
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

15

Study of RSA and Proposed Variant against Wiener’s

Attack
Justin Jose

T.E Computers, Fr.CRIT, VASHI
Fr. Agnel Boys Hostel Sec 9-A Vashi, Navi

Mumbai-400703

 Sushant Pawar
T.E Computers, Fr.CRIT, VASHI
C-22 B.E.S.T Qtr, Parel Mumbai12

Siddharth Raina
T.E Computers, Fr.CRIT, VASHI

Fr. Agnel Boys Hostel Sec 9-A Vashi, Navi
Mumbai-400703

Shriket Pai
T.E Computers, Fr.CRIT, VASHI

B-11 Kailash Vihar, Ghatkopar(W) Mumbai-
86

ABSTRACT
The paper discusses encryption schemes such as public key

algorithms (RSA) and One Time Pads. It also discusses various

attacks on the RSA algorithm. A brief introduction to Modular

Arithmetic, which is the core arithmetic of almost all public key

algorithms, has been given. In this paper we propose a variant to

the RSA algorithm which is effective against Wiener’s Short

Secret Exponent attack. The security and the efficiency of the

proposed variant have also been discussed.

General Terms

Public key, private key, X-or, encryption, cryptanalysis,

cryptosystem, efficiency,

Keywords
RSA, one-time pad, Wiener’s attack, modular arithmetic,

plaintext, ciphertext.

1.INTRODUCTION
The data transferred from one system to another over public

network can be protected by the method of encryption. On

encryption the data is encrypted/scrambled by any encryption

algorithm using the ‘key’. Only the user having the access to the

same ‘key’ can decrypt/de-scramble the encrypted data. This

method is known as private key or symmetric key cryptography.

There are several standard symmetric key algorithms defined.

Examples are AES, 3DES etc. These standard symmetric

algorithms defined are proven to be highly secured and time

tested. But the problem with these algorithms is the key exchange.

The communicating parties require a shared secret, ‘key’, to be

exchanged between them to have a secured communication. The

security of the symmetric key algorithm depends on the secrecy of

the key. Keys are typically hundreds of bits in length, depending

on the algorithm used. Since there may be number of intermediate

points between the communicating parties through which the data

passes, these keys cannot exchange online in a secured manner. In

a large network, where there are hundreds of system connected,

offline key exchange seems too difficult and even unrealistic. This

is where public key cryptography comes to help. Using public key

algorithm a shared secret can be established online between

communicating parties with out the need for exchanging any

secret data.

In public key cryptography each user or the device taking part in

the communication have a pair of keys, a public key and a private

key, and a set of operations associated with the keys to do the

cryptographic operations. Only the particular user/device knows

the private key whereas the public key is distributed to all

users/devices taking part in the communication. Since the

knowledge of public key does not compromise the security of the

algorithms, it can be easily exchanged online.

In public key cryptography, keys and messages are expressed

numerically and the operations are expressed mathematically. The

private and public key of a device is related by the mathematical

function called the one-way function. One-way functions are

mathematical functions in which the forward operation can be

done easily but the reverse operation is so difficult that it is

practically impossible. In public key cryptography the public key

is calculated using private key on the forward operation of the

one-way function. Obtaining of private key from the public key is

a reverse operation. If the reverse operation can be done easily,

that is if the private key is obtained from the public key and other

public data, then the public key algorithm for the particular key is

cracked. The reverse operation gets difficult as the key size

increases. The public key algorithms operate on sufficiently large

numbers to make the reverse operation practically impossible and

thus make the system secure. For e.g. RSA algorithm operates on

large numbers of thousands of bits long.

2.MATHEMATICAL BACKGROUND –

MODULAR ARITHMETIC
Modular Arithmetic [1] is also known as “clock” arithmetic.

Basically a ≡ b (mod n) if a= b+kn for some integer k. If a is non

negative and b is between 0 and n, one can think of b as the

remainder of a when divided by n. Sometimes, b is called the

residue of a, modulo n. a is called congruent to b, modulo n. ‘≡’

denotes congruence.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

16

The set of integers from 0 to n-1 form what is called a complete

set of residues modulo n. This means that, for every integer a, its

residue modulo n is some number from 0 to n-1. This operation is

called modular reduction.

The general problem that arises during public key encryption

schemes is to find two number ‘x’ such that 1 = (a*x) mod n

where ‘a’ is the one of the keys used in public key encryption.

