
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 19

1

An Efficient Detection and Resolution of Generalized

Deadlocks in Distributed Systems
Srinivasan Selvaraj

Department of Information Technology
Thiagarajar College of Engineering

Madurai, 625015, INDIA

Rajaram Ramasamy
Department of Computer Science and Engg

Thiagarajar College of Engineering
Madurai, 625015, INDIA

ABSTRACT
In this paper, we propose a new algorithm to detect and resolve

distributed deadlocks in the generalized model. The initiator of

the proposed algorithm diffuses the probes along the outgoing

edges of Wait-For Graph (WFG) and collects the replies that carry

the dependency information between processes directly. However,

the initiator simplifies the unblocking conditions of blocked nodes

in response to a reply form an unblocked node and receives

almost two replies from any node unlike the earlier algorithms. It

finally declares all the nodes that have not been reduced as

deadlocked. We also prove the correctness of the algorithm. It has

a worst-case time complexity of d+1 and message complexity of

less than e+2n where d is the diameter, e is the number of edges

and n is the number of nodes in the WFG. Since the termination

detection of the proposed algorithm is isolated from deadlock

detection, it minimizes the message length into a constant without

using any explicit technique. It is the significant improvement

over the existing algorithms. It also minimizes additional rounds

of messages to resolve deadlocks.

Categories and Subject Descriptors
C.2.4[Computer-Communication Networks]: Distributed

Systems-distributed applications; distributed databases; network

operating systems; D.4.1[Operating Systems]: Process

Management-concurrency; deadlocks ;synchronization; D.4.7

[Operating Systems]: Organization and Design-distributed

systems; H.2.4 [Database Management]: Systems-distributed

systems; transaction processing

General Terms
Algorithms

Keywords
Distributed Deadlocks, Generalized Model, Deadlock Detection,

Wait-For Graph, Deadlock resolution

1. INTRODUCTION
Distributed deadlock is difficult to detect as well as resolve due to

the presence of multiple sites. In general, the interdependency

among the distributed processes is modeled as a directed graph

known as the Wait-For Graph (WFG) [1,2]. In WFG, a node

represents a process and the edge represents the wait-for relation

between processes. Based on the underlying resource-request

models [1,7], the deadlock detection algorithms are classified into

Single-Resource Model, AND Model, OR Model, P out-of Q

model and so on. In the AND model, a process requires all

requested resources to continue the execution. However in the OR

model, a process requires several resources among the requested

recourses to continue its execution. A deadlock is usually detected

by examining the presence of either cycle or knot in the global

WFG. The presence of cycle is sufficient to determine a deadlock

in the AND model whereas in the OR model the existence of knot

is required to decide a deadlock.

In the P out-of Q model, each process requires P resources among

Q to precede their execution. Hence, a process resource request is

expressed as a predicate involving the required resources and the

logical AND and OR operators. Since AND and OR model are the

special case of P out-of Q model, it is also referred as the

Generalized Model. The generalized request model is quite

common in many domains including resource management in

distributed operating systems, communicating sequential

processes and quorum consensus algorithms in distributed

databases [11,12,16]. A deadlock in the generalized model is

referred as the generalized deadlock. Since the existence of cycle

or knot in the WFG are insufficient to determine a deadlock in the

generalized model, it is very difficult to detect as well as resolve

as compared to the AND and OR deadlock. Hence, very few

generalized deadlock detection and resolution algorithms

[4,5,7,8,10,12,15,16] have been proposed in the literature.

Amongst, most of them have used the diffusion computing

technique [1] in which a process called initiator propagates the

probes across the WFG and collects the replies. The initiator stops

the execution once all the processes in its reachable set became

idle and waits for other processes. It then decides the existence of

deadlock based on the information in replies. The generalized

deadlock detection algorithms are grouped into two categories

namely centralized and distributed algorithms based on the

existence of WFG. In the centralized algorithms, the initiator

gathers the information to determine the existence of deadlock

whilst the information is spread across multiple sites in the

distributed algorithms.

