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ABSTRACT 

Artificial Neural Networks (ANN) are extremely useful to relate 

the nonlinearly depending outputs with the inputs. Various 

architectures are available for the ANNs to speedup the training 

period and reduce the square error. In this paper, new classes of 

neural networks with differential feedback are presented. The 

different orders of differential feed back form a manifold of 

hyperplanes. Interesting properties of this differentially fed ANN 

(DANN)  are derived through these hyperplanes.   

Categories and Subject Descriptors 
I.5.1, G.0  

General Terms 
Algorithms 

Keywords 
Adaptive control, Neural networks, Differential feedback, 

Multiresolution. 

1. INTRODUCTION 
Neural networks are generally used when the input and output of a 

system are non-linearly related. When the data itself is noisy, the 

relation is described stochastically in terms of conditional 

probability p(y|x) of the output y when x is the input. The input, 

output and the connecting weight matrix in a statistical neural 

network model are related through a family of distributions called 

exponential family, which has the pdf  

 

P(y,θ)=exp{Σθiki(y)- ψ(θ)}                                                       (1) 
 

Where θ is the coordinate system, k= ki (y) are adequate functions  

of y, ψ the offset. In the context of neural networks, y is the 
observable state matrix ie observed p (y|x) and θ is the connecting  
 

weight matrix.[3] .For any two distributions p(y) and q(y) the 

geodesic connecting them [3] is given by 

 

log(p(y,t))=(1-t)log p(y)+t log q(y)- ψ(t)                          (2) 

 

The equation shows a linear or affine geodesic for the family of 

exponential distribution. It is also called flat manifold.  The 

curvature of the geodesic connecting p1(x) and p2(x) is called 

Riemann-christoffel curvature for exponential family.  

 

 

The distance between distributions of a manifold are parameterized 

as divergence. In its simplest form, it happens to be the magnitude 

of the geodesic. The kullback divergence of pdf p from pdf q is 

given by  

 

D=p*log(p/q)                                                                            (3) 

 

The different orders of differential feedback form a manifold of 

hyperplanes and are related to manifolds of probability density 

functions(pdf). In this paper the  concept of differentially fed neural 

networks is explored followed by the concept of hyperplanes. 

2. FORMALISM OF DIFFERENTIALLY 

FED ANN 

The output y of a neural network but for the nonlinearities can be 

written as  

 

y=Σwixi.                                                                                  (4) 

 

Where xi are the inputs wi, the corresponding weights. The space 

spanned by weight vector for different inputs is a hyperplane. 

Again the linearity of the output (4) may be viewed as a particular 

case of Auto Regressive Moving Average (ARMA) 

 

y(n+1)=b0y(n)+b1y(n-1)+…..+a0x(n)+…                                 (5) 

 

Where b0.. and a0.. are constants. The auto regressive terms b0…bn 

may be realized using an implied differential feedback [1]. With 

differential feedback it has been found out[1] that the number of 

iterations required for training is reduced. With I order different 

feedback, the output reduces to 

 

Σwixi +b1y1                                                                  (6) 

 

y1 being the I order  differential. This equation once again 

represents a plane parallel to Σwixi. Thus the set of differentially 

fed ANNs form a manifold of parallel planes for different orders 
of feedback. 

 

The two differential terms of II order differential feedback i.e., y2-

y1 and y1-y0 can be replaced by a single equivalent term y0*Weq 

where  

 

Weq=(w1*(y1-y0)+w2*(y2-y1))/y0                                    (7) 

 

The two parallel hyperplanes representing the two differential 
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terms may be replaced by a single hyperplane. Extending this 

principle, the infinite terms of infinite order differential feedback 

can be replaced by a single equivalent term. The manifold of 

hyperplanes can be replaced by a single hyperplane. This is 

termed as Eigen plane. 

 

2.1 Information geometry of differential 

feedback. 
In order to minimize the error, the plane spanned by the weight 

vectors should be as close as possible to the Eigen plane. When I 

order differential feedback is given, the new plane is given by 

 

ynew=∑wixi+a*yold                                                    (8) 

 

This plane is parallel to the original plane represented by ∑wixi .For 

a given number of iterations, simulation results show that the square 

error is found to decrease asymptotically with the order of 

differential feedback. Hence, the gap   between parallel planes 

decreases in the same way and the infinite order differential 

feedback plane coincides with the Eigen plane. In this case, the 

square error is zero.  

 

In [1] it has been proved that  the entropy is minimum on the Eigen 

plane. The error distribution is assumed to be Gaussian distributed 

since a large number of additions are involved with the higher order 

differential feedback. 