This is also written as a-1 ≡ x (mod n). This modular inverse

problem is difficult to solve. Sometimes it has a solution

sometimes not. For example inverse of 5 modulo 14 is 3, and on

the other hand 2 has no inverse modulo 14.

In general a-1 ≡ x (mod n) has a unique solution if a and n are

relatively prime. If n is a prime number then every number from 1

to (n-1) is relatively prime to n and has exactly one inverse

modulo n in that range.

3. ENCRYPTION TECHNIQUES
The various encryption techniques on which this paper is based

are

1. One-Time pads[1]

2. Public key algorithm(RSA)

3.1One-Time Pads
This encryption scheme was invented in 1917 by Major Joseph

Mauborgne and AT & T’s Gilbert Vernam[2]. Classically, a one-

time pad is nothing more than a large non repeating set of truly

random key letters, written on sheets of paper, and glued together

in a pad. In its original form, it was a one-time tape for

teletypewriters. The sender uses each key letter on the pad to

encrypt exactly one plain text character. Encryption is the

Addition Modulo 26 of the plaintext character and the one-time

pad key character. Each key letter is used exactly once, for only

one message. The sender encrypts the message and then destroys

the used pages of the pad or used section of the tape. The receiver

has an identical pad and uses each key on the pad, in turn, to

decrypt each letter of the ciphertext. The receiver destroys the

same pad pages or tape sections after decrypting the message.

New message-new key letters.

eg. If the message is :

COPYLEFT

And the key sequence from the pad is :

EFWJMDSZ

Then the ciphertext is:

HUMIYIYT.

Assuming an eavesdropper can’t get access to the one-time pad

used to encrypt the message this scheme is perfectly secure. A

given ciphertext message is equally likely to correspond to any

possible plaintext message of equal size.

Since every key sequence is equally likely, an adversary has no

information with which to cryptanalyze the ciphertext. The key

sequence could just as be:

DTIVSDBT

This would decrypt to:

LOVERMAN

This point bears repeating: Since every plaintext message is

equally possible, there is no way for the cryptanalyst to determine

which plaintext message is the correct one. A random key

sequence added to a nonrandom plaintext message produces

completely random ciphertext message and no amount of

computing power can change that.

The caveat is that the key letters have to be generated randomly.

Any attack this scheme will be against the method used to

generate the key letters. The other important point is that one can

never use the same key sequence again.

The idea of one-time pad can be easily extended to binary data.

Instead of one-time pad consisting of letters, use a one-time pad

of bits.

Since the key bits must be random and can never be used again,

the length of the key sequence must be equal to the length of the

message. Practically this encryption scheme works best for short

messages.

3.2Public Key Encryption
Encryption is a process in which the sender encrypts/scrambles

the message in such a way that only the recipient will be able to

decrypt/ descramble the message.

Consider a device B whose private key and public key are PB and

UB respectively. Since UB is public key all devices will be able to

get it. For any device that needs to send the message ‘Msg’ in a

secured way to device B, it will encrypt the data using B’s public

key to obtain the cipher text ‘Ctx’. The encrypted message, cipher

text, can only be decrypted using B’s private key. On receiving

the message the B decrypts it using its private key PB Since only B

knows its private key PB, none other including A can decrypt the

message.

Ctx = Encrypt (Msg , UB)

Msg = Decrypt (Ctx , PB)

3.2.1RSA Algorithm
Of all the public-key algorithms proposed over many years,

RSA[3] is by far the easiest to understand and implement. It is

also the most popular. Named after the three inventers – Ron

Rivest, Adi Shamir, and Leonard Adleman – it has since

withstood years of extensive cryptanalysis. Although the

cryptanalysis neither proved nor disproved RSA’s security, it does

suggest a confidence level in the algorithm.

RSA gets its security from the difficulty of factoring large

numbers. The public and private keys are functions of a pair of

large (100 to 200 digits or even larger) prime numbers.

Recovering the plain text from the public key and the ciphertext is

conjectured to be equivalent to factoring the product of the two

primes.

