
©2010 International Journal of Computer Applications (0975 – 8887)
Volume 1 – No. 19

38

Provable Secured Hash Password Authentication

ABSTRACT
The techniques such as secured socket layer (SSL) with client-

side certificates are well known in the security research
community, most commercial web sites rely on a relatively
weak form of password authentication, the browser simply
sends a user‟s plaintext password to a remote web server, often
using SSL. Even when used over an encrypted connection, this
form of password authentication is vulnerable to attack. In
common password attacks, hackers exploit the fact that web
users often use the same password at many different sites. This

allows hackers to break into a low security site that simply
stores username/passwords in the clear and use the retrieved
passwords at a high security site. While password
authentication could be abandoned in favor of hardware tokens
or client certificates, both options are difficult to adopt because
of the cost and inconvenience of hardware tokens and the
overhead of managing client certificates.

Recently, some collisions have been exposed for a variety of
cryptographic hash functions including some of the most widely
used today. Many other hash functions using similar
constructions can however still be considered secure.
Nevertheless, this has drawn attention on the need for new hash
function designs. This work developed an improved secure hash
function, whose security is directly related to the syndrome
decoding problem from the theory of error-correcting codes.
The proposal design and develop a user interface, and

implementation of a browser extension, password hash, that
strengthens web password authentication. Providing customized
passwords, can reduce the threat of password attacks with no
server changes and little or no change to the user experience.
The proposed techniques are designed to transparently provide
novice users with the benefits of password practices that are
otherwise only feasible for security experts. Experimentation
are done with Internet Explorer and Fire fox implementations

and report the result of initial user.

The hash is implemented using a Pseudo Random Function
keyed by the password. Since the hash output is tailored to meet
server password requirements, the resulting hashed password is
handled normally at the server with no server modifications are
required. This technique deters password phishing since the
password received at a phishing site is not useful at any other

domain. The cryptographic hash makes it difficult to compute
hash(pwd,dom2) from hash(pwd,dom1) for any domain dom2
distinct from dom1. For the same reason, passwords gathered
by breaking into a low security site are not useful at any other
site. The hash attack is always exponential in terms of the
length of the hash value. We also study the work-factor of this
attack, along with other attacks from coding theory, for non
asymptotic range, i.e. for practical values. Accordingly, we

propose a few sets of parameters giving a good security and
either a faster hashing or a shorter description for the function.

Keywords: Password Authentication, Hash Functions,

Message Digest, Secure Socket Layer, Random Password

Generator, Pseudo Random Function.

1. INTRODUCTION
A random password generator is software program or hardware
device that takes input from a random or pseudo-random

number generator and automatically generates a password.
Random passwords can be generated manually, using simple
sources of randomness such as dice or coins, or they can be
generated using a computer. While there are many examples of
"random" password generator programs available on the
Internet, generating randomness can be tricky and many
programs do not generate random characters in a way that
ensures strong security. A common recommendation is to use

open source security tools where possible, since they allow
independent checks on the quality of the methods used. Note
that simply generating a password at random does not ensure
the password is a strong password, because it is possible,
although highly unlikely, to generate an easily guessed or
cracked password.

A password generator can be part of a password manager.
When a password policy enforces complex rules, it can be

easier to use a password generator based on that set of rules
than to manually create passwords. In situations where the
attacker can obtain an encrypted version of the password, such
testing can be performed rapidly enough so that a few million
trial passwords can be checked in a matter of seconds. The
function rand presents another problem. All pseudo-random
number generators have an internal memory or state. The size
of that state determines the maximum number of different

values it can produce, an n-bit state can produce at most 2n
different values. On many systems rand has a 31 or 32 bit state,
which is already a significant security limitation.

Some computer operating systems provide much stronger
random number generators. One example, common on most
Unix platforms, is /dev/random. The Java programming
language includes a class called SecureRandom. Windows

programmers can use the Cryptographic Application
Programming Interface function CryptGenRandom. Another
possibility, is to derive randomness by measuring some external
phenomenon, such as timing user keyboard input. Using
random bytes from any of these sources should prove adequate
for most password generation needs.

