
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 19

56

ABSTRACT

Wireless sensor networks (WSN) present a challenging

programming environment because of their limited resources,

heterogeneity and highly dynamic nature. Service oriented

computing (SOC) can simplify application development by

hiding platform-specific capabilities behind services. Their

services are dynamically discovered and used at run time,

enabling application to be platform independent and adapt to

network dynamics. While service-oriented computing is widely

used on the internet, adapting it to WSNs is non-trivial due to

the extremely limited resource available. The selection of which

service provider to use and how to adapt as provider change

significantly impacts application and network performance. In

this paper, we present a global QoS optimizing and

multiobjective service composition algorithm based on the

construction of convex hull. Simulation experiments were

conducted to show the efficiency of the proposed algorithm.

Keywords: WSN, SOC, QoS, service composition.

1. INTRODUCTION
A Wireless sensor network (WSN) is composed of a large

number of sensor nodes that are densely deployed either inside

the phenomenon or very close to it. The mainobjective of the

wireless sensor networks is to observe an environment, collect

information about the observed phenomena or events and deliver

this information to the application.

The wireless micro sensor node consists of a sensing module, a

processing element, and communication elements. The sensing

module is an electrical part detecting physical variable from the

environment. The processing unit (a tiny microprocessor)

performs signal processing functions, i.e. integrating data and

computation required in the processing of information. The

communication elements consist of a receiver, a transmitter, and

an amplifier if needed. Basically, all individual sensor nodes are

operated by a limited battery, but a base station node as a final

data collecting center can be modeled with an unlimited energy

source. Nodes communicate wirelessly. Each node

communicates directly (i.e., single hop) with a few other nodes

within its radio communication range. A node may also transmit

to distant nodes through multi-hop communication.

Sensors may be utilized in seismic, low sampling rate magnetic,

thermal, visual, infrared, acoustic, and radar. Sensors may

monitor temperature, humidity, vehicular movement, lighting

condition, pressure, soil makeup, noise levels, presence/absence

of certain kind of objects, mechanical stress levels on attached

objects, and current characteristics of objects (speed, direction,

and size). So that, the main applications of wireless sensor

networks would be in health, military, security, home,

environmental, and commercial.

Currently, sensor network architectures are tailored to specific

applications with the intention of optimizing the sparse available

resources, especially in terms of memory and battery. However,

these approaches prevent the adaptation to time-specific

operation requirements, the reuse of software components as

well as the interoperability between different networks whose

sensing range overlaps, thus boosting development costs. Such

issues have already been solved in the last years in the field of

enterprise information systems by SOA, which has been proven

to support more effectively the requirements of business

processes and users.

Service oriented architecture (SOA) is an architectural paradigm

where a system is decomposed into smaller parts (components)

which are able to provide certain functionality by exposing a

number of services. Service oriented architecture is a loosely

coupled approach that encourages component reuse. It provides

developers with the ability to easily build composite applications

and to dynamically discover and use services. SOA is a

particularly popular paradigm in the community of the web

software developers. WSNs can be viewed in part as a reduced

copy of Internet, where different nodes or their groups provide

different services to the end user. Therefore SOA can be tried

out in WSN domain. By implementing a service oriented

approach at all levels of WSN, the rapid development of

applications as well as the thorough testing of sensor networks

will be possible. Also service-oriented approach provides

adequate abstractions for application developers, and that it is a

good way to integrate the Internet with WSN.

A Global QoS-Aware Service Composition
in Wireless Sensor Networks

V.Vanitha
Assistant professor

Kumaraguru college of Technology,
Coimbatore,Tamilnadu,India

Dr.V.Palanisamy
Principal,

Info Institute of Engineering
Coimbatore,Tamilnadu,India

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 19

57

In service oriented WSN, a service is a unit of runtime software

that is accessible by others. One node can deploy more than one

service while one service may be deployed on many nodes.

