
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 18

93

Neural Network Implementation for Integer Linear

Programming Problem
G.M. Nasira

Professor & Vice Principal
Sasurie College of Engineering
Viyayamangalam, Tirupur (Dt),

Tamil Nadu, India

S. Ashok kumar
Sr. Lecturer, Dept of CA

Sasurie College of Engineering
Vijayamangalam, Tirupur (Dt),

Tamil Nadu, India

T.S.S. Balaji
Executive Director
Sasurie Institutions

Vijayamangalam, Tirupur (Dt),
Tamil Nadu, India

ABSTRACT

Integer Linear Programming Problem (ILPP) is a special case of

Linear Programming Problem (LPP) in which a few or all the

decision variables are required to be non-negative integers. For

solving ILPP, normally Gomory cutting plane or Branch and

Bound technique is used. In this paper, for implementation of the

problem in neural network we have taken a new and simple hybrid

(primal-dual) algorithm which finds the optimal solution for a

class of integer linear programming problems. Normally for

solving ILPP Gomory method or Branch and Bound technique is

used. This new algorithm does not use the simplex method unlike

Gomory cutting plane method and Branch and Bound techniques.

The algorithm was considered for implementation with

Artificial Neural Network (ANN) and the result shows a great

improvement in prediction of results. Literature shows that ILPP

occurs most frequently in transportation problems, assignment

problems, traveling salesman problems, sequencing problems,

routing decisions etc. Thus the implementation of the neural

network on the new algorithm will provide comprehensive results

when applied with any of the said problems.

Keywords

Artificial Neural Network (ANN), Gomory Cutting Plane, Integer

Linear Programming Problem (ILPP), Linear Programming

Problem (LPP), Branch and Bound technique, Primal-Dual.

1. INTRODUCTION
Linear programming Problem (LPP) is an optimization method

applicable for the solution of problems in which the objective

function and the constraints are linear functions of the decision

variables. The constraints in a linear programming problem may

be in the form of equalities or inequalities [2]. Integer Linear

Programming problem (ILPP) is an extension of linear

programming that some or all the variables in the optimization

problem are restricted to take only integer values. The most

popular methods used for solving all-integer LPP is cutting plane

method designed by Gomory and Branch and Bound method. The

integer programming literature contains many algorithms for

solving all integer programming problems. After various

literature surveys we have obtained a new technique for solving

the integer linear programming problem which is considered in

this paper is the neural network implementation. The algorithm

taken is a hybrid (i.e., primal-dual) cutting – plane method for

solving all Integer Linear Programming Problems [3]. ILPP

occurs most frequently in various problems like transportation

problems, assignment problems, traveling salesman problems and

sequencing problems [5,7,8,9,11].

2. INTEGER LINEAR PROGRAMMING

PROBLEM
Consider the following type of integer linear programming

problem.

 Maximize Z =CX such that AX ≤ B where

a11 a12 b1

A= a21 a22 B= b2

------- ---

an1 an2 bn

C= (c1, c2) and X= x1

 x2

Where ai1, ai2, bi, x1, x2, c1, c2 >= 0, i=1,2,…n and x1, x2 are

integers.

The algorithm presented by Karthi Keyan and Sampath Kumar [2]

is found to have many advantages like, that it does not need the

repeated use of simplex algorithm, no need of additional

constraints are involved as in Gomory cutting plane method, no

branching of the given ILPP into sub problems is required and

also it overcomes the problem of degeneracy. Due to such

advantages the algorithm was taken for neural network

implementation which could provide faster solution, handle huge

volume of data and time saving than conventional systems.

Solution to the above ILPP can be obtained by using the

following steps

Step 1: Form the coefficient matrix table.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 18

94

Table 2.1 Matrix Table

x1 x2 RHS

a11 a12 b1

a21 a22 b2

..

an1 an2 bn

Step 2: Form the ratio table.

i.e., Divide bi by the corresponding non zero values of ai1 and ai2

Step 3: Find the minimum of { b1 / a11 , b2 / a21, bn / an1} and the

minimum of { b1 / a12 , b2 / a22, bn / an2} and 1x̂ and 2x̂ denote

its integer values.