The main cryptographic hash function design in use today

iterates a so called compression function according to Merkle‟s
and Damgard‟s constructions. Classical compression functions
are very fast but, in general, cannot be proven secure. However,
provable security may be achieved with compression functions
designed following public key principles, at the cost of being

T.S.Thangavel
AP / Dept. of MCA

K.S.Rangasamy College of Technology
Tiruchengode, Tamil Nadu

A. Krishnan
Dean

K.S.Rangasamy College of Technology
Tiruchengode, Tamil Nadu

©2010 International Journal of Computer Applications (0975 – 8887)
Volume 1 – No. 19

39

less efficient. This has been done for instance by Damgard,
where he designed a hash function based on the Knapsack
problem. Accordingly, this function has been broken by
Granboulan and Joux, using lattice reduction algorithms. The
present paper contributes to the hash function family by

designing functions based on the syndrome decoding problem,
which is immune to lattice reduction based attacks.

Unlike most other public key cryptosystems, the encryption
function of the McEliece cryptosystem is nearly as fast as a
symmetric cipher. Using this function with a random matrix
instead of the usual parity check matrix of a Goppa code, a
provably secure one-way function has been constructed since

there is no trapdoor, its security can be readily related to the
difficulty of syndrome decoding. For instance, there is no
polynomial time algorithm to decode a random code, thus there
is no polynomial time algorithm to invert the compression
function and/or find a collision. However, for the practical
parameters which have been proposed, there is an efficient
attack with a cost as low as 243 (or 262 depending on the set of
parameters), as demonstrated by Coron and Joux , using

Wagner‟s method for the generalized birthday problem.

The purpose of this paper is to improve updated parameters for
the hash function. Our paper analyzes asymptotical behavior of
their attack. We shall establish that this attack is exponential,
such that the design for the hash function is sound.

2. LITERATURE REVIEW
Computer applications may require random numbers in many
contexts. Random numbers can be used to simulate natural or
artificial phenomena in computer simulations, many algorithms
that require randomness have been developed that outperform
deterministic algorithms for the same problem, and random
numbers can be used to generate or verify passwords for

cryptography-based computer security systems. The present
invention relates to the use of random numbers in such security
systems, called as cryptographic applications. Specifically, the
present invention pertains to generating a random number in a
secure manner for such cryptographic applications. In the
context of cryptographic applications, there may be an hostile
trespasser or agent, who desires to infiltrate the security of
cryptographic security system in order to gain access to

sensitive, confidential, or valuable information contained
therein. For example, banks often encrypt their transactions and
accounts.[1].

One common method for circumventing a cryptographic
application is to guess at potential passwords or cryptographic
key, which are then submitted on a trial basis. This process is
repeated until, by happenstance, the valid password is chanced

upon. Fortunately, this process is extremely time consuming
and inefficient. Also, preventative action can be taken to render
this type of attack highly ineffective. However, if the random
number generator used in generating valid passwords is
somehow flawed in any way, the hostile agent can potentially
take advantage of this flaw to circumvent the security of the
system. For instance, a security system based on English text
passwords, are susceptible to a dictionary attack. Thus, in order

to ensure the utmost security, it is essential that the security
system implements a method for generating a random number
that appears completely random. In this manner, a completely
random password or cryptographic key presents no opening or
prior knowledge that can be exploited by an hostile agent [2].

Many prior art methods exist for generating random numbers.
These prior art methods typically involve the use of some type

of chaotic system. A chaotic system is one with a state that
changes over time in a largely unpredictable manner. To use the
chaotic system to generate a random number, there is some
means of converting the state of the system into a sequence of
bits (i.e., a binary number). In the past, chaotic systems were

based on various sources, such as the sound of radio static, the
output of a noisy diode, output of a Geiger counter, or even the
motion of clouds. These chaotic systems can be converted to
produce binary numbers by using standard techniques [4].