Service composition is the process of assembling independent,

reusable service components to construct richer application

functionality. That is, the task of service composition is to assign

each required service to an appropriate service provider

according to certain criteria. If there is more than one service

provider providing the similar or identical function to the

requested task then service selection is needed. Here, the

purpose of service selection is for service composition. QoS-

aware service selection refers to the problem of selecting a set of

appropriate services to instantiate composition logic while

satisfying user’s QoS requirements.

This work proposes a global QoS-aware multiobjective service

selection algorithm for service composition. This algorithm

optimizes several objectives simultaneously. Simulations were

conducted and the experimental results were presented.

The rest of the paper is organized as follows.

Section 2 discusses related works. Section 3 introduces QoS

aware service composition. Section 4 formulates the global

service selection algorithm. Section 5 presents experimental

results to show the effectiveness of the algorithm and section 6

concludes the paper.

2. RELATED WORK

Recently, the Service Oriented Architecture (SOA) has been

considered as a good candidate to develop open, efficient, inter-

operable, scalable and customizable WSN applications. In

Service Oriented WSNs, node’s sensing capability is exposed in

the form of in-network services. Application development is

simplified by providing standards for data representation,

service interface description, and service discovery facilitation.

By wrapping application functionality into a set of modular

services, a programmer can then specify execution flow by

simply connecting the appropriate services together. Some

approaches are TinySOA [13], OASiS [11] and TinyWS [12]. In

TinySOA, services are lightweight code units deployed directly

on top of the operating system of nodes. Applications invoke

services using a service-oriented query model. Queries are

submitted to one of the established base stations or directly to

individual nodes. OASiS also uses a passive discovery

mechanism, but it is combined with an object migration

approach instead of using remote query mechanisms. Finally,

TinyWS is a small web service platform that resides on the

sensor nodes. It hosts the web services and has SOAP

processing engine. The sensor nodes are service providers, the

application devices are service requestors and a distributed

UDDI acts as an overlay entity.

Service composition with various performance metrics [3], [4],

[5], e.g., load balance, end-to-end delay and resource, have been

well studied. Service composition in WSNs has also recently

been studied in [6], [7]. [6] Studies the minimum-cost service

placement based on service composition graphs with tree

structure. [7] Considers the optimal placement of filters

(services) with different selectivity rates. [10] Considers service

composition for persistent queries. It makes use of dynamic

programming to reduce the transmission cost. Dynamic

programming is suitable for small scale problems. For large

scale problems the worst case time complexity of dynamic

programming will increase exponentially. [14] Presents multi-

dimensional multi-choice knapsack problem (MMKP), a variant

of the classical 0-1 knapsack problem

3. QOS-AWARE SERVICE

COMPOSITION
Now we focus on the service selection problem. Consider a

composite service containing n tasks, t1, t2,…, tn. For each task

ti (1≤ i≤ n), there are li candidate services that can perform the

task. Users may impose some constraints on the amount of

various resources to be consumed (e.g. execution time, price).

Let’s assume that m resources (r1, r2, …, rm) are constrained.

Then, the QoS-based service selection problem involved in

service composition is, in fact, how to select one service for

each involving task from its corresponding existing candidate

service group, so that the overall QoS of the constructed

composite service can be maximized while the constraints set by

users are satisfied.

Based on different constraints users set, these selection problems

can be divided into three categories: 1) QoS optimization

problem without global constraints; 2) QoS optimization

problem with a single global constraint; 3) QoS optimization

problem with multiple global constraints. In the first category,

users don’t set any global constraints on QoS. So only a set of

services need to be selected to maximize the overall QoS of the

composite service. In the Second category Users often lay one

global constraint on the QoS that they most care, such as “the

total execution time of the composite service should be no

longer than 90 seconds”. Accordingly, the objective is to select

one service from each task’s candidate service group to obtain a

complex service that meets this QoS requirement yet maximize

the overall QoS. This is similar to a multi-choice knapsack

problem, in which items are grouped and from each group only

one item should be chosen to be contained in knapsack. If we

map a task to a group, map selecting an actual service for a task

to picking an item from a group, and also map a resource to a

knapsack, a QoS optimization problem with one global

constraint can then be seen as a multi-choice knapsack problem.