Step 4: If both 1x̂ and 2x̂ is zero then choose the next minimum

of x1 and x2

This method involves the following three possible cases.

Case I

a. Minimum of x1 and x2 are both distinct positive integers.

b. Minimum of x1 and x2 are both non integer values with

fraction value less than 0.5 or one is non integer value

with fraction values less than 0.5 and another one is an

integer.

c. Minimum of x1 and x2 are both same positive integers.

d. Minimum of any one of x1 and x2 or both is zero.

Case II

If both the minimum of x1 and x2 are non-integers with fractional

value >= 0.5 then it falls into Case II where different steps are

involved to find the solution

Case III

If one xi is integer and another in non-integer with fractional value

>=0.5 then it falls into Case III where different steps is involved

to find the solution.

In this paper we consider only the Case I type problems for the

implementation with neural network. The Case I type problems

have the following sub cases.

Case I - (a)

i. Name the minimum of 1x and 2x as 1x̂ and 2x̂

ii. Compute c1 1x̂ and c2 2x̂

iii. Compute 2211
ˆˆ xcxc − and 21 cc −

iv. If 2211
ˆˆ xcxc − > 21 cc − then go to step (v)

otherwise go to step (vi)

v. Subtract 21 cc − from ix̂ which has the highest

value and let it be ix . Go to step (vii)

vi. Subtract 21 cc − from ix̂ which has the lowest

value and let ix̂ = ix

vii. Obtain ix̂ which corresponds to max(c1 1x̂ , c2 1x̂).

If c1 1x̂ = c2 2x̂) then, choose the xi from the

maximum of latest ix̂ , go to step (viii)

viii. Substitute the value of ix in the given constraints

and get another value of the variable by

considering its minimum integer value.

ix. Substitute the values of 1x and 2x in the objective

function z to get the optimal value of z.

Case I - (b)

Consider the integer value among the minimum of ix by omitting

its fractional value and follow the steps as in Case I (a)

Case I - (c)

If the minimum of 1x and 2x are same integers then find directly

the max(c1 1x̂ , c2 2x̂) and follow the steps from (vii) to (ix) of

Case I (a).

Case I - (d)

(i) If the minimum of any one of ix̂ or both are zeros, then

choose the next minimum as ix̂ and follow steps as in Case I (a)

The data set is formed for Case I type problems with all the 4 sub

cases for two variables and was implemented with neural network.

3. ARTIFICIAL NEURAL NETWORKS
Neural networks take a different approach in solving a problem

than that of conventional methods. Conventional methods use

algorithmic approach, where the method follows a set of

instructions in order to solve the problem. Unless we know the

specific steps in prior that the method needs to follow, only then

the computer can solve the problem. That restricts the problem

solving capability of conventional methods to solving problems.

But a method would be so much more useful if they could do

things that we don't exactly tell them rather train them how to do

[1].

Neural networks process information in a similar way the human

brain does. The network is composed of a large number of highly

interconnected processing elements called neurons which works

in parallel to solve a specific problem. A detailed literature survey

was made in the area of neural network which has motivated us to

apply this technique to solve this problem [7].

4. BACKPROPAGATION ALGORITHM
Backpropagation algorithm is chosen for solving the ILPP Many

versions of Backpropagation training algorithms are available in

which Resilient Backpropagation training is used which provides

faster results [7]. The following is the algorithm for a three-layer

neural network with one hidden layer.

Initialize the weights in the network (often randomly)

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 18

95

i) Do

 For each example data (e) in the training set

 O = neural-net-output (network, e);

 forward pass, T = output for e

 Calculate error (T - O) at the output units

 Compute delta_wi for all weights

 from hidden layer to output layer ;

 backward pass Compute delta_wi for all weights

 from input layer to hidden layer;backward pass continued

 Update the weights in the network

 Until all dataset classified correctly or stopping criterion satisfied

 ii) Return the network.

4.1 Training Process
We have used Backpropagation for training the network and

simulating it with new inputs. There are generally four steps in the

training process:

a. Assemble the training data set.

b. Create the network object.

c. Train the network with sample data.

d. Simulate the network with new inputs.

