
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 19

66

Analysis of Parallel Merge Sort Algorithm
Manwade K. B.

Department of Computer Science & Engineering, Tatyasaheb Kore Institute of Engineering &
Technology, Warananagar, Dist: Kolhapur (MS), India 416113

ABSTRACT
The parallel computing on loosely coupled architecture has been

evolved now days because of the availability of fast, inexpensive

processors and advancements in communication technologies.

The aim of this paper is to evaluate the performance of parallel

merge sort algorithm on loosely coupled architecture and

compare it with theoretical analysis [1].The parallel

computational time complexity is O (p) [3] using p processes

and one element in each process. It has been found that there is

no major difference between theoretical performance analysis

and the actual result.

Keywords
Parallel computing, Parallel Algorithms, Message Passing

Interface, Merge sort, Complexity, Parallel Computing.

1. INTRODUCTION
Here, we present a parallel version of the well-known merge

sort algorithm. The algorithm assumes that the sequence to be

sorted is distributed and so generates a distributed sorted

sequence. For simplicity, we assume that N is an integer

multiple of P, that the N data are distributed evenly among P

tasks. Also we have analyzed the performance of the proposed

algorithm and it is compared with theoretical analysis.

The sequential merge sort requires O (N log N) [3] time to sort

N elements, which is the best that can be achieved (modulo

constant factors) unless data are known to have special

properties such as a known distribution or degeneracy. This

paper describes implementation of the merge sort within a

parallel processing environment. In the fully parallel model, you

repeatedly split the sub lists down to the point where you have

single-element lists. You then merge these in parallel back up

the processing tree until you obtain the fully merged list at the

top of the tree.

Manuscript received October 5, 2009.

K. B. Manwade was with Department of Computer Science &

Engineering TKIET Warananagar, Kolhapur 416113 INDIA. He

is now with the Department of Computer

While of theoretical interest, you probably don't have the

massively parallel processor that this would require.

2. THE PARALLEL ALGORITHM
This algorithm uses master slave model [4] in the form of tree

for parallel sorting. Each process receives the list of elements

from its precedor process then divides it into two halves, keeps

one half for itself and sends the second half for its successor. To

address the corresponding preccedor & successor we have used

the concept of „myrank_multiple‟. For a process having odd

rank [5] it is calculated as

Myrank_multiple=2*Myrank+1;Temp_myrank=Myrank_multip

le and for the process having even rank it is calculated as

Myrank_multiple=2*Myrank+2;Temp_myrank=Myrank_multip

le. It uses recursive calls both to emulate the transmission of the

right halves of the arrays and the recursive calls that process the

left halves. When the number of processors in the system

exhaust then each processor will sort the remaining data. After

that it will receive the sorted data from its successor & merge

that two sub lists. Then it sends the result to its precedor. This

process will continues up to root node.

procedure parallel_mergesort(DataArray,SizeofData)

 Begin

 MyData=LeftHalfof[DataArray]

 TempData=RightHalfof[DataArray]

 Send(TempData)

 MyData = Mergesort(MyData,i,j)

 Receive(TempData)

 DataArray=MergeResult(MyData,TempData)

 End

procedure Mergesort(MyData,i,i)

 Begin

 If(j-i>16)

 {

 MergeSort(MyData,i,(i+j)/2)

 MergeSort(MyData,(i+j)/2,j)

 }

 Else

 InsertionSort(MyData,i,j)

 End

procedure InsertionSort (MyData,i,j)

 Begin

 //Sequential_ InsertionSort

 End

3. THEORETICAL ANALYSIS
The sequential time complexity is O(nlogn). In case of parallel

algorithm the complexity involves both communication cost and

computational cost.

A. Communication

In the division phase, communication only takes place as

follows,

Communication at each step,

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 19

67

Fig. 1The merge sort tree

With log(P) steps given P processors, in the merge phase the

reverse communication takes place.