To generate the two keys, choose two random large prime

numbers, p and q. for maximum security, choose p and q of equal

length. Compute the product:

 n=pq

Then randomly choose the encryption key, e, such that e

and (p-1)(q-1) are relatively prime. Finally, use the extended

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

17

Euclidean Algorithm[1] to compute the decryption key, d, such

that

 ed≡1 mod(p-1)(q-1)

In other words,

 d=e-1mod ((p-1)(q-1))

Note that d and n are also relatively prime. The numbers e and n

are the public key; the number d is the private key. The two

primes, p and q, are no longer needed. They should be discarded

but, never revealed.

To encrypt a message m, first divide it into numerical blocks

smaller than m. That is, if both p and q are 100-digit primes, then

n will have just under 200 digits and each message blocks, mi,

should be just under 200 digits long. The encrypted message, c,

will be made up of similarly sized message blocks, ci, of about the

same length. The encryption formula is simply

 Ci = mi
e mod n

To decrypt a message, take each encrypted block ci and compute

 mi = ci
d mod n

eg: In this example we will group the characters into blocks of

three and compute a message representative integer for each

block.

ATTACKxATxSEVEN = ATT ACK XAT XSE VEN

In the same way that a decimal number can be represented as the

sum of powers of ten, e.g.

135 = 1 x 102 + 3 x 101 + 5,

we could represent our blocks of three characters in base 26 using

A=0, B=1, C=2, ..., Z=25

ATT = 0 x 262 + 19 x 261 + 19 = 513

ACK = 0 x 262 + 2 x 261 + 10 = 62

XAT = 23 x 262 + 0 x 261 + 19 = 15567

XSE = 23 x 262 + 18 x 261 + 4 = 16020

VEN = 21 x 262 + 4 x 261 + 13 = 14313

In this system of encoding, the maximum value of a group (ZZZ)

would be 263-1 = 17575, so we require a modulus n greater than

this value.

1. We "generate" primes p=137 and q=131.

2. n = pq = 137.131 = 17947

φ = (p-1)(q-1) = 136.130 = 17680

3. Select e = 3

check gcd(e, p-1) = gcd(3, 136) = 1, OK and

check gcd(e, q-1) = gcd(3, 130) = 1, OK.

4. Compute d = e-1 mod φ = 3-1 mod 17680 = 11787.

5. Hence public key, (n, e) = (17947, 3) and private key (n,

d) = (17947, 11787).

To encrypt the first integer that represents "ATT", we have

c = me mod n = 5133 mod 17947 = 8363.

We can verify that our private key is valid by decrypting

m' = cd mod n = 836311787 mod 17947 = 513.

Overall, our plaintext is represented by the set of integers m

(513, 62, 15567, 16020, 14313)

We compute corresponding ciphertext integers c = me mod n,

(which is still possible by using a calculator)

(8363, 5017, 11884, 9546, 13366)

You are welcome to compute the inverse of these ciphertext

integers using m = cd mod n to verify that the RSA algorithm still

holds. However, this is now outside the realms of hand

calculations.

3.2.2Previous Attacks on RSA
In this section we summarize several previously known attacks on

the RSA public-key cryptosystem relevant to this work. We

follow the presentation of the recent survey

3.2.2.1Factoring
The most straight forward attack on RSA is factorization of the

modulus n = pq. Once a factor p is discovered, the factor q = n/p

may be computed, so φ(n) = n − p − q + 1 is revealed. This is

enough to compute d ≡ e−1 mod φ(n).

 The current fastest method for factoring is the General Number

Field Sieve [4]. It has a running time of exp (c + o

(1)) · (log N)1/3 (log log N)2/3 for some 1 < c <2. The size of N is

chosen to foil this attack. The largest integer that has been

successfully factored using this method was the 512-bit RSA

challenge modulus RSA-155, factored in 1999 using a massive

distributed implementation of GNFS on the Internet [6]. Even

though the speed of computer hardware continues to accelerate, it

seems unlikely that the best factoring algorithms will be able to

factor say 1024-bit RSA modulo in the next twenty years.

3.2.2.2 Hastad’s Attack on Broadcasted Messages

In order to speed up RSA encryption (and signature verification)

it is useful to use small value for the public exponent e, say e = 3.

However, this opens up RSA to the following attack, discovered

by Hastad [5].

 Let us start with a simpler version. Suppose Bob wishes to send

the same message M to k recipients, all of whom are using public

exponent equal to 3. He obtains the public keys Ni , ei for i = 1, . .

