
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 18

 71

Improving Performance of Algorithms in Distributed

Computing with Perspective of Green Information

Technology

Era Johri

K. J. Somaiya College of Engineering
Vidyanagar, Vidyavihar
Mumbai 400 077, India

 Shameela Shaikh
K. J. Somaiya College of Engineering

Vidyanagar, Vidyavihar
Mumbai 400 077, India

ABSTRACT

In Distributed Computing approach, it is followed to assign a job

to a processor if it is idle. The focus is now on how to optimize

resources to decrease the energy consumption by volumes of

computing equipments to deal with green and sustainability

issues. So that to save environment from Global Warming and

utilizing the resources efficiently. This process is twofold - One

hand providing green and power efficient algorithms and on the

other supporting companies green investments. In order to

minimize energy consumption by processor allocation we are

providing some algorithms to generalize distributed computing. In

this paper we provide algorithms to green compute by calculating

a threshold and sending systems to power saving modes if the

processor is idle.

Categories and Subject Descriptors

Distributed Computing, Green Information Technology, Power

Saving Modes and Power Consumption by different equipments

in Computer Systems.

General Terms

Analysis, Documentation, Performance, Experimentation.

Keywords

Green Computing, Threshold, Distributed Computing, Power

Consumption, Power saving modes

1. INTRODUCTION
A Distributed System consists of multiple autonomous computers

with different topologies where individual computer are

physically distributed in some geographical area that

communicate with each other by message passing[1]. We can

implement a “Load Transfer” policy to the process created locally

on a machine and a decision has to be made weather or not it can

run on the same local machine or to be transferred to somewhere

else using load distribution algorithms[2]. Decision is made by

the local machine, where the process is generated, to keep the

process or to transfer it depending upon some threshold. If the

machine load is below the threshold keep the new process for

execution locally otherwise transfer it to some other processor. In

this paper we calculate a threshold (decision factor in segregating

the load to different processors) for determining heavy and light

weight loads of processing dealing with,

 The energy requirements by various devices like

printers, CPU‟s, monitors etc.

 Sequential verses Looping structures.

1. Calculating the difference in speed for performance

check i.e. if the time taken by Processor P1 is less than

the time taken collectively by using distributed

computing approach[3] i.e.,

Processor (P1) < Processor (P1+P2+…..+Pn)

0

5

10

15

20

25

30

35

40

P1 P2 P3 P4

Load to
Processor

Figure 1 Heavy Loaded Processors in Distributed

Environment

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 18

 72

0

5

10

15

20

P1 P2 P3 P4

Load to
Processor

Figure 2. Only Local Processor Loaded as Load

capacity is lesser than threshold

In the Algorithm we will deal with methods on how to

calculate the threshold and how to take decision for number of

processors to be used for computing so that to save maximum

energy and contribute to environmental survival.

2. IMPORTANT FACTORS FOR

CALCULATING THE THRESHOLD

2.1 Sequential Vs Looping Structure
We will take examples of different programming constructs in

different languages and will try to compare them in terms of time

and the resources that they hold for the amount of time to execute

the instructions.

In a basic assembly language program when we

compare an ADDITION and MULTIPLICATION instruction we

see that the time taken by an addition is lesser than the time taken

by multiplication operation. If we convert multiplication operation

into addition operations, we can minimize the energy

consumption with great extent as we can minimize the number of

resources used in computing.[4]

MULTIPLICATION instructions though are just

continuous addition operations but surprisingly require much

more amount of time because of JUMPING, every cycle of

addition requires an extra JUMP instruction[5].

Next in looping structures we see how long it takes to

run a simple empty loop for a very large number of iterations

approximately around 10000 billion. We will calculate it by

running the following codes for different languages[6]. For

example,

For example consider the following Java code

public class Loop

{

 public static void main(String[] args)

 {

 //10 000 billion iterations

 long time = System.currentTimeMillis();

 int REPEAT1 = 1000 * 1000;

 int REPEAT2 = 1000 * 1000 * 10;

 for (int i = 0; i < REPEAT1; i++)

 {

 for (int j = 0; j < REPEAT2; j++)

 {

 //do nothing

 }

 }

 time = (System.currentTimeMillis() - time)/1000;

 System.out.println("Time taken: (in seconds) " + time);

 }

Studies says that the above program just require less than one

second for execution

Also consider the following C Program

#include <sys/time.h>

main(int argc, char *argv[])

{

 int i, j, REPEAT1, REPEAT2;

 struct timeval before, after;

 void *tzp;

 /*10 000 billion iterations*/

 tzp = 0;

 before = (struct timeval*) malloc(sizeof(struct timeval));

 after = (struct timeval*) malloc(sizeof(struct timeval));

 gettimeofday(&before, &tzp);

 REPEAT1 = 1000 * 1000;

 REPEAT2 = 1000 * 1000 * 10;

 for (i = 0; i < REPEAT1; i++)

 {

 for (j = 0; j < REPEAT2; j++)

 {

 //do nothing

 }

 }

 gettimeofday(&after, &tzp);

 printf("Time taken (in seconds): %ld\n",

 (after->tv_sec-before->tv_sec));
}

The time taken by the above code to execute in

Windows platform will be around 1 month but it differs in case

with other programming languages. For example the above code

when executed on different programming language we got

different results as,

Table 1: Summary of Time Taken by running an empty loop

on various platforms

Language
Time taken to run a simple empty loop

test for 10 000 billion iterations

Java Under one second

Perl approx. 1 month

C/C++ approx. 1 month

C# approx. 1 month

Assembler approx. 1 month

Fortran approx. 1 month

Ada approx. 1 month

Basic (e.g. Visual

Basic)
approx. 1 month

Next in the case of String instructions, Let the dataset is

about 38000 XML files and parse the file, and tokenized it. The

output while processing these files is quite different as,

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 18

 73

The system crunches 8200 files in the first 10 seconds, but is able

to do only 5000 in the next 10, and then 3500 in the next 10 and it

reduces gradually. It takes about 75 seconds totally for 38000

files, whereas if the system had proceeded at the speed with which

it started, it should have taken under 50 seconds.