In general, the distributed algorithms [4,5,7,10,12] have recorded

the consistent snapshot of distributed WFG and removed the

reducible nodes to determine a deadlock in a single or two phase.

In Bracha and Toueg [4], the initiator propagates the probes along

the WFG edges to record the snapshot in the first phase and the

replies are directed towards the initiator in the second phase. If the

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 19

2

replies are insufficient to unblock the initiator, it declares a

deadlock. In this algorithm, the second phase is nested within the

first phase. It exchanges 4e messages in 4d time units to find out

the existence of deadlock. However, the Wang et al [6] uses an

effective termination technique to detect the end of the first phase

before initiating the second phase. The algorithm in [14] records

as well as reduces the WFG simultaneously to determine a

deadlock. It records the processes that are reachable from the

initiator in the outward sweep and eliminates the process that

grants the resources in the inward sweep. It uses 4e-2n+4l

messages in 2d time units to find out the generalized deadlock.

The algorithm in [15] uses lazy evaluation technique to allow the

reduction of any unblocked process until the initiator terminates

the execution. It detects deadlock using 2e messages in 2d+2 time

units with variable sized messages as compared to [14]. Since the

initiator knows the resource requirement of deadlocked processes,

it reduces the additional e messages to resolve deadlocks as

compared to [14].

The centralized algorithms [8,15,16] constructs the local Wait-For

Graph (LWFG) to determine a deadlock in the system. The

initiator of the algorithm in [8] sends a probe to all processes in

its reachable set exactly once and collects the replies. It then

incrementally constructs the LWFG based on the information in

replies. It spends 2n messages in 2d time hops to determine a

deadlock. The initiator of the algorithm infers ancestor-

descendent relationship among the nodes in replies to build the

LWFG to determine a deadlock. In addition, it uses path encoding

technique to minimize the message length. It uses 2e messages in

2d time units to detect a deadlock. However, the initiator of the

algorithm in [16] collects the unblocking conditions of all blocked

nodes and active nodes through replies. It then evaluates the

unblocking conditions to find out the deadlocked processes. It

spends less than 2e messages in d+2 time units to detect deadlock.

We propose a new centralized algorithm to detect and resolve

distributed deadlocks in the generalized model. The initiator of

the proposed algorithm builds the Distributed Spanning Tree

(DST) by propagating probes (CALL messages) along the edges

of WFG and collects the replies. As a probe (CALL message) is

propagated, each node sends a reply (REPORT) that carries its

unblocking condition to the initiator directly. If the initiator

receives a reply from an active node, it simplifies the unblocking

conditions. The initiator declares all the nodes that have not been

reduced at the end of termination as deadlocked. The algorithm

uses diffusion based protocol to detect the termination using

WEIGHT messages. It has a worst-case time complexity of d+1

time units and message complexity of less than e+2n where d is

the diameter , n is the number of nodes and e is the number of

edges of the WFG. Since the unblocking condition of node is not

merged unlike the earlier algorithms, its data traffic complexity is

a constant. Further, it simplifies the resolution by reducing

additional messages.

The proposed algorithm propagates the probes and evaluates the

unblocking conditions similar in [16]. However, it differs from

Lee’s algorithm [16] and other centralized algorithms [8,15] in

following aspects:

1. The initiator of the proposed algorithm evaluates the

unblocking conditions in response to replies from an active node

like in [8] whereas the initiator of Lee’s algorithm [16] evaluates

the conditions only at the termination of execution.

2. Lee’s algorithm uses an explicit mechanism to

distribute the unblocking conditions in order to reduce the

message length. Similarly, the algorithm in [15] uses path

encoding technique to reduce the message length. However, the

proposed algorithm does not incorporate any additional

techniques to optimize the data traffic complexity

3. The initiator of proposed algorithm attempts to

induce a distributed spanning tree whereas the initiator of Chen

[8] algorithm does not consider any structural property of the

WFG.

4. The initiator of the algorithm attempts to reduce the

blocked nodes prior to the termination of the algorithm unlike in

[15,16].

