technique with implicit parallelism, which 
can easily handle with non-differential objective functions, unlike 
traditional optimization methods. PSO is less susceptible to 
getting trapped on local optima unlike GA, Simulated Annealing 
etc. Eberhart and Shi [7] developed PSO concept similar to the 
behavior of a swarm of birds. PSO is developed through 
simulation of bird flocking in multidimensional space. Bird 
flocking optimizes a certain objective function. Each agent knows 
its best value so far (pbest). This information corresponds to 

 
 

Figure 1.  Concentric circular antenna array 
(CCAA). 
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personal experiences of each agent. Moreover, each agent knows 
the best value so far in the group (gbest) among pbests. Namely, 
each agent tries to modify its position using the following 
information: 

• The distance between the current position and 
pbest. 

• The distance between the current position and 
gbest. 

Mathematically, velocities of the particles are modified according 
to the following equation: 

          (5) 

where k

i
V  is the velocity of agent i at iteration k ; w is the 

weighting function; Cj is the weighting factor; rand is the random 

number between 0 and 1; k

i
S  is the current position of agent i at 

iteration k; k

i
pbest  is the pbest of agent i; kgbest  is the gbest of 

the group. The searching point in the solution space can be 
modified by the following equation: 

11 ++ += k

i

k

i

k

i
VSS            (6) 

The first term of (5) is the previous velocity of the agent. The 
second and third terms are used to change the velocity of the 
agent. Without the second and third terms, the agent will keep on 
‘‘flying’’ in the same direction until it hits the boundary. Namely, 
it corresponds to a kind of inertia and tries to explore new areas. 
The values of w, C1 and C2 are given in the next section. 

3.2.1 Particle swarm optimization with constriction 

factor approach (PSOCFA):  
For PSOCFIWA, the velocity of (5) is manipulated in accordance 
with (7). 

                (7) 
Normally, C1=C2=1.5-2.05 and constriction factor (CF) varies 
from 0.6-0.73. The best values of C1, C2, and CF are found to vary 
with the design sets. The solution updating is same as (6). 

4. EXPERIMENTAL RESULTS 

This section gives the experimental results for various CCAA 
designs obtained by BGA and PSOCFA techniques. For each 
optimization technique ten three-ring (M=3) CCAA structures for 
two cases as a) without central element feeding and b) with central 
element feeding in three-ring concentric circular antenna arrays 
(CCAA) are assumed. Each CCAA maintains a fixed spacing 
between the elements in each ring (inter-element spacing being 
0.55λ, 0.61λ and 0.75λ for first ring, second ring and third ring 
respectively). These spacings are the means of the values 
determined for the ten structures for non-uniform spacing and 
non-uniform excitations in each ring using 25 trial generalized 
optimization runs for each structure. This generalized 
optimization is beyond the scope of this paper. For all sets of 
experiments, the number of elements of the inner most circle is 
N1, for outermost circle is N3, whereas the middle circle consist of 

N2 number of elements. For all the cases, 0φ = 00 is considered so 

that the centre of the main lobe in radiation patterns of CCAA 
starts from the origin. After experimentation, best proven values 

of 21  and 
FF

WW  are fixed as 18 and 1 respectively. 

The following best proven parameters for the BGA and PSOCFA 
are i) Initial population = 120 chromosomes, ii) Maximum 
number of iteration cycles = 800 (BGA), 80 (PSOCFA); lesser 
number of cycles is found to be sufficient for the convergences of 
PSOCFA, since PSOCFA’s convergence rate is higher than 
BGA’s convergence rate, iii) For BGA, Selection probability, 
Crossover (dual point) ratio and mutation probability = 0.3, 0.8 
and 0.004 respectively, iv) For PSOCFA, C1 = C2 = 1.5, CF = 
0.65 , are the best proven values of the parameters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Each BGA and PSOCFA generates a set of normalized non-

uniform current excitation weights for all sets of CCAA. 
mi
I =1 

corresponds to uniform current excitation. Partial results for BGA 
and PSOCFA are shown in Tables 2-5. Table 1 depicts SLL 
values and BWFN values for all corresponding CCAA structures  

 

 

 

 

 

 

 

 

Table 1. SLL and BWFN for uniformly excited (
mi
I =1) 

CCAA sets 

Set 

No. 