. , k, where ei = 3 for all i. Naively, Bob computes the ciphertext

Ci = M3 mod Ni for all i and sends Ci to the ith recipient.

A simple argument shows that as soon as k ≥ 3, the message M is

no longer secure. Suppose Eve intercepts C1 , C2 , and C3 , where

Ci = M3 mod Ni . We may assume gcd(Ni , Nj) = 1 for all i ≠ j

(otherwise, it is possible to compute a factor of one of the Ni ’s.)

By the Chinese Remainder Theorem, she may compute C

Є Z*
N1N2N3 such that C ≡ Ci mod Ni . Then C ≡ M 3 mod N1 N2 N3

; however, since M < Ni for all i, we have M3 < N1N2N3 . Thus C

= M3 holds over the integers, and Eve can compute the cube root

of C to obtain M.

Hastad proves a much stronger result. To understand it, consider

the following naive defense against the above attack. Suppose

Bob applies a pad to the message M prior to encrypting it so that

the recipients receive slightly different messages. For instance, if

M is m bits long, Bob might encrypt i · 2m + M and send this to

the ith recipient. Hastad proved that this linear padding scheme is

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

18

not secure. In fact he showed that any fixed polynomial applied to

the message will result in an insecure scheme.

3.2.2.3Coppersmith Attack on Short Random Pads
Like the previous attack, this attack exploits a weakness of RSA

with public exponent e = 3. Coppersmith showed that if

randomized padding is used improperly then RSA encryption is

not secure [6]. Coppersmith addressed the following question: if

randomized padding is used with RSA, how many bits of

randomness are needed?

To motivate this question, consider the following attack. Suppose

Bob sends a message M to Alice using a small random pad before

encrypting. Eve obtains this and disrupts the transmission,

prompting Bob to resend the message with a new random pad.

The following attack shows that even though Eve does not know

the random pads being used, she can still recover the message M

if the random pads are too short.

For simplicity, we will assume the padding is placed in the least

significant bits, so that Ci = (2m M + ri)
e mod N for some small m

and random r < 2m . Eve now knows

 C1 = (2m M + r1)
e(mod N) and

 C2 = (2m M + r2)
e(mod N)

for some unknown M , r1 , and r2 . Define f (x, y) := xe −C1 and

g(x, y) := (x+y)e −C2 . We see that when x = 2m M + r1 , both of

these polynomials have y = r2 − r1 as a root modulo N . We may

compute the resultant h(y) := Resx (f, g) which will be of degree

at most e2 Then y = r2 −r1 is a root of h(y) modulo N . If |ri | <

(1/2)N (1/e)2 for i = 1, 2 then we have that |r2 − r1 | < N 1/e . By

Coppersmith’s Theorem we may compute all of the roots h(y),

which will include r2 − r1 . Once r2 − r1 is discovered, we may use

a result of Franklin and Reiter [9] to extract M

THEORM (Univariate Coppersmith): Let a monic polynomial
f(x) of degree d with integer coefficients and integers X, M be
given. Suppose X < M(1/d)-Є for some Є > 0. There is an algorithm
to find all x0 Є Z satisfying |x| <X and f(x0) ≡ 0 mod M. This
algorithm runs in time O (TLLL (md, m log M)) where m = O(k/d)
for k = min{1/є log M}.

3.2.2.4 Wiener’s Attack on Short Secret Exponent
To speed up RSA decryption and signing, it is tempting to use a

small secret exponent d rather a random d ≤ φ(N). Since modular

exponentiation takes time linear in log2 d, using a d that is

substantially shorter than N can improve performance by a factor

of 10 or more. For instance, if N is 1024 bits in length and d is 80

bits long, this results in a factor of 12 improvement while keeping

d large enough to resist exhaustive search.

 Unfortunately, a classic attack by Wiener [7] shows that a

sufficiently short d leads to an efficient attack on the system. His

method uses approximations of continued fractions. This attack is

stated in the following theorem.

THEORM: Suppose N = pq and √(N/2)< q < p <√N.
Furthermore d<⅓N (1/4). There is an algorithm which, given N
and e, generates a list of length log(N) of candidates for d, one of
which will equal d. This algorithm runs in time linear in log(N).

3.2.2.5 Cryptanalysis via the Defining Equation
Since ed ≡ 1 mod φ(N), this implies there exists an integer k such

that

 ed + k(N + 1 − (p + q)) = 1.