The rest of this paper is divided into five main sections. The basic

assumptions about the underlying computational model and key

definitions are described in Section 2. The basic idea behind the

proposed algorithm along with an illustrative example is

presented in section 3. Section 4 provides the formal proofs to

prove the correctness of the proposed algorithm. The performance

of new algorithm is analyzed and compared against the existing

algorithms in section 5. Finally section 6 concludes the paper.

2. SYSTEM MODEL
The system has ‘N’ processes and each process has a unique

system wide identity. The processes can interact only by passing

messages through a logical communication channel. The messages

are delivered in the same order sent by the sender to the

destination within finite but arbitrary delay. The messages are

neither lost nor duplicated and the entire system is fault-free.

Events in the system are classified into computation events and

control events and they are time stamped using Lamport’s logical

clock [3]. The computation event triggers the computation

messages such as REQUEST, REPLY, CANCEL and ACK due to

the execution of applications. The control event generates the

control messages CALL, REPORT and WEIGHT as a result of

deadlock detection algorithm execution.

Both computational and control messages are time stamped based

on requester’s logical lock at which it was blocked. Hence, ACK

or REPLY must be matched with the corresponding requests. And

a blocked process can not send or withdraw a resource request

spontaneously. In addition, they could not abort abnormally.

These two assumptions are essential to ensure the consistency of

snapshot that is recorded by the algorithm. We use the term

process and node interchangeably throughout this paper.

In the generalized model, each process resource

requirements is expressed as a predicate involving the requested

resources, the logical AND and OR operators. For example, a

process resource requirement A∧(B∨C) specifies that it requires a

resource from A and a resource from either B or C. In this

algorithm, the generalized resource requirement of a process ‘i’ is

represented as a function called the unblocking condition Fi. This

unblocking condition is evaluated in the following manner. If a

process has granted to access a resource, it substitutes true for a

node in Fi. Otherwise, it substitutes false for a node. Then the

entire function Fi is evaluated to determine its state. If a node has

received sufficient replies to make Fi to be true, it becomes active

and eventually withdraws the remaining requests.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 19

3

Each process maintains the following data structure to

keep track of its state. The initial value of each variable is given

within parenthesis.

t_blocki the logical time at which i was last blocked (0)

parenti the process identifier from which i has received the

probe recently (0)

ini :the set of tuples <k,t_blockk> where k is a process

waiting for i and t_blockk is the logical time at which k

has sent its request to i.(φ)

outi :the set of processes for which i is waiting since the last

t_blocki (φ)

Fi the unblocking condition of process i

A process is either active or blocked state at any instant. An active

process can send both communication and control messages

whereas the blocked process can send either control messages or

ACK. When a process ‘i’ blocks on pi out-of qi requests, it records

the qi processes in a set outi. It then sends a REQUEST message

to qi processes. Upon receiving a REQUEST from i, a node j

records <i, t_blocki> in the set inj. It then sends the ACK message

as a receipt to the sender. When a node j sends a REPLY to i, it

removes <i, t_blocki> from inj. A set of processes in ini is called

the predessor of process ‘i’ and a set of processes in outi is called

the successor of process ‘i’ A deadlock is defined as follows in

[16].

Definition 1. Let evaluate(fi) be a recursive operation evaluated

based on the following:

1. evaluate (fi) = true for an active node i,

2. evaluate (i) = evaluate (fi)

3. evaluate (P∨Q) = evaluate (P) ∨ evaluate (Q)

4. evaluate (P∧Q) = evaluate (P) ∧ evaluate (Q)

where P and Q are nonempty AND/OR expressions of node

identifiers.

Definition 2: A generalized deadlock is a sub graph (D,K) of

WFG (V,E) in which

i) evaluate (fi) = false, ∀i∈D.

ii) No message for computation is under transmission

between any nodes in D

Hence, each process in D is blocked forever and the nodes that do

not exist in D are not deadlocked since their requests can be

satisfied at any instant.

The correctness of any deadlock detection algorithm depends on

the following two conditions:

Liveness: The algorithm shout detect and resolve only true

deadlock within a finite time

Safety: If the algorithm reports a deadlock, it actually exists in the

system.