Properly trained networks tend to give reasonable answers when

presented with inputs that they have never seen. The sample data

for ILPP are assembled, trained and simulated with the network

structured.

5. RESULTS OF WORK DONE
Using programming techniques we have solved 150 ILLP

analytically. Out of these 150 data sets we have taken 140 set for

training the neural network and 10 set for simulating the network

with new inputs to predict the output. The data set consists of 8

input variables viz., a11, a12, b1, a21, a22, b2, c1, c2, and 3 output

variables viz., x1, x2 and Z.

Table 5.1 Training Data

Inputs Outputs

S.No a11 a12 b1 a21 a22 b2 c1 c2 x1 x2 Z

1 4 4 40 5 10 50 5 6 9 0 45

2 5 10 50 6 4 40 5 4 5 2 33

3 4 6 40 5 10 49 5 7 7 1 42

4 9 7 50 4 4 29 5 6 6 0 30

5 2 3 45 1 3 42 2 4 20 1 44

. .

. .

136 2 3 35 2 3 43 4 5 16 1 69

137 2 3 45 1 4 42 2 4 20 1 44

138 2 3 34 2 3 42 4 5 16 0 64

139 1 2 28 3 5 40 5 6 12 0 60

140 2 3 30 2 3 43 3 5 13 1 44

Table 5.1 shows few training data which was used to train the

network.

Table 5.2 Testing Data Set

Inputs

S.No a11 a12 b1 a21 a22 b2 c1 c2

1 5 10 61 4 4 40 6 8

2 1 2 7 5 2 16 7 6

3 6 10 50 6 4 41 5 4

4 2 3 47 1 3 42 2 4

5 4 6 40 5 10 52 7 7

6 1 2 28 3 5 41 5 7

7 2 3 33 2 3 43 3 5

8 6 6 36 1 3 13 10 5

9 1 1 9 4 5 20 1 2

10 7 7 35 1 3 21 10 5

Table 5.2 shows the testing data set with input values. Table 5.3

shows the analytical outputs for the inputs given in Table 5.2.

Table 5.3 Output (Analytical)

Outputs

S.No x1 x2 Z

1 8 2 64

2 3 0 21

3 5 2 33

4 21 1 46

5 10 0 70

6 11 1 62

7 14 1 47

8 4 2 50

9 4 0 4

10 5 0 50

The network structure used to train the network is shown in the

Figure 5.1. This network structure consists of one Input layer

consisting of 8 neurons, and one Hidden Layer consisting of 80

neurons and one Output Layer having 3 neurons. The training of

the network was carried out with the neural network toolbox using

Matlab 7.0.4.

Figure 5.1 Network Structure

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 18

96

During the training process, the goal was set up to 0.01and it has

taken 8314 epochs to train the network and the error performance

was less than 0.0099, which shows the convergence. Figure 5.2

show the convergence achieved for the ILPP problems with 8314

epochs.

Figure 5.2 ANN Convergence

6. PERFORMANCE ANALYSIS
The trained network was then simulated using the 10 testing data

set. The results were compared with the analytical results and

were found to be different in fractional values which almost near

to the analytical results. The results obtained by simulating the

network are shown in the following Table 6.1.

Table 6.1 ANN Outputs

Outputs

S.No x1 x2 Z

1 8.4898 1.9827 64.7600

2 3.1546 -0.0383 21.0650

3 5.0025 1.9367 32.9813

4 21.2135 0.7516 46.4952

5 10.0608 -0.1395 70.4971

6 11.4274 0.7714 61.7478

7 13.9686 1.0889 47.0648

8 3.9252 1.6386 49.5028

9 4.0650 0.3912 4.4306

10 5.1899 0.2419 50.1869

The problem taken is considered as the integer programming

problem hence the values will fall into integer values only. Thus

the values obtained through ANN are rounded and shown in

Table 6.2 which achieves nearly to the exact solution of analytical

approach.