 

The Natural learning algorithm is given by [2] 

 

θ (t+1)=θ (t)-η G-1                                                                  (9)  
 

This sounds as new plane=old plane + deviation which shows that 

the repeated learning in gradient descent algorithm shifts the planes 

towards the Eigen plane in the same way the    differential feed back 

will do ,but fails to reach it  because Eigen plane does not belong to 

the space spanned by inputs alone. 

 

The different hyperplanes may be taught of as different observations 

of the output p(y|x) for the applied input x. Deviation of any plane 

from the Eigen plane is given by Kullback Divergence. The 

Kullback  divergence of q from p  

 

D(p||q)=∫ p(s)log(p(s))/q(s) dλ(s)                                 (10) 

 

Here q(s) is the prob. Distribution of Eigen plane p(s) is the 

probability distribution of some plane so that D is the deviation 

from the Eigen plane. At Eigen plane p=q so D(p||q)=0 . 

 

2.2 Spectrum smoothening 
With differential feedback, the spectrum gets smoothened and 

becomes more and more flat. Suppose X(ejω) is the spectrum of the 

signal. The spectrum of its derivative is given by ω2 X(ejω).This 

makes the high frequency signals of X(ejω) , which generally 

decrease with the frequency, to get lifted and the spectrum becomes 

more and more flat.     

3. SUPERPOSITION OF HYPERPLANES 

A neural network trained with Bayesian learning algorithm outputs 

entire distribution of probabilities over hypothesis set rather than a 

single hypothesis. In the present context each hypothesis 

corresponds to one hyper plane i.e., different orders of feedback. 

I.e.  Each hyperplane may be taught of as a classifier with an 

associated probability density function. Degree of belief is 0 for no 

feedback and increases towards 1 for infinite feedback or when all 

classifiers merge. In such a classifier the actual output may be 

thought of as superposition of beliefs [11]. The addition is not 

simple but weighted by belief or pdf. Finally the superposed effect 

of all classifiers is the Eigen plane. This gives 

 

P0*no feedback+p1*I order differential feedback=p2*II order 

differential feed back                                                           (11.a)                        

  

P1* I ordered differential+…infinite order =Eigen plane  (11.b)

        

I.e. weighted sum of different ordered differentials.  

      

P1*distance between I order and nofeedback+p2*II order and no 

feedback+…=1*distance between no feedback and Eigen plane                                                                                   

                                                                                             (11.c) 

 

The equations show that the learning algorithms with differential 

feedback do indeed resemble Bayesian learning algorithms and are 

hence resistant to over fitting [12,13]. Resistance for over training 

 

The posterior has two components-a data independent Gaussian 

prior part and a data dependent term. Logically, the Gaussian part 

may be attributed to the previous or differential terms of the output 

since the weighted sum of any probability distribution function in 

general turns Gaussian. Such a Gaussian classifier is known to 

resistant to over fitting. 

 

3.1 Bayesian learning 
The aprior distribution P(λ) generally encodes some prior 

knowledge. With the arrival of data pattern D the aprior distribution 

gets updated using Baye’s rule as P (λ|D) ∝ P (D|λ) P (λ).Taking 
Logarithm both sides, we get 

 

Log (P (λ|D)) ∝ log (P (D|λ))+log (P (λ))                                 (12) 
 

The equation has two terms-one current data dependent term and 

one data independent term, where the previous outputs are 

considered. The posterior distribution so obtained hence encodes 

information coming from the training set and prior knowledge. 

 

Consider the example of II order feedback which makes use of two 

previous or priori terms P (λ1) and P (λ2). With this the equation 

may be rewritten as  

 

P (λ|D) = P (D|λ1)* P (λ1) + P (D|λ2)* P (λ2)                     (12.a) 
 

which leads to the equation 
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p2*II order differential feed back =P0*no feedback+p1*I order 

differential feedback                                                        (13)

  

The equation tries to expand the (k+1) th order differential feedback 

plane with0,1..K th order differential feedback planes. The 

weighing factors may be taught of as the projection or dot product 

of the hyper plane over lower order hyper planes. The above 

equation may be rewritten as 

 

P (λ|D)=P (D){P (λ1)+ P (λ2)}                                     (14) 

 

I.e., Output without feedback or the bias term*Gaussian like pdf.  

especially with higher   Orders of the feedback 

4. CONCEPT OF IDEAL ESTIMATOR 

From [15] it is evident that the likelyhoods of different estimators 

form a manifold of probability distributions. Here, these 

distributions are mapped to form a manifold of hyperplanes each of 

which are formed by the different orders of differential feed back 

from the out put to the input. Thus the different estimators 

correspond to the different hyper planes with the ideal one being the 

Eigen plane. 