3. THE PROPOSED ALGORITHM
Whenever a node blocks on pi out-of qi requests, it initiates the

deadlock detection algorithm. Since several nodes may initiate the

algorithm concurrently, a node involves the execution of several

instances in concurrent executions. As a result, the same deadlock

is detected by more than one initiator. If this happens, they may

select different victims independently even though a single victim

is sufficient to resolve a deadlock. Nevertheless few instances of

the algorithm might be engaged in false deadlock resolution

because of useless aborts. The issues associated with the

concurrent execution of the algorithm is addressed only in

[11,12,13,15,16]. We follow the method in [11,12] to handle

concurrent executions. The method assigns a unique priority to

each instance of the algorithm based on its identifier that

comprises the initiator’s identifier and the block time or sequence

numbers. All the control messages corresponding to a particular

instance uses this label and hence one instance of the algorithm is

distinguished from others. During the conflict, a node participate

the execution of only high priority instance and suspends the

execution of low priority instances. However, we focus the

execution of a single instance of the algorithm.

3.1 Algorithm Description
When a node ‘i’ blocks on pi out-of qi, it initiates the deadlock

detection algorithm. The initiator of the proposed algorithm builds

the Distributed Spanning Tree (DST) of WFG through diffusing

the CALL messages along the outgoing edges of the. To describe

in detail, the initiator ‘i’ first sends CALL message to each node

‘j’ in outi. It then adds its unblocking condition Fi into a set UC.

Whenever a node ‘j’ receives the first CALL message, it became

the child of the sender and delivers its unblocking condition (Fj)

to the initiator directly through REPORT message. In addition, it

forwards CALL message to its own successors. However, if a

node that has already been in the tree receives the CALL message,

it delays to deliver the message to the initiator until the arrival of

all CALL messages from its predecessors. Thus the edges through

which each node receives the CALL message induce DST of the

WFG. Once a node receives all CALL messages, it delivers a

singe WEIGHT message to the initiator for termination detection.

Upon receiving the REPORT message from a unblocked node, the

initiator updates the set of active nodes A by adding the sender of

message. It then simplifies the unblocking conditions in the set

UC. If any node in UC gets reduced successfully, it removes its

unblocking condition from UC and adds its identifier into the set

of active nodes A. The initiator continues the simplification until

the nodes that have not been reduced exists in the UC. If the

initiator is reduced during this simplification, it reports the

absence of deadlock without waiting for the termination. Finally,

the initiator terminates the execution once its weight becomes one

according to the weight distribution technique. It then declares all

the nodes in the set UC are deadlocked.

The algorithm uses weight distribution method [10,17] to detect

the termination of execution like in [10,17]. According to the

method, the initiator diffuses the weight of one among its

successors which in turn distributes its own weight through CALL

messages. Once the unblocked nodes and the node that have

already been in the DST receives all CALL messages, it sends the

weight to the initiator directly through WEIGHT messages. The

initiator accumulates the weight in WEIGHT messages and stops

the execution once the sum of weights equal to one. For example,

if the initiator has n successors, it sends 1/n to each successor in

CALL. If a node receives the CALL message through a tree edge,

it distributes the weight w/n to each of its successors. Here, n is

the total number of its successors. A node returns the weight in to

the initiator through WEIGHT message upon receiving all CALL

messages through non-tree edges.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 19

4

3.2 Algorithm Specification
Data Structure of a node ‘i’

parenti : a node from which ‘i’ has received the first CALL

 message (0)

weighti : the weight value of ‘i’ (0)

ini : the set of predecessors (φ)

outi : the set of successors(φ)

fi : the condition for ‘i’ to became unblock

num_predi : number of predecessors (0)

Additional Data Structures at initiator

UC � Set of Unblocked Conditions (φ)

A � Set of Active nodes (φ)

weightinit � the weight value of initiator (0)

Message Formats

CALL(initiator, sender, weight)

REPORT(sender, fsender)

ANSWER(sender, weight sender)