Table 6.2 ANN Outputs – Rounded Values

Outputs

S.No x1 x2 Z

1 8 2 65

2 3 0 21

3 5 2 33

4 21 1 46

5 10 0 70

6 11 1 62

7 14 1 47

8 4 2 50

9 4 0 4

10 5 0 50

Thus the network prediction of the solution to the ILPP was

tremendous and with very little error percentage of range from

(0-1.6)%. The comparison of the results of Analytical and ANN

values of x1, x2 and Z values are shown in Figures 6.1, 6.2 and

6.3 respectively.

Figure 6.1 shows the comparison of the results obtained through

Analytical and those of the results obtained through ANN method

for the Z value. Hence the error percentage is calculated using the

formula

Error Percentage (EP) = ((Analytical Value – ANN

 value) / Analytical value)* 100

C ompa r i si on o f x 1 Va l ue s

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

T est D at a

Analyti cal

ANN

Figure 6.1 Comparison of x1 values

Figure 6.1 shows the output comparison obtained from the

analytical method with the ANN for x1 values which does not

have any error percentage.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 18

97

C omp ar is io n o f x2 V alues

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10

T est D at a

Analy t ical

ANN

Figure 6.2 Comparison of x2 values

Figure 6.2 shows the output comparison obtained from the

analytical method with the ANN for x2 values which also does

not have any error percentage

C ompar isio n o f Z V alues

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

T est D at a

Anal yti cal

ANN

Figure 6.3 Comparison of Z values

Figure 6.3 shows the output comparison obtained from the

analytical method with the ANN for Z values with the error

percentage range between (0-1.6)%.

Thus the above comparison results shows that the ANN values

are highly comparable with the Analytical results and the error

percentages was found to be well within the accepted range of

(0 – 1.6)%.

7. CONCLUSION
The analysis of the results obtained through ANN shows that it

produces almost matching results as of the analytical method in

solving out the integer Linear Programming Problem without

the use of Gomory method or branch and bound method. Thus

the implementation of the proposed new solving method in

solving ILPP with neural network will produce very fast and

efficient results. This method and implementation thus can

serve as an alternate to the Gomary cutting-plane method or the

Branch and bound method in solving integer linear

programming problems.

8. ACKNOWLEDGMENTS
Our thanks to ACM for allowing us to modify the templates they

had developed. The authors wish to express their gratitude to

International Journal on Futuristic Computer Applications

(IJFCA) for publishing the work in their proceedings.

9. REFERENCES
[1] Kartalopoulous, Stamatios V. “Under- standing neural

networks and fuzzy logic”, Prentice hall 2003.

[2] K. Karthikeyan, V.S. Sampath kumar. “A Study on a Class

of Linear Integer Programming Problems”, ICOREM 2009.

pp. 1196-1210.

[3] Gupta.A. K., Sharma. J.K. “Integer Quadratic

Programming. Journal of the Institution of Engineers”,

Part Pr: Production Engineering Division Vol. 70, (2). pp.

43 – 47.

[4] M. Ida, K. Kobuchi, and R. ChangYun Lee. “Knowledge-

Based Intelligent Electronic Systems”, 1998 Proceedings

KES Second International Conference on Vol. 2. Issue, 21-

23.

[5] S.Cavalieri. “Solving linear integer programming problems

by a novel neural model”. Institute of Informatic and Tele-

communications, Italy

[6] Meera Gandhi, S.K. Srivatsa. “Improving IDS Performance

Using Neural Network (NN) For Anomalous Behavior

Detection”, Karpagam JCS. Vol. 3. Issue 2. Jan-Feb 2009.

[7] Foo Yoon-Pin Simon Takefuji. T. “Integer linear

programming neural networks for job-shop scheduling”,

IEEE International Conference on Neural Networks1988.

pp. 341-348 Vol. 2.

[8] Haixiang Shi. “A mixed branch-and-bound and neural

network approach for the broadcast scheduling problem”,

2003. ISBN:1-58603-394-8 pp. 42-49.

[9] “Branch and bound algorithm for a facility location

problem with concave site dependent costs”, International

Journal of Production Economics, Volume 112, Issue 1,

March 2008, Pages 245-254.

[10] H. J. Zimmermann, Angelo Monfroglio. “Linear programs

for constraint satisfaction problems”. European Journal of

Operational Research, Vol. 97, Issue 1, pp. 105-123.

