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ABSTRACT 

Integer Linear Programming Problem (ILPP) is a special case of 

Linear Programming Problem (LPP) in which a few or all the 

decision variables are required to be non-negative integers. For 

solving ILPP, normally Gomory cutting plane or Branch and 

Bound technique is used. In this paper, for implementation of the 

problem in neural network we have taken a new and simple hybrid 

(primal-dual) algorithm which finds the optimal solution for a 

class of integer linear programming problems.  Normally for 

solving ILPP Gomory method or Branch and Bound technique is 

used. This new algorithm does not use the simplex method unlike 

Gomory cutting plane method and Branch and Bound techniques. 

The algorithm was considered for implementation with          

Artificial Neural Network (ANN) and the result shows a great 

improvement in prediction of results. Literature shows that ILPP 

occurs most frequently in transportation problems, assignment 

problems, traveling salesman problems, sequencing problems, 

routing decisions etc. Thus the implementation of the neural 

network on the new algorithm will provide comprehensive results 

when applied with any of the said problems. 
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1. INTRODUCTION 
Linear programming Problem (LPP) is an optimization method 

applicable for the solution of problems in which the objective 

function and the constraints are linear functions of the decision 

variables. The constraints in a linear programming problem may 

be in the form of equalities or inequalities [2]. Integer Linear 

Programming problem (ILPP) is an extension of linear 

programming that some or all the variables in the optimization 

problem are restricted to take only integer values. The most 

popular methods used for solving all-integer LPP is cutting plane 

method designed by Gomory and Branch and Bound method. The 

integer programming literature contains many algorithms for 

solving all integer programming problems.  After various 

literature surveys we have obtained a new technique for solving 

the integer linear programming problem which is considered in 

this paper is the neural network implementation. The algorithm 

taken is a hybrid (i.e., primal-dual) cutting – plane method for  

 

 

solving all Integer Linear Programming Problems [3]. ILPP 

occurs most frequently in various problems like transportation  

 

problems, assignment problems, traveling salesman problems and 

sequencing problems [5,7,8,9,11].  

2. INTEGER LINEAR PROGRAMMING 

PROBLEM 
Consider the following type of integer linear programming 

problem.    

         Maximize Z =CX such that AX ≤ B where 

 

a11    a12                  b1 

A= a21    a22   B=       b2 

-------                                   --- 

an1     an2                              bn 

 

C= (c1, c2)  and    X=     x1 

                                      x2 

 

Where ai1, ai2, bi, x1, x2, c1, c2 >= 0, i=1,2,…n and x1, x2 are 

integers.   

The algorithm presented by Karthi Keyan and Sampath Kumar [2] 

is found to have many advantages like, that it does not need the 

repeated use of simplex algorithm, no need of additional 

constraints are involved as in Gomory cutting plane method,  no 

branching of the given ILPP into sub problems is required and 

also it overcomes the problem of degeneracy.  Due to such 

advantages the algorithm was taken for neural network 

implementation which could provide faster solution, handle huge 

volume of data and time saving than conventional systems.  

 

Solution to the above ILPP can be obtained by using the 

following steps  

Step 1: Form the coefficient matrix table. 
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Table 2.1 Matrix Table 

x1 x2 RHS 

a11 a12 b1 

a21 a22 b2 

.. .. .. 

an1 an2 bn 

 

Step 2: Form the ratio table. 

i.e., Divide bi by the corresponding non zero values of ai1 and   ai2  

Step 3: Find the minimum of { b1 / a11 , b2  / a21,  bn / an1} and the 

minimum of { b1 / a12 , b2 / a22,  bn / an2} and 1x̂  and 2x̂ denote 

its integer values. 

Step 4: If both 1x̂  and 2x̂ is zero then choose the next minimum 

of x1 and x2  

This method involves the following three possible cases.  

Case I 

a. Minimum of x1 and x2 are both distinct positive integers. 

b. Minimum of x1 and x2 are both non integer values with 

fraction value less than 0.5 or one is non integer value 

with fraction values less than 0.5 and another one is an 

integer. 

c. Minimum of x1 and x2 are both same positive integers. 

d. Minimum of any one of x1 and x2 or both is zero. 

Case II 

If both the minimum of x1 and x2 are non-integers with fractional 

value >= 0.5 then it falls into Case II where different steps are 

involved to find the solution 

Case III  

If one xi is integer and another in non-integer with fractional value 

>=0.5 then it falls into Case III where different steps is involved 

to find the solution. 

 

In this paper we consider only the Case I type problems for the 

implementation with neural network.  The Case I type problems 

have the following sub cases.  