For instance, a pseudo-random binary string can be generated
from the digital recording of static noise via a digital
microphone. Alternatively, a noisy diode can be sampled at a

suitable frequency and converted into a digital signal, or a
picture of an area of the sky can be taken and subsequently
scanned and digitized. These resulting binary strings that are
generated over time are generally random in nature. However,
there are several problems associated with simply using a
chaotic system as a source of random numbers. First, chaotic
systems can be completely or partially predicted over small
amounts of time. For example, the position of clouds in some

area of the sky at some time can be used to
achieve reasonably accurate predictions of the position of
clouds in the same area a short time into the future.[3].

Furthermore, the behavior of chaotic systems can be far from
completely random. For instance, a digitized picture of a cloud
formation will not look like a picture of random information,
but instead, will look like a cloud formation. Moreover, chaotic

systems may be biased by outside sources which may be
predictable. As an example, a radio signal can be affected by a
strong external signal, or the behavior of a noisy diode can be
changed by the surrounding temperature. All of the above
problems arise because the behavior of a chaotic system may
not be completely random. More specifically, an adversary
observing or wishing to affect the random number source can
take advantage of certain localities that may be inherent in
chaotic systems. These localities can occur either in space or

time.

Referring back to the cloud example, knowing some of the
picture can help one predict the rest of the picture, and knowing
the state of the clouds at some time allows the hostile agent to
reasonably guess the future state of the clouds. These flaws in
chaotic systems make them potentially harmful choices for use
in random number generators for cryptographic security

systems in generating passwords. This is because an hostile
agent can make use of the local properties of the random
number generator by simply observing or affecting the system,
to determine the generated passwords. Likewise, an hostile
agent can take advantage of the local properties to substantially
reduce the number of possibilities, thereby allowing the
possibilities to be exhaustively tested much more quickly and
effectively.

A further disadvantage of using a chaotic system as a source of
randomness is that transforming the state of the system into a
random number is a much slower process than typical
computation done on a computer. Repeatedly generating
random numbers from such a system can become a time
bottleneck. The time bottleneck can be avoided in most
computer applications by using pseudo-random numbers

instead of random numbers [5]. A pseudo-random number
generator deterministically generates a sequence of numbers by
some computational process from an initial number, called a
seed. The goal of the computational process is to generate a
sequence of numbers from the seed that appear to be random. In

©2010 International Journal of Computer Applications (0975 – 8887)
Volume 1 – No. 19

40

other words, an outside observer cannot predict the next number
to be generated from the list of numbers previously generated
without expending a great deal of computational effort. Thus, to
generate a long sequence of pseudo-random numbers, one need
only generate a much shorter random number to use as the seed

for the pseudo-random number generator.

Password hashing with a salt is an old idea. However, web
password hashing is often implemented incorrectly by giving
the remote site the freedom to choose the salt. For example,
HTTP1.1 Digest Authentication defines password hashing as
follows i.e., digest = Hash (pwd, realm, nonce, username,,,)
where realm and nonce are specified by the remote web site.

Hence, using an online attack, a phisher could send to the user
the realm and nonce the phisher received from the victim site.
The user‟s response provides the phisher with a valid password
digest for the victim site. Password hashing implemented in
Kerberos 5 has a similar vulnerability. The first systems we are
aware of that provide proper web password hashing are the
Lucent Personal Web Assistant [2] and a system from DEC
SRC [1]. To facilitate deployment, LPWA was implemented as

a web proxy, which worked fine back when LPWA was
implemented. However, many password pages these days are
sent over SSL, and consequently a web proxy cannot see or
modify the traffic. It was necessary to build PwdHash as a
browser extension so that we could alter passwords before SSL
encryption. Although it might be feasible to build a proxy that
forges SSL certificates on the fly (essentially mounting a man
in the middle attack on SSL), such a proxy would not be able to

identify or protect passwords that are typed into mock password
fields.

The DEC SRC system was implemented as a standalone Java
Applet and did not take into account the various challenges in
implementing password has inside a modern browser. The
Password Maker extension for Mozilla Firefox is functionally
similar to password hash, but with a slightly more prominent
user interface. Users can indicate that they would like to insert a

hashed password by pushing a toolbar button or selecting an
option from the password field‟s context menu. The password is
then entered into a dialog box and stored so that it can be filled
in automatically in the future. Password Maker may be a good
solution for users who do not mind the security risks of storing
their password in the browser, but it demands significant
changes in the password entry model that people have used for
years, and thus maintains a steep learning curve.