Therefore, all these factors have to be considered and try to

incorporate all of these features in our algorithm before

determining the threshold for the process.

2.2 Energy Requirements for various Devices
Once if we can determine the approximate time and the resources

utilized by the program we can differentiate the process into

heavy weight or light weight process. If it‟s a light weight process

then we can compromise with speed a little bit by minimizing the

requirement of resources. We can reduce the economic cost of the

resources as well as Green compute the environment. Also, the

resources not in use can be sent to different power saving modes

like hibernation, sleep or standby. The requirement of energy by

various peripherals of a computer per hour approximately at

maximum at various modes can be depicted as,

Table 2: Power consumption by Computers per hour Approx.

Computers

Desktop Computer 60-250 watts

On screen saver 60-250 watts

(no difference)

Sleep / standby 1 -6 watts

Laptop 15-45 watts

Table 3: Power Consumption by Monitors per hour Approx.

Monitors

Typical 17" CRT 80 watts

Typical 17" LCD 35 watts

Apple MS 17" CRT,

mostly white (blank IE window)
63 watts

Apple MS 17" CRT,

mostly black (black Windows desktop

with just a few icons)

54 watts

Screen saver (any image on screen)
same as above

(no difference)

Sleeping monitor (dark screen) 0-15 watts

Monitor turned off at switch 0-10 watts

As long as computer goes into different modes of Power

Saving, they doesn't use squat for electricity. Of course, it should

be made sure that the computer is set to different modes of Power

Saving automatically when not in use hence less contributing in

Global Warming and less Energy Consumption.

This feature becomes very important when used in

distributed systems where the idle processors should be

automatically send to the power saving modes and if we can

maintain the global record of the computers in active and passive

modes. Also the shared devices in network when they are not in

use should be automatically sent to Power Saving modes.

3. OUR APPROACH
Based on the above two factors our approach for

differentiating Heavy Load and Light Load processor is

something like this…

3.1 Analyzing Types of Operations:
While the time of parsing any computer Program

threshold can be calculated between 0 to 5 by assigning time units

between 0 to 5 to various processes depending upon the different

mathematical operations like +,_,/,*,etc and instructions like

add(), sub() etc used in the program. If there are any looping

structures that can be converted to sequential instructions or any

other operations the numbers between „0‟ and „5‟ are assigned

based on the requirement of execution time and resource

requirement for each operation. For example,

Table 4: Numbering the operations

Operations Numbers

Addition, Subtraction 1 for each instruction

If else 3 for each operation

Looping 5 for each operation

String Calculation 5 for each operation

It is not necessary to store the numbers; it should only

be summed up based on the type of operations.

Hence we have to sum up all the points and then divide

the whole by total number of operations and determine the

threshold value.

If the value is equal to or more than 5 we

assign that process as heavy weight and apply load balancing

algorithms to it otherwise take it as light weight process and

process it on the local machine.

3.2 Analyzing the Wastage of Energy in

Switching of Load
If the load is lightweight and still distributed on different

machines then it may happen that there is considerable switching

time in for loading the process on different Processors. This is

unintentionally increasing the execution time for the load. In such

cases the load should not be distributed to different processors. It

is possible in that case that

Time taken by,

Processor (P1) < Processor (P1+P2+…..+Pn)

Now once the process is estimated as light weight (if its

lying below the threshold) or heavy weight (if lying above the

threshold) process we can simply apply power saving mechanisms

so as to conserve energy.[7] The load balancing can be shown as

in Fig 1 and Fig 2. From this diagram we can say that

compromising a little in speed we can save energy and make our

systems to green compute.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 18

 74

4. REFERENCES
[1] M. L. Liu, “Distributed Computing Concept and

Applications

[2] Niranjan G. Shivaratri, Phillip Krueger, and Mukesh

Singhal, “Load Distributing for Locally Distributed Systems”

Compute, vol.12 no.22 pp.33-44, Dec. 1992, doi:

10.1109/2.179115

[3] Andrew S. Tanenbaum, “Distributed Systems: Principles and

Paradigms”, Pearsons

[4] Jason Harris, “Green Computing and Green IT Best Practices

on Regulations and Industry Initiatives, Virtualization,

Power Management, Materials Recycling and

Telecommuting” p.202

[5] F.C.H. Lin, R.M. Keller, "The Gradient Model Load

Balancing Method," IEEE Transactions on Software

Engineering, vol. 13, no. 1, pp. 32-38, Jan. 1987,

doi:10.1109/TSE.1987.232563

[6] Jim Farley, “Java Distributed Computing”, O'Reilly Media

[7] Georges Da Costa, Jean-Patrick Gelas, Yiannis Georgiou,

Laurent Lefevre, Anne-Cecile Orgerie, Jean-Marc Pierson,

Olivier Richard, Kamal Sharma, "The GREEN-NET

framework: Energy efficiency in large scale distributed

systems," ipdps, pp.1-8, 2009 IEEE International Symposium

on Parallel & Distributed Processing, 2009