As discussed earlier, a break of the RSA public key cryptosystem

can be defined in several ways. Most obviously the scheme is

broken if an attacker is able to recover the secret exponent d.

Since factorization of the modulus N = pq leads to recovery of the

private key d, this is also a total break. All of the attacks presented

in subsequent chapters are of this type, and involve either a direct

computation of the private key d or one of the factors p of the

public modulus N , given the public key information N, e alone.

We note that this immediately allows the recovery of the

factorization of N ; indeed, when s = p + q, then p and q are the

two roots of the equation x2 − sx + N = 0.

4.PROPOSED VARIENT OF RSA
As stated above in Wiener’s attack on Short Secret Exponent, if

the value of the private key i.e. d is upto one quarter the size of n

and e < n then the attack will recover d, but on the other hand this

small value of d enhances the efficiency of the cryptosystem.

Based on this we propose a new variant of RSA which uses a

comparatively small value of d and is almost resistant to Wiener’s

attack.

ASSUMPTIONS:

1. ‘a’ is the plaintext message.

2. ‘b’ is the RSA ciphertext.

3. <e , n> is the public key.

4. <d> is the private key.

5. ‘x’ is the randomly generated number

6. f(b,x) is the selected function which is to be applied on

the RSA ciphertext.

ENCRYPTION ALGORITHM.

1. Compute the values of the public key and private key.

2. Encrypt ‘a’ using the RSA algorithm.

3. Generate the random number[1] x, such that it has many

factors and is hard to predict using brute force.

4. Let β = f(b,x) be a function on b and x and should have

the following properties:

a. The function should be one-to-one onto

function.

b. The function should be invertible

c. It should always return an integer value.

5. Encrypt x using one-time pad encryption technique, and

along with the encrypted message β transmit it to the

recipient.

DECRYPTION ALGORITHM

1. Decrypt x using the shared one-time pad

2. Apply inverse of function f(b , x) on β.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

19

b=f-1(β, x)

3. Retrieve original plaintext ‘a’ using private key d

a = bd mod n

This above mentioned function f(b , x) need not necessarily be an

arithmetic function. It can be logical, discrete and even can be a

quantum operation.

This function should always be changed with every session of

communication. The functions selected for this purpose should be

represented by a binary value and these bits should be padded to

the random number ‘x’. When receiver receives the one-time pad

message he should be able to recognize the function applied and

thus the inverse of the function should be again applied on β using

the recovered value x and thus calculate ‘b’. This can be achieved

by keeping a log of such functions in the encryption software such

that it reads the binary representation of the function and search

for the same in the log and apply its inverse.

The idea of using one-time pads is that this encryption technique

works best for short messages and this scheme is very hard to

break as the probability of committing mistakes is very low and so

is the probability of breaking this encryption technique. We can

also use the Hybrid one-time pads for this purpose. The most

wonderful feature of this technique is that many keys lead

ultimately to a legitimate message so the attacker can never

determine when he has actually broken the code.

Moreover, as we choose a comparatively small value of d, this

decreases the complexity of RSA algorithm upto 1/10th of the

usual one. Thus this variant of RSA is more efficient and is easy

to implement too. We just need to select such functions that can

be applied to the RSA code and value of x should be actually

random because most of the random generators have non-random

properties.

We can illustrate all our proposed theory by the following

Example:

First consider a message ‘a’ and public key < e , n> and private

key <d>.

 Let a=62415, e=197, n=1363, d=85.

We take the block length as 2.Thus the message can be re-written

as:

 62 41 05

As we can see the digit 5 has been padded with 0.

We calculate the code ‘b’ by using:

 b=ae mod n;

 (62197) mod 1363=91

 (41197) mod 1363=389

 (05197) mod 1363=701

The encrypted code is: 91 389 701.

Now suppose the randomly generated number is 783(We have

taken a small value for x. But in general x should be minimum

128 bits).we choose the function to be b^x(X-or).Actually this

function should not be practically used as X-or encryption is easy

to break. But we have taken this just to make calculations easy.

 Thus β=852 650 434.

Now this message is transmitted along with 783 encrypted with

Hybrid one-time pads in which the binary representation of the

function X-or is padded.

Now the receiver will get the dual encrypted message and the

value of randomly generated number through one-time pad

decryption. Thus the receiver decrypts the code as below:

 b=β^x(X-or).