 

The error at any plane i.e., corresponding to an estimator has 2 

components –variance and bias related as Error2= bias2+variance2 

 

Here the bias corresponds to its distance from the non-feedback 

plane (uncertainty error as the plane fixture itself is the erroneous 

deviation of the obtained plane from fixture of the assumed ideal 

plane) and variance to the approximation error (deviation of this 

fixture from ideal). Bias error for all degrees of differential 

feedback remains the same. Variance reduction increases with the 

order. This happens because the planes get congested as we move 

towards the Eigen plane as the order of differential feedback 

increases.  

 

5. CONVOLUTION OF HYPERPLANES 

Let yk represent the k
th hyperplane corresponding to kth order of 

differential feedback. Hence  

yk= a*y0+b*y1+…                                                                    (15) 

 

In terms of the differentials of the previous output, it becomes 

   

yk =b1*yk-1+c1d(yk-1)/dt                                                            (16) 

 

c1 being a constant Here the incremental portion will be 

approximated as the convolution of some function with y0. 

 

Ie ∆y= c1d(yk-1)/dt y0*f                                     (17) 

 

F may be found out by pushing both sides of the equation to 

frequency domain. F(f) should have a linear response over the 

points of interest .Its equivalent time domain signal may be 

expressed as. 

 

  

2
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−
=                                                  (18) 

 

Since the response is delayed by N/2.N being the no. of points in 

Fourier transform. The signal is shown in fig 8. As evident from the 

figure, over a very small duration, the result may be approximated 

to a Gaussian pulse of scale factor l where the Gaussian kernel with 

dilation parameter l is given by G(l,x) an exponential function. 

 

Analytically F decays as 1/t2  =(1-t2/k), as the exponential 

approximation of a Gaussian pulse. Hence, the envelope of f is 

Gaussian if the peaks are too close ie sinc function is large. The 

table III shows that the gap between the hyperplanes decreases with 

increase in the order. I.e. the information content becomes more and 

more abstract. Hence the kernel which is convolved with the output 

y is scaled with progressively increasing scale factor.  

 

5.1 Working of the model 
In the domain of learning, mixtures of Gaussians is a powerful tool 

for statistical modeling. Such a model can avoid the problem of 

over fitting [16]. The Gaussian  model is regenerative with  

 

x=f(z)+u                                                                     (19) 

 

Where f(z) is the mixture of Gaussians and u is the bias. All 

components of x are linear combinations of Gaussian random 

variables. Since convolution with Gaussian function may be 

expressed as a linear combination of scaled and shifted Gaussians, 

the hyperplanes are expressible as a linear combination of Gaussian 

variables.  

 

6. Hyperplane data sieves   

A simple differential feedback from the input to the output gives a 

manifold of solutions with varying degrees of error. This spectrum 

of manifolds may be taught of as coarse to fine approximation of 

solution .i.e., as one increases the degree of feedback the fineness 

increases. This, by intuition, implies that the approximation set is 

somehow analogous to the wavelet representation of the actual 

solution. To explore the analogy further, consider Bohr’s theorem, 

which relates the outputs at the levels n and n+1 as 

 

y(n+1)/y(n)=x(n)                                                                     (20) 

 

x(n)  being the input. y(n+1) and y(n) also represent the (n+1)th and 

nth hyperplanes or degree of differential feedback. Hence x(n) may 

be taught of as a transform taking place at level n to level n+1 

 

y(n+1)=x(n)*y(n)                                                                   (21) 

 

I.e. y(n) maps a certain hyperplane on to the same domain, but with 

a different level of abstraction. The distance between adjacent 

hyperplanes reduces progressively. It is this reducing distance 

between the hyperplanes responsible for the different abstractions 
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of representation of the solution at different levels. 

 

The multiresolution property of the hyperplanes has been 

established in[1].The simulation results actually prove that the 

increase in abstraction in the hyperplanes is the same as that of the 

wavelets.  

 

The previous section has shown how the higher order hyperplanes 

may be derived from the lower order ones by convolving with a 

Gaussian pulse of varying degree of abstraction. Such a convolution 

results in multiple resolution of the resulting hyperplanes. In 

addition, simulation results show the orthogonality of hyperplanes. 

The hyperplanes thus exhibit the required characteristics of the 

wave let coefficients 

 

7. SIMULATION AND RESULTS 

First, the performance of DANN was tested on XOR logic function. 