I. When a node i initiates the algorithm

initiatori := i;

parenti:=i;

weighti := 1;

UC:= UC ∪ fi;

send CALL(initiator, i, weighti / |outi|) to each j ∈ outi

II. When node i receives CALL(initiator, j, weightj) from j

/* Case II.1 node i receives the first CALL through tree edge */

if (parenti = udef ∧ |outi| >0 ∧ j∈ini) then

initiatori := initiator;

parenti:=j;

send REPORT(j, fi) to initiatori

weighti := weightj;

send CALL(initiatori ,i, weighti /|outi|) to each j ∈ outi

weighti := 0;

num_predi --;

/* Case II.2 node i receives the CALL through a non-tree edge */

if (parenti = def ∧ |outi| >0 ∧ j∈ini) then

weighti := weighti + weightj;

num_predi --;

if (num_predi = 0) then

 send ANSWER (i, weighti) to initiatori

if (parenti = def ∧ |outi| >0 ∧ initiator=i ∧ j∈ini) then

/* Case II.2.1 Initiator receives the CALL message

weightinit= weighti + weightj;

/* Case II.3 When an unblocked node i receives the first CALL*/

if (parenti =udef ∧|outi|=0 ∧ j∈ini) then

initiatori := j;

parenti:=j;

send REPORT(i , φ) to initiatori

weighti := weightj;

num_predi --;

if (num_predi = 0) then

 send WEIGHT(i, weighti) to initiatori

/* Case II.4 When an unblocked node j receives subsequent

CALL*/

if (parenti =def ∧ |outi|=0 ∧ j∈ini) then

weighti := weighti + weightj;

num_predi --;

if (num_predi = 0) then

 send ANSWER(i, weighti) to initiatori

/* Case II.5 a phantom edge */

 if (j∉ini) then

 send WEIGHT(i, weighti) to initiatori

III. When initiator receives REPORT(sender, fi)

if (fi = φ) then // from an unblocked node

 A = A ∪ {sender};

 evaluation();

 else // from the blocked nodes

UC= UC ∪ fi;

 end if

IV. When initiator receives WEIGHT(sender, weighti)

 weightinit= weighti

if(weightinit =1) // from the blocked nodes

 evaluation();

 end if

V. procedure evaluation()

 begin

 do

for each i ∈ UC

 if (evalvate(fi) = true) then

 A:=A ∪ {i};

 UC := UC – {fi}

 end if

 until (∀i∈UC, evalvate(i)=false ∨ UC=φ);

 if (UC = φ) then

 No deadlock; exit;

 else

 if (weightinit=1)

 resolution(); // Declare a Deadlock

 else

 end procedure

VI. rocedure resolution()

 begin

 /* Select a victim i that unblocks more nodes */

 send ABORT to i

 A :=A ∪ {i};

 UC := UC – {fi};

 if (UC != φ) then evaluation();

 else exit;

 end if

 end procedure

3.3 An Example
We illustrate the idea behind the proposed algorithm using an

example. The distributed WFG shown in Figure.1 spans 10 nodes

labeled 1 to 10. All the nodes except 2, 6 and 10 are blocked

initially. The unblocking conditions of each blocked node is as

follows: f1=(2 ∧3)∨4, f3=(5∧6) ∨7, f4=8∧9, f5=1, f7=4, f8=7 and

f9=(8∧10) ∨1.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 19

5

Let us consider node 1 initiates the algorithm and the messages

are propagated in such a way to induce a Distributed Spanning

Tree (DST) of WFG. In the Figure.2, the solid lines indicate the

tree edge and dashed lines refers the non-tree edges.

1) When node 1 initiates the algorithm, it sends CALL(1,1,1/3) to

2,3 and 4 respectively.

2) When node 2 receives the CALL from 1, it sends REPORT(2,

φ) to 1. In addition, it sends WEIGHT(1,1/3) to 1

3) When node 3 receives the CALL from 1, it sends REPORT (3,

(5∧6) ∨7) to 1. In addition, it sends CALL(1,3,1/9) to 5, 6 and 7.