The Password Composer extension for Mozilla Firefox
modifies password fields on the current page, allowing the user
to enter a hashed password into a new password field that is
superimposed over the old one. Password Composer is also
provided as a book marklet and as a JavaScript file that can be
loaded for each page using the Grease Monkey Firefox
extension. A malicious script could read the pre-hashed

password as it is typed into the superimposed password field,
however. The Password Composer user interface also seems
vulnerable to spoofing. Halderman et al. [2] study how to
secure password hashing from dictionary attacks by using ultra-
slow hash functions. As discussed earlier, these techniques can
be integrated into PwdHash to help defend against dictionary
attacks. We note that our focus here is very different from that
of [2]. Primarily the system concerned with how to implement

password hashing inside a modern browser so that phishing
sites cannot steal cleartext passwords, with minimal change to
user experience.

Finally, a number of existing applications including Mozilla
Firefox provide convenient password management by storing
the user‟s web passwords on disk, encrypted under some master
password. When the user tries to log in to a site, the application
asks for the master password and then releases the user‟s

password for that site. Thus, the user need only remember the
master password. The main drawback compared to PwdHash is
that the user can only use the web on the machine that stores his
passwords. On the plus side, password management systems do
provide stronger protection against dictionary attacks when the
user chooses a unique, high entropy password for each site.
However, many users may fail to do this.

3. METHODOLOGY
Random password generators normally output a string of
symbols of specified length. These can be individual characters
from some character set, syllables designed to form
pronounceable passwords, or words from some word list to

form a passphrase. The program can be customized to ensure
the resulting password complies with the local password policy,
say by always producing a mix of letters, numbers and special
characters. The strength of a random password can be
calculated by computing the information entropy of the random
process that produced it. If each symbol in the password is
produced independently, the entropy is just given by the
formula,

Where N is the number of possible symbols and L is the
number of symbols in the password. The function log2 is the
base-2 logarithm. H is measured in bits.

Symbol Set N Entropy/

Symbol

Digits only (0-9) (eg. PIN) 10 3.32 bits

Single case letters (a-z) 26 407 bits

Single case letters and

digits (a-z, 0-9)

36 5.17bits

Mixed case letters and

digits (a-z, A-Z,0-9)

62 5.95bits

All standard US keyboard

characters

94 6.55 bits

Dicsware word list 7776 12.9 bits

Thus an eight character password of single case letters and
digits would have 41 bits of entropy (8 x 5.17). The same length

password selected at random from all U.S. computer keyboard
characters would have 52 bit entropy; however such a password
would be harder to memorize and might be difficult to enter on
non-U.S. keyboards. A ten character password of single case
letters and digits would have essentailly the same strength (51.7
bits). Any password generator is limited by the state space of
the pseudo-random number generator, if one is used. Thus a
password generated using a 32-bit generator has maximum

entropy of 32 bits, regardless of the number of characters the
password contains.

©2010 International Journal of Computer Applications (0975 – 8887)
Volume 1 – No. 19

41

3.1 Secure Hashing
The proposed methodology of the secure hash password system

contains one-way hash functions that can process a message to
produce a condensed representation called a message digest.
This algorithm enables the determination of a message‟s
integrity, any change to the message will, with a very high
probability, results in a different message digest. This property
is useful in the generation and verification of digital signatures
and message authentication codes, and in the generation of
random numbers.

The algorithm is described in two stages, preprocessing and
hash computation. Preprocessing involves padding a message,
parsing the padded message into m-bit blocks, and setting
initialization values to be used in the hash computation. The
hash computation generates a message schedule from the

padded message and uses that schedule, along with functions,
constants, and word operations to iteratively generate a series of
hash values. The final hash value generated by the hash
computation is used to determine the message digest.

The design principle of hash functions is iterating a
compression function (here denoted F), which takes as input s

bits and returns r bits (with s > r). The resulting function is then
chained to operate on strings of arbitrary length (Fig 1). The
validity of such a design has been established and its security is
proven not worse than the security of the compression function.