This is followed by the different properties of the DANN imparted 

with the hyperplane representation. In all the cases, the output is 

clipped to saturation when it crosses 1. Error threshold of .1 is used 

as stopping criteria 

7.1 XOR function learning and equivalency of 

hyperplanes 
Gaussian distributed random signal with seed value   1000 is taken 

as input. The output is generated by performing XOR over the 

consecutive values and saturating the result between 0 and 1.. The 

table I shows the iterations performed and the error. The table II 

shows equivalency of hyperplanes. With differential feedback it has 

been found out [1] that the no of iterations required for training is 

reduced as shown in the table 1. XOR gate is considered for 

simulation. The equivalency of hyperplanes is given in Table 2. 

 

Table 1 Performance of DANN 
 

Order of differential Square error Iterations 

No feedback 18 1156 

I order 18 578 

II order 18 289 

 

 

 

 

 

Table 2 Equivalence of hyperplanes 
 

Order of differential Square error Iterations 

II order Feedback 18 578 

Equivalent Output 

  feed back 

18 578 

 

7.2 Spectral smoothing  
The error signal generated in XOR learning is used for the 

simulation. The spectrum of error signal and its different 

derivatives are plotted in figure 1.  

 

Here the DANN learns the spectrum of the error signal generated. 

It may be seen in the figure that the spectrum becomes more and 

more flat when higher order differential feedback is given. Also, 

magnitude of the error signal reduces and the error energy 

decreases with increase in the order of the differential. 

 
 

 

 

 

 

7.3 Bayesian learning and ideal estimation 
The differentially fed artificial neural networks are made to learn 

the power spectral density (psd) of the Normal distributed data in 

the interval (0, 1). The network is trained up to second order 

feedback The error after learning and the differentials of the error 

are stored The probability distribution of each of them is 

computed using Parzen equation 

 

2

2)(

2

1
)( σ

πσ

xmean

exp

−
−

=
                                         (22) 

 

σ being the standard deviation of the distribution. The weighted 

sum of the zero order feedback and I order feedback data with their 

corresponding probability distribution functions (pdfs) is found 

identical to the weighted second ordered differential feedback with 

the corresponding pdf as given in the equation In figure 2 signals of 

first and zero order weighed with pdf and weighed second order 

signal are shown. From the table 3 it is clear that With I order 

feedback bias or the mean value remains the same. Variance is 

reduced. They are further reduced with II order differential 

feedback. I.e. the output plane has been lifted towards the Eigen 

plane. The mean and variance of the error are shown in table 3. 

Figure 1. Spectrum of the error in the output and its 

derivatives 

 

Legend: 

 

.   No feedback,  

-.  First order feedback 

–  Second order feedback 
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Table 3 Mean and Variance of the error  

 

Order of differential Variance Mean 

No feedback 6.9132e-005 0.998 

I order  6.8614e-005 0.998 

II order 6.3371e-005 0.998 

 

 

7.4 Multiresolution of hyperplanes 
The same data of previous experiment has been made use here. The 

normalized PSDs of convolution of outputs without feedback and 

Gaussian pulse and normalized power spectral density ( PSD) of the 

first derivatives with feedback are shown in the figure 3. It may be 

seen from the figure that the derivatives are formed by the 

convolution of the output with Gaussian functions of different 

scales 

 
 

 

 

 

 

It has been shown in table 4 that outputs at different hyperplanes 

are orthogonal. The differentially fed Artificial neural networks 

are made to learn the PSD of random data .The Normal 

distributed data is generated using Matlab. The error after learning 

and the differentials of the error are computed. This satisfies the 

condition that the basis functions have to be orthogonal. 

Table 4 Orthogonality property of hyperplanes 
 

Order Order Sum of product 

0 1 0.0082798 

1 2 0.0008682 

2 0 0.081904 

. 

8. CONCLUSIONS 
With differential feedback from the output to input of an ANN, it 

has been found out that the number of iterations required for 

training is reduced. The set of differentially fed outputs form a 

manifold of parallel planes, with infinite order feedback being the 

plane with zero error. Simulation results show that error varies 

asymptotically with order and the gap between parallel planes 

decreases with order. The entropy is the minimum when infinite 

feedback is given. 

 

Differential feedback, when applied over a neural networks leads to 

a manifold of affinely transported hyperplanes. These hyper planes 

are actually formed by the convolution of the non feedback output 

with Gaussian kernels of different scales. 

 

From the simulation results it is clear that the classifier represented 

by a certain hyper pane is the weighted sum of the hyper planes or 

classifiers below. This way, ideal classifier is the weighted sum of 

all the classifier. The differential feed back represents a signal with 

the same level of abstraction as that of wavelets. It provides a 

crucial link between wavelets and information geometry. 

 

The performance of an artificial neural network as an estimator has 

been examined. It has been found out that the estimator performs 

better if higher order differential feedback is given, reducing the 

errors due to variance of the measurement. 
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