4) When node 4 receives the CALL from 1, it sends REPORT(4,

8∧9) to 1 and sends CALL(1.4,1/6) to 8 and 9 respectively.

5) When node 5 receives the CALL from 3, it sends REPORT(5,

1) to 1. It also sends CALL (1,5, 1/9) to 1.

6) When node 6 receives the CALL from 3, it sends REPORT(6,

φ) to 1. Then it sends WEIGHT(6, 1/9) to 1.

7) When node 7 receives the CALL from 1, it sends REPORT(7,

8) to 1.Then it sends CALL(1,7,1/9) to 4

8) When node 8 receives the CALL from 4, it sends REPORT(8,

7) to 1 and it sends CALL(1,8,1/6) to 7.

9) When node 9 receives the CALL from 4, it sends REPORT(9,

(8∧10) ∨1) to 1.Furthermore, it sends CALL(1,9,1/18) to 1,8 an

10 respectively.

10) When node 1 receives the CALL from 5, it updates weightinit

11) When node 4 receives the CALL from 7, it sends WEIGHT

(4, 1/9) to 1.

12) When node 7 receives the CALL from 8, it sends

WEIGHT(7,1/6) to 1.

13) When the initiator 1 receives the CALL from 9 through a back

edge, it updates weightinit.

14) When node 8 receives the CALL from 9, it sends

WEIGHT(8,1/18) to 1.

15) When node 10 receives the CALL from 9, it sends

REPORT(10, φ) and WEIGHT(10,1/18) to 1

Whenever the initiator receives the REPORT from 2, 6

and 10, it simplifies the wait-for relations in the set UC. It finally

declares nodes 1,3,4,5,7,8 and 9 are deadlocked.

3.4 Correctness Proofs
The correctness of the proposed algorithm is proved by using the

following four theorems.

Theorem 1: The algorithm terminates within a finite time.

Proof of Sketch: By step 1, the initiator distributes the weight of

one to its successors through CALL messages. When a blocked

node receives the weight, it distributes the weight to its own

successors by step II.2. Once a weight is distributed, it

immediately reinitializes its weight into zero. If an active node

receives the weight, it adds the weight with its own by step II.3

and II.4. Upon receiving CALL messages from all its

predecessors, the leaves of distributed spanning tree are return the

weight to the initiator directly through the WEIGHT message by

step II.1 to II.4. The initiator adds the weight in WEIGHT

message with weightinit by step IV. If the initiator receives the

CALL through back edges, it updates the weightinit by step II.2.1

The messages are delivered within finite time and they are neither

lost nor duplicated according to our system assumptions. The

initiator stops the execution of the current instance once the sum

of its weight (weightinit) upto one. Thus the theorem holds.

Theorem 2: The algorithm records the consistent snapshot of

distributed Wait-For Graph.

Proof of Sketch: Consider an edge (p,q) ∈ LWFGi. It is included

in the LWFG only if a blocked process q sends a REPORT

message to the initiator according to the step II.1. By step II,

process q receives the CALL message from p iff q ∈ outp. And the

process p has sent the REQUEST message to q earlier and it exists

in inq. As a result, the edge (p,q) is included in the LWFGi only if

both the processes p and q are blocked and a node q has received

the CALL message from p. Therefore the snapshot is consistent

and hence the theorem holds.

1

2

3 4

7 9 8

6

5

10

Figure 2. The Message Flow

 CALL Message

 REPORT Message

6 10

 Figure 1. Wait-For Graph

1

2 3 4

7 9 8 5

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 19

6

Theorem 3: The algorithm detects a deadlock within a finite time.