Compression Hash function Algorithm

Input : s bits of data.

1. Split the S input bits in w parts S1 Sw of 2log
n

w
 bits;

2. Convert each Si to an integer between 1 and
n

w
;

3. Choose the corresponding column in each iH ;

4. Add the w chosen columns to obtain a binary string of

length r.

Output: r bits of hash.

The core of the compression function is a random binary matrix
H of size r×n. The parameters for the hash function are n the

number of columns of H, r the number of rows of H and the
size in bits of the function output, and w the number of columns
of H added at each round.

Figure 1: Iterative Hash Function Structure

The goal, however, is to defend against web scripting attacks
with minimal change to the user experience. For this leverage
the browser extension as a protective but largely transparent
intermediary between the user and the web application. All
input can be first monitored and secured by the browser
extension before the web application is aware that the user is
interacting with it. This requires a mechanism by which users
can notify password hash browser extension that they are about

to enter a password. Password has can then take steps to protect
the password as it is being entered. There are two closely
related methods i.e., password-prefix and the second password-

key. In addition the system model contains distributed hash
table to handle the browser utility replicas of the multiple users
across hash authentication mode.

4.1 Password Prefix
Password-prefix is an elegantly unobtrusive mechanism to
defend against the JavaScript attacks. Users are asked to prefix
their passwords with a short, publicly known sequence of
printable characters. Password hash monitors the entire key
stream and takes protective action when it detects the password-

©2010 International Journal of Computer Applications (0975 – 8887)
Volume 1 – No. 19

42

prefix sequence. The password-prefix must be short but
unlikely to appear frequently in normal text input fields. A
common prefix shared among all users of the extension allows
the extension to be portable without requiring any changes of
settings. For internationalization, the password prefix should

not be an English word at all, but something that could be easily
remembered and typed.

The proposed extension has two modes i.e., normal mode and
password mode. The extension monitors all keyboard events. In
normal mode, it passes all keyboard events to the page as is.
When the password-prefix is detected in the key stream, the
extension switches to password mode and does the following

i.e., it internally records all subsequent key presses, and it
replaces the user‟s keystrokes with a fixed sequence and passes
the resulting events to the browser. The first keystroke
following the password-prefix is replaced with “A,” the second
with “B,” and so on. This translation continues until focus
leaves the password field, at which point the extension reverts
back to normal mode. In other words, all keystrokes entered
following the password-prefix are hidden from the browser and

from scripts running inside the browser until focus leaves the
field.

Hence, JavaScript key loggers cannot steal the clear text
password. Hashing can take place at one of two times. The first
option is to replace the contents of the field with the hashed
password when focus leaves the field. The second option is to
trap the form submission event and then replace the contents of

all password fields with the appropriate hashed passwords. The
first option is more jarring to the user, because his password
could potentially change length immediately after entering it
(once it gets hashed). However, it allows the extension to work
automatically at sites like yahoo.com that implement their own
password hashing algorithm using JavaScript on their login
pages.

Finally, if the password-prefix is ever detected while focus is

not on a password field, our browser extension reminds the user
not to enter a password. Thus, users are protected from mock
password field attacks that confuse them into entering a
password into an insecure location. This password-prefix
approach blocks the JavaScript attacks and provides a number
of additional benefits. Legitimate web pages often collect PIN‟s
or social security numbers via password fields. Password Hash
will not hash the data in such fields because this data does not

contain the password prefix.

Password reset pages often ask users to enter both the old and
the new password. New Password Hash users must visit these
pages to “change” their old passwords to the new, hashed
versions. The password entered in the “current password” field
should not be hashed, while the password entered in the “new
password” section should be hashed. The password prefix

mechanism automatically provides the right functionality,
assuming the old password does not contain the password-
prefix. The password-prefix conveniently lets users decide
which passwords they want to protect using hashing and which
passwords they want left as is.

4.2 Password Key
Password-key is an alternative to the password prefix
mechanism. Instead of using a printable sequence the idea is to
use a dedicated keyboard key called a “password-key.” Users
are asked to press the password-key just before entering a
password. Imagine that future keyboards might have a
dedicated key marked “password,” but for now use the „F2‟

key, which is not currently used by Internet Explorer, Firefox,
or Opera.