No. of 

elements 

in each 

rings 

(N1,N2,N3) 

Without central 

element 

(Case (a)) 

With 

central element 

(Case (b)) 

SLL 

(dB) 

BWF

N 

(deg) 

SLL 

(dB) 

BWF

N 

(deg) 

I 2, 4, 6 -6.28 128.4 -8.5 140.0 

II 3, 5, 7 -6.89 107.2 -7.5 116 

III 4, 6, 8 -5.6 90.3 -6.16 95.4 

IV 5, 7, 9 -5.6 78.2 -6.62 81.6 

V 6, 8, 10 -5.17 68.4 -6.0 71.1 

VI 7, 9, 11 -5.0 61.0 -5.66 63.0 

VII 8, 10, 12 -4.78 54.8 -5.38 56.4 

VIII 9, 11, 13 -4.64 50.0 -5.17 51.3 

IX 10, 12, 14 -4.53 46.0 -5.0 47.0 

X 11, 13, 15 -4.45 42.0 -4.88 43.2 
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but uniformly excited. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1  Analysis of Radiation Pattern of Optimal 

CCAA 

Figs. 2-3 depict the substantial reductions in SLL with non-
uniform optimal current excitations as compared to the case of 
uniform non-optimal current excitations. All CCAA sets having 
central element feeding (Case (b)) yield much more reductions in 
SLL as compared to the same not having central element feeding 
(Case (a)). As seen from Tables 2-5, SLL reduces to -13.07dB 
(BGA), - 16.65dB (PSOCFA) for Case (a) and -14.53dB (BGA), -
17.42dB (grand highest SLL reduction as determined by 
PSOCFA) for Case (b) with the CCAA set having N1=4, N2=6, 
N3=8. This optimal set along with central element feeding yields 
grand maximum SLL reductions for both techniques among all 
the sets. BWFN become narrower for non-uniform optimal current 
excitation weights as compared to the uniform non-optimal 
excitations for all sets in both the test cases. For the same optimal 
CCAA set, the BWFN values are 73.60 (RGA) and 77.10 
(PSOCFA) for Case (a), 78.30 (RGA) and 82.70 (PSOCFA) for 
Case (b) against 90.30 (Case (a)), 95.40 (Case (b)) for the 
corresponding uniformly excited CCAA having the same number 
of elements.  

So, these techniques yield maximum reductions of BWFN also for 
this optimal CCAA (shown as shaded rows in the Tables 2-5). The 
programming is written in MATLAB 7.5 version on core (TM) 2 
duo processor, 3.00 GHz with 2 GB RAM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Current excitation weights, SLL and BWFN for non-

uniformly excited CCAA sets (Case (a)) using BGA 

Set 

No. 

Current excitation weights 

for the array elements 

(
11

I ,
21

I ,….,
mi
I ) 

SLL 

(dB) 

BWF

N 

(deg) 

III 1.0000 0.9450 0.7463 1.0000    
0.6799 0.7126 1.0000 0.6068    
0.6864 1.0000 0.6021 1.0000   
0.6803 0.2289 0.6721 0.8732     
0.5849  0.1872 

-13.07 73.6 

V 0.9219 0.7227   0.8711  0.5781   
0.5352 0.9805  0.9922   0.2500   
0.8438 0.6094  0.5898   0.2539    
0.5977  0.8984  0.1523  0.8672  
0.8086 0.2461 0.4844  0.4414  
0.5000 0.4883  0.8750   0.5313 

-10.81 60.4 

VII 0.5898 0.5078 0.8164 0.9492 
0.7227 0.3711 0.8086 0.9922 
0.6875 0.1055 0.0742 0.6055   
0.4570 0.9063 0.1836 0.2656 
0.6211 0.5391 0.5938 0.4531 
0.8711 0.5000 0.5469 0.5117   
0.2461 0.4961 0.9570 0.429        
0.2422  0.4570 

-12.0 49.5 

 

Table 3. Current excitation weights, SLL and BWFN for non-

uniformly excited CCAA sets (Case (b)) using BGA 

Set 

No. 