Again log P steps .this leads to the communication time being

B. Computation

Computation only occurs in merging the sub lists merging can

be done by stepping through each list, moving the smallest

found into the final list first. It takes 2n-1 steps in the worst case

to merge two sorted lists each of n numbers into one sorted list

in this manner. Therefore, the computation consists of

Hence:

Therefore the total time required is,

 Let us analyze the time by varying the number of processors by

keeping n=100,

TABLE I

COMPUTATION TIME REQUIRED FOR MERGE SORTING

FOR N=100 BY VARYING NUMBER OF PROCESSORS

No. of Processors Ttotal

10 203

20 203.60

30 203.95

40 204.20

50 204.39

60 204.56

70 204.69

80 204.80

90 204.91

100 208

Now by keeping the number of processors constant to P=10 &

then varying the number of elements, the time required is,

TABLE II

COMPUTATION TIME REQUIRED FOR MERGE

SORTING FOR P=10 BY VARYING NUMBER OF

ELEMENTS

N (No. of elements) Ttotal

100 203

200 403

300 603

400 803

500 1003

600 1203

700 1403

800 1603

900 1803

1000 2003

P

0

P

0
P

1

P

0

P

2

P

1

P

3

P

0

P

4

P

2

P

6

P

1

P

5

P

3

P

7

P

0

P

2

P

1

P

3

P

0
P

1

P

0

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 19

68

The graphical representations of the result are as follows,

Fig. 2 Theoretical Computation time versus number of

processes

Fig.3 Theoretical Computation time versus number of elements

4. PRACTICAL ANALYSIS
We have carried out the experiments in LAN. The computing

environment we have used is MPI [4], [5]. To analyze the

performance of the algorithm we have used two strategies,

Keep the array size fixed i.e. N=100 and vary the number of

processors.

Keep the number of processors fixed i.e. P=10 and vary the size

of elements.

We have observed the following results; Table3 shows the

reading for first strategy and Table4 shows the reading for

second strategy.

TABLE III

COMPUTATION TIME (PRACTICAL) REQUIRED

FOR MERGE SORTING VARING NUMBER OF

PROCESSORS

No. of Processors Actual Time (Sec.)

16 0.68522

17 0.692969

18 0.73497

19 0.747092

20 0.752514

21 0.825803

22 0.826923

23 0.806718

24 0.889703

25 0.876956

TABLE IV

COMPUTATION TIME (PRACTICAL) REQUIRED

FOR MERGE SORTING FOR P=10 BY VARYING

NUMBER OF ELEMENTS

N (No. of elements) Actual Time

(Sec.)

100 0.129613

200 0.165852

300 0.17503

400 0.237113

500 0.403223

600 0.438486

700 0.504024

800 0.628536

900 0.65149

1000 0.69522

The graphical representations of the result are as follows,

5. RESULT
After plotting the results from table3 and table4, we have got the

following graphs. Figure4 shows the graph of results for strategy

number one, while the Figure5 shows the graph of results for

strategy number two.

Fig. 4 Actual Computation time versus number of processes

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

No. of Elements

T
im

e

Theorotical (Time)

 100 200 300 400 500 600 700 800 900 1000

200

201

202

203

204

205

206

207

208

209

1 2 3 4 5 6 7 8 9 10

No. of Processes

T
im

e

Theorotical (Time)

 100 200 300 400 500 600 700 800 900 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

No. of Processes

T
im

e
 (

S
e

c
o

n
d

s
)

Actual (Time)

 16 17 18 19 20 21 22 23 24 25

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 19

69

Fig.5 Actual Computation time versus number of elements

6. CONCLUSION
The algorithm has been tested on loosely coupled parallel

machines and the performance of the algorithm has been

observed. It has been found that the computational time of the

algorithm varies logarithmically for varying number of

processors scenario. Also it is found that for varying number of

elements the computational time varies linearly. It is also found

that the practical analysis closely matches with theoretical

analysis.

7. REFERENCES
[1]. K.B.Manwade, R.B.Patil; Parallel merge sort on loosely

coupled architecture; National Conference, PSG Coimbator.

[2].Ellis Horowitz, Sartaj Sahani, Sanguthevar Rajasekaran,

“Computer Algorithms”, Galgotia publication.

[3].Barry Wilkinson & Michael Charlotte, “Parallel

programming techniques and applications using networked

workstations and parallel computers”, Pearson publication.

[4].http://penguin.ewu.edu/~trolfe/ParallelMerge/ParallelMerge.

doc

[5]. Message Passing Interface Forum. MPI: A Message-Passing

Interface Standard. Technical Report Version 1.0, University of

Tennessee, Knoxville, Tennessee, June 1995.

[6]. The MPI Forum On-line, http://www.mpi-forum.org.

[7].Ananath Grama, Anshul Gupta, “Parallel Computing”,

Second edition, Addison-Wesley.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

No. of Elements

T
im

e
 (

S
e
c
o

n
d

s
)

Actual (Time)

 100 200 300 400 500 600 700 800 900 1000

http://www.mpi-forum.org/