The semantics of the password-key inside our extension are
very similar to the password-prefix. When the user presses the

password-key the extension enters password mode as described
previously. All subsequent keystrokes are hidden from the
browser and scripts running within the browser. The extension
returns to normal mode when focus leaves the field. If the
password-key is pressed while focus is not in a password field,
the user is warned not to enter a password. The password-key,
however, is less prone to mistake, whereas the password-prefix
could appear naturally in the key stream and trigger undesired

protection, password-key protection can only be initiated in
response to decisive action by the user.

With respect to user experience, however, a password-key
seems inferior to a password-prefix. First, novice users need to
know to press the password-key when entering their password,
but not to press the key when entering a PIN. While the prefix
mechanism also demands a special attention to passwords, it

may be easier to teach users that “all secure passwords begin
with (@@)” than asking them to remember to press a certain
key before entering a password. Second, upon resetting their
password at a password reset page just after installing PwdHash
users need to know to press the password-key for their new
password, but not to press the key for their old password.
Password-prefix is the preferable method of triggering
password protection.

4.3 Key Stream Monitor
Key stream monitor is a web password hashing implementation
that detects unsafe user behavior. This defense would consist of
a recording component and a monitor component. The
recording component records all passwords that the user types

while the extension is in password mode and stores a one-way
hash of these passwords on disk. The monitor component
monitors the entire keyboard key stream for a consecutive
sequence of keystrokes that matches one of the user‟s
passwords. If such a sequence is keyed while the extension is
not in password mode, the user is alerted.

4.4 Distribute Hash Table
The distributed hash table provides incremental scalability of
throughput and data capacity as more nodes are added to the
cluster. To achieve this, we horizontally partition tables to
spread operations and data across bricks. Each brick thus stores
some number of partitions of each table in the system, and

when new nodes are added to the cluster, this partitioning is
altered so that data is spread onto the new node. Because of our
workload assumptions, this horizontal partitioning evenly
spreads both load and data across the cluster.

Given that the data in the hash table is spread across multiple

nodes, if any of those nodes fail, then a portion of the hash table
will become unavailable. For this reason, each partition in the
hash table is replicated on more than one cluster node. The set
of replicas for a partition form a replica group; all replicas in
the group are kept strictly coherent with each other. Any replica

can be used to service a get(), but all replicas must be

updated during a put() or remove(). If a node fails, the

data from its partitions is available on the surviving members of
the partitions' replica groups. Replica group membership is thus
dynamic; when a node fails, all of its replicas are removed from
their replica groups. When a node joins the cluster, it may be
added to the replica groups of some partitions

©2010 International Journal of Computer Applications (0975 – 8887)
Volume 1 – No. 19

43

Fig2 gives describe the steps taken to discover the set of replica
groups which serve as the backing store for a specific hash table
key. The key is used to traverse the DP map tries and retrieve
the name of the key's replica group. The replica group name is
then used looked up in the RG map to find the group's current

membership.

We do have a checkpoint mechanism in our distributed hash
table that allows us to force the on-disk image of all partitions
to be consistent, the disk images can then be backed up for
disaster recovery. This checkpoint mechanism is extremely
heavy weight, however; during the check pointing of a hash

table, no state-changing operations are allowed. We currently
rely on system administrators to decide when to initiate
checkpoints.

Figure 2: Distribute Hash Table

5. EXPERIMENTAL IMPLEMENTATION
Using Password Hash, a user can change her password at a
given site without changing her password at other sites. In fact,
the recommended method for using password hash is to choose
a small number of strong, distinct passwords, one for every
security level (e.g. one password for all financial sites, one

password for all news sites, etc). The password hash extension
ensures that a break-in at one financial site will not expose the
user‟s password at all other banks.