In the third category users impose two or more global

constraints on QoS, it is needed to select one service from each

task’s candidate service group to form a composite service that

meets these constraints yet maximize the overall QoS. Similar to

above, if a task is mapped to a group, selecting an actual service

for a task is mapped to picking an item from a group, and

multiple resources mapped to multi-dimensional knapsack, a

QoS optimization problem with multiple global constraints can

be modeled as a multi-dimension multi-choice knapsack

problem.

Greedy Algorithm can be adopted to solve the problem of

composite services selection with no global constraint. Just use

QoS scores as the selection criterion. For each task, compute the

scores of all its candidate services, and then designate the

service which scores highest to it. To solve the QoS-based

service selection problem for composite services with one global

constraint, the most direct algorithm is to enumerate all possible

execution plans of the composite service, compare their QoS

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 19

58

scores, and select the plan which maximizes the overall QoS

while satisfying the imposed constraint. Obviously, the

computation cost of this algorithm is high. Its time complexity is

O(Ln), so it cannot be used to solve large scale problems. As

discussed already, QoS optimization problem with one global

constraint can be mapped to a multi-choice knapsack problem.

Approaches to a multi-choice knapsack problem can be divided

into two categories: one is using exact algorithms to get exact

optimal solutions; the other is using approximation algorithms to

get near-optimal solutions. Finding exact solutions is NP-hard.

Dynamic programming is a common approach to compute the

optimal solutions to the problem. It is suitable to be used to

solve some small-scale online service selection problems which

don’t require high precision of the solution. However, with the

increasing scale of problems, the worse-case time complexity of

dynamic programming will increase exponentially.

A QoS optimization problem with multiple global constraints

can be modeled as a multidimension multi-choice knapsack

problem. It is also an NP complete problem. Similar to the last

subsection, we use a heuristic algorithm to derive near-optimal

solutions. The idea in it is similar, but there is some difference in

that an additional transformation is needed here to transform

multiple resources into one single dimension, since multiple

constraints have been imposed by user.

We used the network architecture proposed in [10]. We assumed

all the information about the QoS parameters are available in the

service layer. Some of the Quality parameters for wsn are listed

in the table 1 below.

Parameter Definition
Latency Timeprocess(op) +

Timeresults(op) where
Timeprocess is the time to
process op and Timeresults is
the time to transmit/receive
the results

Reliability Nsuccess(op)/Ninvoked(op)
where Nsuccess is the
number of times that op

has been successfully
executed and Ninvoked is the
total number of
Invocations

Availability UpTime(op)/TotalTime(op)
where UpTime is the time
op was accessible during
the total measurement time
TotalTime

Fee Dollar amount to execute
the operation

Residual
energy

The remaining energy of a
node in the wireless sensor
network. Residual energy
must be greater than
energy needed for the
service execution.

Table 1 QoS Parameters

4. CONVEX HULL ALGORITHM FOR

SERVICE SELECTION
In this paper, we propose to use an efficient heuristic algorithm

to compute the near-optimal solutions, which leverages the idea

of constructing the convex hull of related points for

approximation. A convex hull of a set S of points in the plane is

defined to be the smallest convex polygon containing all the

points of S. A polygon is defined to be convex if for any two

points p1 and p2 inside the polygon, the desired line segment

from p1 and p2 (denoted <p1,p2>) is fully contained in the

polygon. The vertices of the convex hull (called as extreme

points) of a set S of points form a subset of S. There are two

different groups of line segments in the convex hull connecting

the bottommost and the topmost points. Each of the groups of

line segments are called frontier of the convex hull. QuickHull

and Graham’s scan are well known algorithms for the

construction of convex hull.