Case I - (a) 

i. Name the minimum of 1x  and 2x  as 1x̂ and 2x̂  

ii. Compute c1 1x̂  and c2 2x̂  

iii. Compute 2211
ˆˆ xcxc − and 21 cc −   

iv. If  2211
ˆˆ xcxc − > 21 cc − then go to step (v) 

otherwise go to step (vi) 

v. Subtract 21 cc − from ix̂ which has the highest 

value and let it be ix . Go to step (vii) 

vi. Subtract 21 cc − from ix̂ which has the lowest 

value and let ix̂  = ix  

vii. Obtain ix̂  which corresponds to max(c1 1x̂ , c2 1x̂ ). 

If c1 1x̂  = c2 2x̂ ) then, choose the xi from the 

maximum of latest ix̂ , go to step (viii) 

viii. Substitute the value of ix  in the given constraints 

and get another value of the variable by 

considering its minimum integer value. 

ix. Substitute the values of 1x  and 2x  in the objective 

function z to get the optimal value of z. 

 

Case I - (b) 

Consider the integer value among the minimum of ix  by omitting 

its fractional value and follow the steps as in Case I (a) 

 

Case I - (c) 

If the minimum of 1x  and 2x are same integers then find directly 

the max( c1 1x̂ , c2 2x̂ ) and follow the steps from (vii) to (ix) of 

Case I (a). 

 

Case I - (d) 

(i) If the minimum of any one of ix̂  or both are zeros, then 

choose the next minimum as ix̂  and follow steps as in Case I (a) 

The data set is formed for Case I type problems with all the 4 sub 

cases for two variables and was implemented with neural network.  

3. ARTIFICIAL NEURAL NETWORKS 
Neural networks take a different approach in solving a problem 

than that of conventional methods. Conventional methods use 

algorithmic approach, where the method follows a set of 

instructions in order to solve the problem. Unless we know the 

specific steps in prior that the method needs to follow, only then 

the computer can solve the problem. That restricts the problem 

solving capability of conventional methods to solving problems. 

But a method would be so much more useful if they could do 

things that we don't exactly tell them rather train them how to do 

[1].  

Neural networks process information in a similar way the human 

brain does. The network is composed of a large number of highly 

interconnected processing elements called neurons which works 

in parallel to solve a specific problem. A detailed literature survey 

was made in the area of neural network which has motivated us to 

apply this technique to solve this problem [7]. 

4. BACKPROPAGATION ALGORITHM 
Backpropagation algorithm is chosen for solving the ILPP Many 

versions of Backpropagation training algorithms are available in 

which Resilient Backpropagation training is used which provides 

faster results [7]. The following is the algorithm for a three-layer 

neural network with one hidden layer. 

Initialize the weights in the network (often randomly) 
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i) Do 

         For each example data (e) in the training set 

              O = neural-net-output (network, e);  

              forward pass, T = output for e 

              Calculate error (T - O) at the output units 

              Compute delta_wi for all weights 

              from hidden layer to output layer ;  

              backward pass Compute delta_wi for all weights 

              from input layer to hidden layer;backward pass continued 

             Update the weights in the network 

 Until all dataset classified correctly or stopping criterion satisfied 

 ii) Return the network. 

4.1 Training Process 
We have used Backpropagation for training the network and 

simulating it with new inputs. There are generally four steps in the 

training process:  

a. Assemble the training data set. 

b. Create the network object. 

c. Train the network with sample data. 

d. Simulate the network with new inputs. 

Properly trained networks tend to give reasonable answers when 

presented with inputs that they have never seen.  The sample data 

for ILPP are assembled, trained and simulated with the network 

structured. 

5. RESULTS OF WORK DONE 
Using programming techniques we have solved 150 ILLP 

analytically. Out of these 150 data sets we have taken 140 set for 

training the neural network and 10 set for simulating the network 

with new inputs to predict the output.   The data set consists of 8 

input variables viz., a11, a12, b1, a21, a22, b2, c1, c2, and 3 output 

variables viz., x1, x2 and Z. 

 

Table 5.1 Training Data  

Inputs Outputs 

S.No a11 a12 b1 a21 a22 b2 c1 c2 x1 x2 Z 

1 4 4 40 5 10 50 5 6 9 0 45 

2 5 10 50 6 4 40 5 4 5 2 33 

3 4 6 40 5 10 49 5 7 7 1 42 

4 9 7 50 4 4 29 5 6 6 0 30 

5 2 3 45 1 3 42 2 4 20 1 44 

.       .     

.       .     

136 2 3 35 2 3 43 4 5 16 1 69 

137 2 3 45 1 4 42 2 4 20 1 44 

138 2 3 34 2 3 42 4 5 16 0 64 

139 1 2 28 3 5 40 5 6 12 0 60 

140 2 3 30 2 3 43 3 5 13 1 44 

 

Table 5.1 shows few training data which was used to train the 

network. 