Current excitation weights for 

the array elements 

(
11

I ,
21

I ,….,
mi
I ) 

SLL 

(dB) 

BWF

N 

(deg) 

III 0.3789  0.7344  0.9766  0.8164    
0.9922  0.7148  0.5508  0.9727    
0.7969  0.9102  0.9805  0.6680      
0.8750  0.6523  0.1406  0.6406    
0.9063  0.5508  0.1680 

-14.53 78.3 

V 0.4961  0.7500  0.4375  0.7422    
0.7891  0.4219  0.4961  0.5703    
0.1719  0.7344  0.7461  0.5117    
0.5000  0.4492  0.7969  0.1992    
0.6797  0.7109  0.4648  0.3203    
0.3008  0.8125  0.6055  0.3438 

-11.67 57.9 

VII 0.4570  0.5625  0.8359  0.6328    
0.9961  0.8633  0.7969  0.7734    
0.9805  0.5000  0.2500  0.1641    
0.8398  0.2422  0.8750       0    
0.0781  0.8750  0.4258  0.5234    
0.1094  0.8711  0.3828  0.2148 

-12.96 51.6 

 

Table 4. Current excitation weights, SLL and BWFN for non-

uniformly excited CCAA sets (Case (a)) using PSOCFA 

Set 

No. 

Current excitation weights for the 

array elements (
11

I ,
21

I ,….,
mi
I ) 

SLL 

(dB) 

BWF

N 

(deg) 

III 0.0831    0.6696    0.0821    0.6210    
0.3860    0.4254    0.9383    0.3955    
0.3907    1.0000    0.4938    0.6647    
0.4536    0.2223    0.4496    0.6664    
0.4867    0.2533 

-16.65 77.1 

V 

 

 

1.0000    0.6626    0.8101    0.4564    
0.5287    1.0000    0.8774         0  
0.8663    0.7790    0.6590         0    
1.0000    0.8367    0.2976    0.9699    
1.0000    0.3719    0.5041    0.4080    
0.4853    0.7283    0.3799    0.3983 

-12.55 60.6 

VII 0.8709    0.6058    0.7297    1.0000    
0.8920    0.5959    1.0000    1.0000    
0.6442    0             0.1753    0.4793    
0.3796    1.0000         0           0    
1.0000    0.3763    0.6032    0.2461    
1.0000    0.1953    0.5416    0.4483         
0             0.6097    1.0000    0.5832    
0.3946    0.4450 

-12.7 51.5 
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5. CONCLUSION 

In this paper, the optimal design of a non-uniformly excited 
CCAA with uniform inter-element spacing and without / with 
central element feeding has been described using the evolutionary 
optimization techniques as BGA and PSOCFA. PSOCFA 
technique proves to be faster and robust technique; yields optimal 
excitations and global minimum values of SLL and BWFN for all 
sets of CCAA designs. BGA is less robust and yield suboptimal 
results. Experimental results reveal that the design of non-
uniformly excited CCAA offers a considerable SLL reduction 
along with the reduction of BWFN as compared to the 
corresponding uniformly excited CCAA. The main contribution of 
the paper is threefold: (i) All CCAA having central element 
feeding yield much more reduction in SLL as compared to the 
same not having central element feeding, (ii) The CCAA set 
having N1=4, N2=6, N3=8, with central element feeding gives the 
grand maximum SLL reduction    (-17.42dB) as compared to all 
other sets, which one is thus the grand optimal set among all the 
three-ring structures, and iii) Comparing the performance of both 
techniques PSOCFA shows the better optimization performance 
as compared to BGA.  
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Table 5. Current excitation weights, SLL and BWFN for non-

uniformly excited CCAA sets (Case (b)) using PSOCFA 

Set 

No. 

Current excitation weights for 

the array elements 

(
11

I ,
21

I ,….,
mi
I ) 

SLL 

(dB) 

BWF

N 

(deg) 

III 0.5382   0.9293    1.0000    0.9596    
1.0000   0.7623    0.7553    0.5791    
0.8076   0.7689    0.6066    0.5161    
0.6295   0.4938    0.1398    0.5206    
0.7101   0.5055    0.059 

-17.42 82.7 

V 

 

 

0.4542   0.8413    1.0000    1.0000    
1.0000   1.0000    1.0000    1.0000    
0.0549   0.9236    0.8775    1.0000         
0            1.0000    1.0000    0.4329    
1.0000   0.9093    0.4673    0.2894    
0.3535   1.0000    1.0000    0.3341    
0.2904 

-13.16 60.0 

VII 0.3473   0.7771    0.6616    0.8692    
1.0000   0.7281    0.7088    0.6508    
1.0000   1.0000    0.0241         0    
1.0000   0.5408    0.8369         0    
0.0998   0.4491    0.5129    0.3984    
0.5670   1.0000    0.5432    0.3736    
0.3566   0.4317    0.5814    1.0000    
0.1892    0.6088 

-13.68 52.8 
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Figure 3.  Radiation pattern for a uniformly excited 
and PSOCFA based non- uniformly excited CCAA 
(N1=4, N2=6, N3=8 elements). 