Assume the x-coordinate represents resource consumption; the

y-coordinate represents QoS score. Then every actual

(candidate) service can be mapped to a point in the two-

dimensional space which has an x-coordinate indicating the

resource consumption of the service and a y-coordinate

indicating its QoS score. So each task in the composition

corresponds to a set of points in the space. If there are n tasks

involved in the composition model, there will be n sets of points,

each containing li points respectively. The objective of the

optimized selection is to pick up exactly one point from each set

of points so that the total resource consumption represented by

the selected n points can meet the user’s requirements while

maximizing their overall QoS value. To achieve this, the convex

hulls of those sets of points are respectively constructed

(through use of algorithms like Graham-scan or Quickhull). N

efficient convex hull frontiers are computed. Then the gradients

of these segments can be used as heuristic information guiding

our point selection. The algorithm is presented as

serviceselection in the following.

Algorithm serviceselection
1. Initialize current solution vector

2. Apply transformation technique to map the

multidimensional resource consumption into a single

dimension using the vector transformer.

3. Construct convex hull.

4. Find efficient convex hull frontiers.

5. Find the gradient of all the segments in the effcient convex

hull frontiers.

6. Sort all the segments in the frontier in descenting order

according to the gradient of each segment.

7. For each segment calculate the total QoS score. If this new

score is greater than the current score then update the

solution vector and update the tranformer, otherwise ignore

the new QoS score.

8. Repeat the process and output the final solution.

In the algorithm above, transformer is an m-dimensional vector

used to transform the m constrained resources to one dimension,

in other words, to give an overall cost for each candidate

service. If transformer is (q(1),q(2), …, q(m)) and the

constrained resource vector is (r(1),r(2), …, r(m)), the

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 19

59

transformed resource vector will be (r(1)q(1), r(2)q(2), …,

r(m)q(m))=(rt1,rt2, …, rtm) which can then be turned into one

dimension. The formula used to initialize transformer can be

q(k) = rs(k)/R(k) +1 (k=1,2,…,m), where R represents the

resource vector of user requirements, and rs represents the

vector summation of resource consumption vectors of every

candidate service for every task. Resources in higher demand are

assigned higher transformers. The algorithm takes the gradients

of the segments in efficient convex hull frontiers as the heuristic

which helps to obtain the near-optimal solution to the problem.

The efficient convex hull is the frontier which earns more QoS

score and gradient is a vector that always points in the direction

of maximum change, with a magnitude equal to the slope of the

tangent to the curve at the point. “Sort all the segments in

frontier_segments in descending order according to the gradient

of each segment” implies that the segments listed in the front

would have greater gradients, which means the benefit gained

consuming a unit of resource. So the solving process starts with

the points that yield greatest gradient, and tries to go towards the

direction that leads to a higher QoS score yet not breaking the

resource constraint. Each time the solution vector is successfully

updated, the total QoS score will rise. Note that in certain cases

such that the resource constraint set by user is upon execution

time, not the resource like network bandwidth, there are often

some services with higher scores consuming less resource than

those with lower scores, that is to say, they provide better QoS

with less resource consumption. So, in the algorithm, we sort the

segments in descending order according to the angle between

the segment and the positive direction of x-axis, in order that

their corresponding segments are listed in the front for prior

consideration of selection. The method adjust_transformer() is

used to update transformer.

5. SIMULATION RESULTS
We implemented the algorithm using VC++. For simplicity of

the implementation we assumed every task in the composition

has equal number of candidate services. Given the total task

number n and the candidate number for each task L, the

simulation program can randomly generate QoS matrix in a

specified range. The figure 1 shows the time efficiency of our

algorithm with respect to number of candidate services for each

task and figure.2 shows the time efficiency with respect to

respect to number of tasks.