Proof of Sketch: Let us consider the contrary that the algorithm

does not detect a deadlock D in the underlying system. Assume

that there is a node i∈D where evaluate (fi) = true exists in the

initiator. Since a node i is a member of deadlock D, it will be

blocked forever. The evaluate(fi)=true implies that fi consists of

only those nodes that are not deadlocked in the WFG. It

contradicts our assumption i∈D. As a result, there exist a node j∈

Domain(fi) and whose state determines the state of i. Since

evaluate (fi)=true, evaluate (fj) is also true. Similar to i, there is at

least one node j’∈Domain(fJ) and whose state determines the state

of j. By induction, there must exist a node n+1∈D such that

n∈Domain(fn+1) and evaluate(fn)=true. Since active nodes have

true unblocking conditions by step V, the algorithm does not

evaluate(fi) as true during the simplification. So the algorithm

does not report i∈D which contradicts our assumption. Thus, the

algorithm reports deadlock iff it exists in the underlying system.

Hence, the theorem is proved.

Theorem 4 The algorithm does not report any false deadlock.

Proof of Sketch: Let us consider the contrary that the algorithm

declares a deadlock D although it does not exist in the underlying

system. It implies that there are some edges recorded at the

initiator but they do not exist in the WFG. Let us consider a edge

(i,j) one among them. Since a node j sends REPLY to i, this edge

is disappeared first in the WFG. If the edge (i,j) exists at the

initiator, the node i executes either step I or II.1 of the algorithm.

By step I, the initiator sends CALL message to its successor j. If it

is executed the later step, a node i sends CALL message to each

one of its successor including j. Let us assume that (i,j) is a tree

edge of distributed spanning tree induced by the algorithm. When

node j has received the CALL message from i, it records fj by

executing the step II.1 or II.3. Furthermore, the unblocking

condition is delivered to the initiator directly. Since the edge (i,j)

is disappeared first from the WFG, fj is evaluated as true and the

initiator does not record the edge(i,j) by step III. Since the edge

(i,j) exists in D, node j must be deadlocked. If j executes step II.3

or II.4, it is included in the set A and the algorithm does not

declare it as deadlocked. Let us now assume that (i,j) is a non tree-

edge of the spanning tree and disappeared first from the WFG.

Therefore, j has sent a REPLY to i at some time, say t. If j

receives the CALL message after t, the edge is not included at the

initiator by step II.5. Similarly, when j receives the CALL

message before t, it is included in the list of active nodes by step

III. Hence, the edge (i,j) does not included in the initiator. Thus

the theorem is proved.

3.5 Deadlock Resolution
The algorithm selects a deadlocked node that unblocks more

number of blocked nodes in the set UC as a victim of deadlock.

The initiator is then sent the ABORT message directly to the

victim. If a victim is insufficient to resolve a deadlock, the

algorithm selects another node as a victim. This process continues

until the unblocking conditions of remaining nodes in UC are

satisfied.

4. PERFORMANCE ANALYSIS
We compare the performance of the proposed algorithm with the

existing algorithms in terms of time, message and data traffic

complexities. The measurements are based on the assumption that

the message transmission between any two nodes take one time

unit. The initiator of the algorithm propagates the CALL messages

along the edges of the WFG and receives exactly one REPORT

message from each node. In addition, it receives one WEIGHT

message from the leaves of induced distributed spanning tree.

Hence, the total number of messages generated by the algorithm is

less than e+2n where e is the number of edges and n is the number

of nodes in the WFG. Since the REPORT messages are delivered

to the initiator directly, its worst-case time complexity is d+1

where d is the diameter of the spanning tree induced by the

algorithm. Since the proposed algorithm does not merge the

unblocking conditions of several nodes, its worst-case data traffic

complexity is O(1). The Table.1 compares the performance of the

proposed algorithm with the previous algorithms.