The system implemented the prototype as a Browser Helper
Object for Internet Explorer. The extension registers three new
objects i.e., an entry in the Tools menu (to access extension
options), an optional new toolbar, and the password protection

service itself. Internet Explorer support COM event sinks that
enable Browser Helper Objects to react to website events. Use
these sinks to detect focus entering and leaving password fields,
drag and drop events, paste events and double click events. The
DHTML event model used by Internet Explorer allows page
elements to react to these events before they “bubble” up to the
extension at the top level. Since extension must handle
keystroke events before scripts on the page, we intercept

keystrokes using a low-level Windows keyboard hook.

When the password-key or password-prefix is detected, the
browser extension determines whether the active element is a
password field. If it is not a password field, the user is warned
that it is not safe to enter his password. If it is a password field,
the extension intercepts all keystrokes of printable characters
until the focus leaves the field. The keystrokes are canceled and

replaced with simulated keystrokes corresponding to the
“mask” characters. The first mask character is “A,” then “B,”
and so on. The extension maintains a translation table for each

of these password fields, mapping mask characters back to the
original keystrokes. This method allows the user to backspace
and delete characters at arbitrary positions within the password
field without confusing the extension.

For the Internet Explorer version of the extension, leave the
masked characters in the field until the user submits the form,
then we intercept the submission event with a BeforeNavigate2
handler. Internet Explorer does not allow extensions to edit the

form data in BeforeNavigate2 directly. Rather, cancel the
original Navigate2 event and fire a new, modified one. The
extension includes a data structure to detect which Navigate2
events were fired by the extension, and which ones were fired
as a result of user action, so that it does not attempt to translate
the form data more than once and get stuck in a loop.

5.1 Secured Hash Implementation
The system implementation of secured hash password
authentication is accomplished through following process.

Client
The client consists of service-specific software running on a
client machine that communicates across the wide area with one
of many service instances running in the cluster. The
mechanism by which the client selects a service instance is
beyond the scope of this work, but it typically involves DNS
round robin, a service-specific protocol, or level 4 or level 7

load-balancing switches on the edge of the cluster. An example
of a client is a web browser, in which case the service would be
a web server. Note that clients are completely unaware of
DDS's: no part of the DDS system runs on a client.

©2010 International Journal of Computer Applications (0975 – 8887)
Volume 1 – No. 19

44

Service
The service is a set of cooperating software processes, each of
which we call a service instance. Service instances
communicate with wide-area clients and perform some
application-level function. Services may have soft state (state
which may be lost and recomputed if necessary), but they rely
on the hash table to manage all persistent state.

Hash table API

The hash table API is the boundary between a service instance

and its ``DDS library''. The API provides services with put(),

get(), remove(), create(), and destroy() operations

on hash tables. Each operation is atomic, and all services see the
same coherent image of all existing hash tables through this
API. Hash table names are strings, hash table keys are 64 bit
integers, and hash table values are opaque byte arrays;
operations affect hash table values.

Figure 3: Distributed Hash Table Architecture

Each box in the diagram represents a software process. Each

process runs on its own physical machine, however there is
nothing preventing processes from sharing machines.

Distributed Data Structure (DDS) library
The DDS library is a Java class library that presents the hash
table API to services. The library accepts hash table operations,
and cooperates with the ``bricks'' to realize those operations.
The library contains only soft state, including metadata about
the cluster's current configuration and the partitioning of data in
the distributed hash tables across the ``bricks''. The DDS library
acts as the two-phase commit coordinator for state-changing

operations on the distributed hash tables.

Brick
Bricks are the only system components that manage durable

data. Each brick manages a set of network-accessible single
node hash tables. A brick consists of a buffer cache, a lock
manager, a persistent chained hash table implementation, and
network stubs and skeletons for remote communication.
Typically, we run one brick per CPU in the cluster, and thus a
4-way SMP will house 4 bricks. Bricks may run on dedicated
nodes, or they may share nodes with other components
The browser extended secured password authentication tool

generates the hashed password using either SHA1 or MD5
hashing algorithm depending on the choice you make. It will
display the hashed password in the read only text box, it can
also copy the hashed password to clipboard on your choice for
easy paste operation.