 

Table 5.2 Testing Data Set 

Inputs 

S.No a11 a12 b1 a21 a22 b2 c1 c2 

1 5 10 61 4 4 40 6 8 

2 1 2 7 5 2 16 7 6 

3 6 10 50 6 4 41 5 4 

4 2 3 47 1 3 42 2 4 

5 4 6 40 5 10 52 7 7 

6 1 2 28 3 5 41 5 7 

7 2 3 33 2 3 43 3 5 

8 6 6 36 1 3 13 10 5 

9 1 1 9 4 5 20 1 2 

10 7 7 35 1 3 21 10 5 

 

Table 5.2 shows the testing data set with input values. Table 5.3 

shows the analytical outputs for the inputs given in Table 5.2. 

 

Table 5.3 Output (Analytical) 

Outputs 

S.No x1 x2 Z 

1 8 2 64 

2 3 0 21 

3 5 2 33 

4 21 1 46 

5 10 0 70 

6 11 1 62 

7 14 1 47 

8 4 2 50 

9 4 0 4 

10 5 0 50 

 

The network structure used to train the network is shown in the 

Figure 5.1. This network structure consists of one Input layer 

consisting of 8 neurons, and one Hidden Layer consisting of 80 

neurons and one Output Layer having 3 neurons.  The training of 

the network was carried out with the neural network toolbox using 

Matlab 7.0.4. 

 

 

Figure 5.1 Network Structure 



©2010 International Journal of Computer Applications (0975 - 8887) 

Volume 1 – No. 18 

 

96 

 

During the training process, the goal was set up to 0.01and it has 

taken 8314 epochs to train the network and the error performance 

was less than 0.0099, which shows the convergence.  Figure 5.2 

show the convergence achieved for the ILPP problems with 8314 

epochs. 

 

Figure 5.2 ANN Convergence 

6. PERFORMANCE ANALYSIS 
The trained network was then simulated using the 10 testing data 

set.  The results were compared with the analytical results and 

were found to be different in fractional values which almost near 

to the analytical results. The results obtained by simulating the 

network are shown in the following Table 6.1. 

 

Table 6.1 ANN Outputs 

Outputs 

S.No x1 x2 Z 

1 8.4898 1.9827 64.7600 

2 3.1546 -0.0383 21.0650 

3 5.0025 1.9367 32.9813 

4 21.2135 0.7516 46.4952 

5 10.0608 -0.1395 70.4971 

6 11.4274 0.7714 61.7478 

7 13.9686 1.0889 47.0648 

8 3.9252 1.6386 49.5028 

9 4.0650 0.3912 4.4306 

10 5.1899 0.2419 50.1869 

 

The problem taken is considered as the integer programming 

problem hence the values will fall into integer values only.  Thus 

the values obtained through ANN are rounded and shown in 

Table 6.2 which achieves nearly to the exact solution of analytical 

approach. 

Table 6.2 ANN Outputs – Rounded Values 

Outputs 

S.No x1 x2 Z 

1 8 2 65 

2 3 0 21 

3 5 2 33 

4 21 1 46 

5 10 0 70 

6 11 1 62 

7 14 1 47 

8 4 2 50 

9 4 0 4 

10 5 0 50 

 

Thus the network prediction of the solution to the ILPP was 

tremendous and with very little error percentage of range from    

(0-1.6)%. The comparison of the results of Analytical and ANN 

values of x1, x2 and Z values are shown in Figures 6.1, 6.2 and 

6.3 respectively. 

 

Figure 6.1 shows the comparison of the results obtained through 

Analytical and those of the results obtained through ANN method 

for the Z value.  Hence the error percentage is calculated using the 

formula  

 

Error Percentage (EP) = ((Analytical Value – ANN   

                                        value) / Analytical value)* 100 
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Figure 6.1 Comparison of x1 values 

 

Figure 6.1 shows the output comparison obtained from the 

analytical method with the ANN for x1 values which does not 

have any error percentage. 
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Figure 6.2 Comparison of x2 values 

 

Figure 6.2 shows the output comparison obtained from the 

analytical method with the ANN for x2 values which also does 

not have any error percentage 
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Figure 6.3 Comparison of Z values 

 

Figure 6.3 shows the output comparison obtained from the 

analytical method with the ANN for Z values with the error 

percentage range between (0-1.6)%. 

Thus the above comparison results shows that the ANN values 

are highly comparable with the Analytical results and the error 

percentages was found to be well within the accepted range of     

(0 – 1.6)%. 

7. CONCLUSION 
The analysis of the results obtained through ANN shows that it 

produces almost matching results as of the analytical method in 

solving out the integer Linear Programming Problem without 

the use of Gomory method or branch and bound method. Thus 

the implementation of the proposed new solving method in 

solving ILPP with neural network will produce very fast and 

efficient results.  This method and implementation thus can 

serve as an alternate to the Gomary cutting-plane method or the 

Branch and bound method in solving integer linear 

programming problems. 
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