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100 120L

t(
m

s
)

Figure 1. Time performance of serviceselection with increased L

0

20

40

60

80

100

120

0 20 40 60 80 100 120
n

t(
m

s
)

Figure 2. Time performance of serviceselection with increased n

6. CONCLUSION
In this, we explore the problem of service composition in WSN.

The QoS based service selection problem for composite services

actually is how to select one service for each task from its

corresponding service group, so that the overall QoS of the

constructed composite service can be maximized while the

constraints set by the user are satisfied. A simulation result

proves the efficiency of the proposed algorithm.

7. REFERENCES
[1] A. Rezgui and M. Eltoweissy, “Service- Oriented Sensor-

Actuator Networks,” in IEEE Communications, Volume 45, No.

12, pages 92-100, December 2007.

[2] D. Gra˘canin, M. Eltoweissy, A. Wadaa, and L. DaSilva, ”A

service-centric Model for Wireless Sensor Networks” in JSAC,

Vol. 23, No. 6, pp. 1159- 1166, June 2005

[3] B. Raman, R. H. Katz, “Load balancing and stability issues

in algorithms for service composition”, in IEEE InfoCom 2003,

pp.1477-1487.

[4] J. Jin, K. Nahrstedt, “Source-based QoS service routing in

distributed service networks”, in ICC2004, pp.20-24, June 2004.

[5] X. Gu, K. Nahrstedt, R. Chang, C. Ward, “QoS-assured

service composition in managed service overlay networks”, in

ICDCS 2003, pp.19-22,May 2003.

[6] Z. Abrams and J. Liu, “Greedy is good: On service tree

placement for in-network stream processing”, in Proc. of

ICDCS, 2006.

[7] U. Srivastava, K. Munagala, and J. Widom, “Operator

placement for innetwork stream query processing”, in PODS’05,

Baltimore, MD, June 2005

[8] R. Ha, P.-H. Ho and X.S. Shen, “Cross-Layer Application-

Specific Wireless Sensor Network Design with Single-Channel

CSMA MAC over Sense-Sleep Trees”, accepted by Elsevier

Journal: Computer Communications.

 [9] J. Wang, D. Li, G. Xing, and H. Du, “Cross-layer Sleep

Scheduling Design in Service-Oriented Wireless Sensor

Networks”, Technical report, City University of Hong Kong,

2007.

[10] Xiumin Wang, Jianping wang, Zeyu Zheng, Yinlong Xu,

Mej Yang, “Service composition in service oriented Wireless

sensor networks with persistent queries”, In Consumer

communications and Networking Conference, 2009. CCNC

2009. 6th IEEE.

[11] M. Kushwaha, I. Amundson, X. Koutsoukos, S. Neema,

and J. Sztipanovits. OASiS: A Programming Framewor for

Service-Oriented Sensor Networks. In Proceedings of the 2nd

IEEE/Create-Net/ICST International Conference on

COMmunication System softWAre and MiddlewaRE

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 19

60

(COMSWARE’ 07), Bangalore, India, January 2007. IEEE

Computer Society Press.

[12] N. Y. Othman, R. H. Glitho, and F. Khendek. The Design

and Implementation of a Web Service Framework for Individual

Nodes in Sinkless Wireless Sensor Networks. In Proceedings of

the IEEE International Conference on Computers and

Communications (ISCC’07), pages 941–947, Aveiro, Portugal,

July 2007. IEEE Computer Society Press.

[13] A. Rezgui and M. Eltoweissy. Service-oriented sensor

actuator networks: Promises, challenges, and the road ahead.

Computer Communications,30:2627–2648,2007.

[14] M. M. Akbar, M. S. Rahman, M. Kaykobad, et al. “Solving

the multildimensional multiple-choice Knapsack Problem by

constructing convex hulls,” Computers and Operations

Research, 2006, vol. 33, pp.1259-1273, 2006.