6. CONCLUSION
The paper proposed a provably secure hash functions based
password authentication scheme. This construction provides
features such as both the block size of the hash function and the

output size are completely scalable. The security depends

directly of the output size and is truly exponential, it can hence
be set to any desired level. The high output rates requires the
use of a large matrix. On classical architectures this will only
fix a maximum speed.
It is easy to introduce a trapdoor in a matrix by simply choosing
one column to be the sum of some other columns of the matrix.
This will then allow the person who generated the matrix to
easily generate collisions. Concerning the hash size/collision

security ratio, this construction does not allow to have the usual
ratio of 2, obtained when using a classical paradox to find
collisions. This can be changed by simply applying a final
output transformation to the last hash, this transformation can
further compress it to a size of twice the expected security
against collision search.
The password hashing method is extremely simple, rather than
send the user‟s clear text password to a remote site; it sends a

hash value derived from the user‟s password, and the site
domain name. Password Hash captures all user input to a
password field and sends hash (pwd, dom) to the remote site.
The hash is implemented using a Pseudo Random Function
keyed by the password. Since the hash output is tailored to meet
server password requirements, the resulting hashed password is
handled normally at the server; no server modifications are
required. This technique deters password phishing since the

password received at a phishing site is not useful at any other
domain.

The cryptographic hash makes it difficult to compute hash
(pwd, dom2) from hash (pwd, dom1) for any domain dom2
distinct from dom1. For the same reason, passwords gathered
by breaking into a low security site are not useful at any other
site, thus protecting financial institutions from sites with lacking
security. The proposed model implements the password hashing
as a secure and transparent extension to modern browsers.

©2010 International Journal of Computer Applications (0975 – 8887)
Volume 1 – No. 19

45

7. REFERENCES
[1] N. Chou, R. Ledesma, Y. Teraguchi, and J. Mitchell,

“Client-side defense against web based identity theft “, In
Proceedings of Network and Distributed Systems Security
(NDSS), 2004.

[2] J. A. Halderman, B.Waters, and E. Felten “A convenient
method for securely managing passwords” To appear in
Proceedings of the 14th International World Wide Web
Conference (WWW 2005), 2005.

[3] F. Hao, P. Zieli´nski, “A 2-round anonymous veto
protocol,” Proceedings of the 14th International Workshop
on Security Protocols, SPW‟06, Cambridge, UK, May
2006.

[4] Muxiang Zhang, “Analysis of the SPEKE password-
authenticated key exchange protocol,” IEEE
Communications Letters, Vol. 8, No. 1, pp. 63-65, January

2004.

[5] Z. Zhao, Z. Dong, Y. Wang, “Security analysis of a
password-based authentication protocol proposed to IEEE
1363,” Theoretical Computer Science, Vol. 352, No. 1, pp.
280–287, 2006.

[6]C.Ellison, C.Hall, R.Milbert, and B.Schneier, “Protecting
secret keys with personal entropy” Journal of Future
Generation Computer Systems”, February 2000.

[7] P.Mackenzie, T.Shrimpton, and M.Jakobsson, “Threshold
password-authenticated key exchange” In M.Yung, editor,
CRYPTO 2002.

[8] Abdalla M., Catalano D., Chevalier C., and Pointcheval D.,
“Efficient Two-Party Password-Based Key Exchange

Protocol in the UC Framework”, Springer-Verlag Berlin,
PP. 335 – 351, 2008.

Author Profile
T.S.Thangavel received the Bsc degree in Computer Science
(Bharathiyar University) in 1991 and the Msc degree in

computer science(Bharathidasan University) in 1993 and the
Mphil degree in Computer Science (Bharathidasan university)
in 2003. He is pursuing the PhD degree in department of
science and humanities (Anna university). He is working as an
assistant professor in MCA department at K.S.Rangasamy
College of Technology, Tiruchengode

Dr. A. Krishnan received his Ph.D degree in Electrical
Engineering from IIT, Kanpur. He is now working as an
Academic Dean at K.S.Rangasamy College of Technology,
Tiruchengode and research guide at Anna University Chennai.
His research interest includes Control system, Digital Filters,
Power Electronics, Digital Signal processing, Communication

Networks. He has been published more than 156 technical
papers at various National/ International Conference and

journals.