 852^783=91.

 650^783=389.

 434^783=701.

 b=91 389 701.

Now the original message ‘a’ can be calculated as:

 a=bd mod n.

 (9185) mod 1363=62

 (38985) mod 1363=41

 (70185) mod 1363=5

 Recovered a=62 41 5.

4.1 Security and Advantages
The major problem of using short private key in RSA algorithm is

that the private key can be retrieved using approximations of

continued fractions. But the disadvantage of using long private

key is that the complexity of the algorithm highly increases. In

hardware, RSA is among thousand times slower than DES. The

fastest VLSI hardware implementation for RSA with 512-bit

modulus has a throughput of 64 kilo bit per second[8]. There are

also chips that perform 1024-bit RSA encryption. These numbers

may change slightly as technology changes, but RSA will never

approach the speed of symmetric algorithms.

By using the proposed variant the size of the private key ‘d’ can

be kept short in turn reducing the complexity related to the large

private key encryption.

The basic idea behind this variant is to dually encrypt the

plaintext one RSA and other by such an algorithm which is hard

to break (like ONE-TIME PADs).

The chances of a short secret exponent attack are very much less

in this variant because

• If the attacker is successful in getting the private key ‘d’

using the Wiener’s attack on short secret exponent he

has no knowledge of the random number x, used to

calculate function f(b , x).

• Since x can return more than one legitimate answer the

attacker will have many decrypted messages having no

knowledge of the correct message.

• The function applied on x and b is varied constantly

thus finding the inverse of the function also becomes

difficult.

• Decrypting the value of x is also difficult as the one-

time pad encryption on small values is hard to decrypt

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

20

attacked. Moreover, with every session the value of x

and the function gets changed and x is never repeated.

Thus this variant is much more efficient than using large public

and private key values.

5.ACKNOWLEDGMENTS
We are grateful to Mr.Bruce Schneier author of Applied

Cryptography which has been of great help in studying the basic

principles of Public-key Cryptography.

We are also grateful to Mr.Glenn Durfee author of the paper

Cryptanalysis of RSA using Algebraic and Lattice Methods which

has been a basic reference for studying various attacks on the RSA

algorithm.

6.REFERENCES
[1] Applied Cryptography by Bruce Schneier ISBN 9971-51-

348-X.

[2] D. Khan, The Code Breakers: The story of secret Writing,
New York: Macmillan publishing co., 1967.

[3] R.L. Rivest and A. Shamir, “How to Expose an

Eavesdropper” Communication of the ACM, v.27, n. 4 april
1984.

[4] D. Gordon. Discrete Logarithms in GF(p) using the Number

Field Sieve, SIAMJ. Discrete Math. , Vol.6,pp.124-138,1993

[5] S. Cavallar, B. Dodson, A. K. Lenstra, W. Lioen, P. L.

Montgomery, B. Murphy, H. te Riele, K. Aardal, J. Gilchrist,

G. Guillerm, P. Leyland, J. Marchand, F. Morain, A. Muffett,

C. Putnam, C. Putnam, and P. Zimmermann. Factorization of

512 bit RSA key using the number field sieve. In

proceedings Eurocrypt 2000, Lecture Notes in Computer

Science, vol. 1807, Springer-Verlag, 2000. Factorization

announced in August, 1999.

[6] J. Hastad. Solving simultaneous modular equations of low

degree. SIAM Journal on Computing, vol. 17, no. 2, pp.

336–341, 1988.

[7] D. Coppersmith. Small solutions to polynomial equations,

and low exponent RSA vulnerabilities. Journal of

Cryptology, vol. 10, pp. 233–260, 1997.

[8] E.F Brickell, “Survey of Hardware Implementations of

RSA,” Advances in Cryptology-CRYPTO ’89 Proceedings,
Springer-Verlag,1990,

[9] D. Coppersmith, M. Franklin, J. Patarin, and M. Reiter. Low

exponent RSA with related messages. In proceedings

Eurocrypt’96, Lecture Notes in Computer Science, vol.1070,

Springer-Verlag, pp.1–9, 1996.

[10] M. Wiener. Cryptanalysis of short RSA secret exponents.

IEEE Transactions on Information Theory, vol. 36, no. 3, pp.

553–558, 1990.