Table 1. Performance Comparison of Generalized Deadlock

Detection and Resolution Algorithms

Algorithms Delay

Number

Of

Messages

Message

Length
Resolution

Barcha-Toueg

[4]

4d 4e O(1) no Scheme

Wang et.al [5] 3d+1 6e O(1) no Scheme

Kshemkalyani.e

t.al [10]

2d 4e-

2n+2l

O(1) e messages

Kshemkalyani

et.al [12]

2d 2e O(e) 1 message

Brzezinski et.al

[7]

4n ½ n2 O(n) no Scheme

Chen et .al [8] 2d 2n O(e) 3n messages

Soojung Lee

[13]

n e O(d) no Scheme

Soojung Lee

[15]

2d 2e O(e+2n) 1 message

Soojung Lee

[16]

d+1 <2e O(d) 1 message

Our algorithm
d+1 < e+2n O(1) 1 message

5. CONCLUSION
We have presented a new algorithm to detect and resolve

generalized deadlocks in distributed systems. In this algorithm,

the initiator collects the unblocking condition of all nodes in its

reachable set exactly once. The initiator simplifies the unblocking

conditions to determine a deadlock. It spends d+1 time units and

e+2n messages to detect the deadlocked nodes. We formally

proved its correctness and illustrate the idea using an example.

The performance of the proposed algorithm is better or

comparable with the existing algorithms in terms of time, message

and data traffic complexities. Furthermore, it simplifies the

deadlock resolution by minimizing the additional round of

messages.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 19

7

REFERENCES
[1] Knapp,E. 1987. Deadlock Detection in Distributed Database

Systems, ACM Computing Surveys, Vol.19, No. 4, 303-327

[2] Singhal,M, 1989. Deadlock detection in distributed systems.

IEEE Computer, 22:37–48

[3] Lamport,L 1978. Time, Clocks, and the ordering of events in a

distributed systems, Communications ACM, vol 21, 558-565

[4] Bracha,G and Toueg,S. 1987. A distributed algorithm for

generalized deadlock detection. Distributed Computing, 2:127–

138

[5]Wang,J Huang, S and Chen,N. 1990. A distributed algorithm

for detecting generalized deadlocks. Tech. Rep., Dept. of

Computer Science, National Tsing-Hua Univ

[6] Ng,W.K and Ravishankar C.V. 1994. On-Line Detection and

Resolution of Communication Deadlocks, Proc. 27th Ann. Hawaii

Int’l Conf. System Science, 524-533

[7] Brzezinski, J. Helary, J.M. Raynal, M. and Singhal, M.1995.

Deadlock Models and a General Algorithm for Distributed

Deadlock Detection, J. Parallel and Distributed Computing,31(2) ,

112-125

[8] Chen, S. Deng, Y. Attie, P. C. and Sun, W. 1996. Optimal

deadlock detection in distributed systems based on locally

constructed wait-for graphs. Proc. Int’l Conf. Distributed

Computing Systems, 613–619,

[9] Roesler, M. and Burkhard, W.A. 1989. Resolution of

Deadlocks in Object-Oriented Distributed Systems, IEEE Trans.

Computers, Vol. 38, No. 8, 1212-1224

[10] Kshemkalyani, A. D. and Singhal,M. 1989. Efficient

detection and resolution of generalized distributed deadlocks,

IEEE Transactions on Software Engineering, 20(1):43–54

[11] Kshemkalyani,A.D and Singhal,M. 1997. Distributed

detection of generalized deadlocks. Proc. 17th Int’l Conf.

Distributed Computing Systems, 553–560

[12] Kshemkalyani, A.D. and Singhal, M. 1999. A One-Phase

Algorithm to Detect Distributed Deadlocks in Replicated

Databases, IEEE Trans. Knowledge and Data Eng., vol. 11, no. 6,

880-895

[13] Lee, S. and Kim, J.L. 1995.An Efficient Distributed

Deadlock Detection Algorithm,” Proc. of the 15th Int. Conference

on Distributed Computing System, 169–178

[14] Lee,S. and Kim, J.L.2001. Performance Analysis of

Distributed Deadlock Detection Algorithms, IEEE Trans.

Knowledge and Data Eng., vol. 13, no. 4,623-636,

[15] Lee, S. 2001. Efficient Generalized Deadlock Detection and

Resolution in Distributed Systems, Proc. 21st Int. Conference on

Distributed Computing Systems, 47-54

[16] Lee, S. 2004. Fast, Centralized Detection and Resolution of

Distributed Deadlocks in the Generalized Model, IEEE Trans. On

Software Engineering, Vol. 30, NO. 9, 561-573

