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ABSTRACT 
In this paper, we propose a new algorithm to detect and resolve 

distributed deadlocks in the generalized model. The initiator of 

the proposed algorithm diffuses the probes along the outgoing 

edges of Wait-For Graph (WFG) and collects the replies that carry 

the dependency information between processes directly. However, 

the initiator simplifies the unblocking conditions of blocked nodes 

in response to a reply form an unblocked node and receives 

almost two replies from any node unlike the earlier algorithms. It 

finally declares all the nodes that have not been reduced as 

deadlocked. We also prove the correctness of the algorithm. It has 

a worst-case time complexity of d+1 and message complexity of 

less than e+2n where d is the diameter, e is the number of edges 

and n is the number of nodes in the WFG. Since the termination 

detection of the proposed algorithm is isolated from deadlock 

detection, it minimizes the message length into a constant without 

using any explicit technique. It is the significant improvement 

over the existing algorithms. It also minimizes additional rounds 

of messages to resolve deadlocks.  

Categories and Subject Descriptors 
C.2.4[Computer-Communication Networks]: Distributed 

Systems-distributed applications; distributed databases; network 

operating systems; D.4.1[Operating Systems]: Process 

Management-concurrency; deadlocks ;synchronization; D.4.7 

[Operating Systems]: Organization and Design-distributed 

systems; H.2.4 [Database Management]: Systems-distributed 

systems; transaction processing 

General Terms 
Algorithms 

Keywords 
Distributed Deadlocks, Generalized Model, Deadlock Detection, 

Wait-For Graph, Deadlock resolution 

1. INTRODUCTION 
Distributed deadlock is difficult to detect as well as resolve due to 

the presence of multiple sites. In general, the interdependency 

among the distributed processes is modeled as a directed graph 

known as the Wait-For Graph (WFG) [1,2]. In WFG, a node 

represents a process and the edge represents the wait-for relation  

 

between processes. Based on the underlying resource-request 

models [1,7], the deadlock detection algorithms are classified into 

Single-Resource Model, AND Model, OR Model, P out-of Q 

model and so on. In the AND model, a process requires all 

requested resources to continue the execution. However in the OR 

model, a process requires several resources among the requested 

recourses to continue its execution. A deadlock is usually detected 

by examining the presence of either cycle or knot in the global 

WFG. The presence of cycle is sufficient to determine a deadlock 

in the AND model whereas in the OR model the existence of knot 

is required to decide a deadlock. 

In the P out-of Q model, each process requires P resources among 

Q to precede their execution. Hence, a process resource request is 

expressed as a predicate involving the required resources and the 

logical AND and OR operators. Since AND and OR model are the 

special case of P out-of Q model, it is also referred as the 

Generalized Model. The generalized request model is quite 

common in many domains including resource management in 

distributed operating systems, communicating sequential 

processes and quorum consensus algorithms in distributed 

databases [11,12,16]. A deadlock in the generalized model is 

referred as the generalized deadlock. Since the existence of cycle 

or knot in the WFG are insufficient to determine a deadlock in the 

generalized model, it is very difficult to detect as well as resolve 

as compared to the AND and OR deadlock. Hence, very few 

generalized deadlock detection and resolution algorithms 

[4,5,7,8,10,12,15,16] have been proposed in the literature. 

Amongst, most of them have used the diffusion computing 

technique [1] in which a process called initiator propagates the 

probes across the WFG and collects the replies. The initiator stops 

the execution once all the processes in its reachable set became 

idle and waits for other processes. It then decides the existence of 

deadlock based on the information in replies. The generalized 

deadlock detection algorithms are grouped into two categories 

namely centralized and distributed algorithms based on the 

existence of WFG. In the centralized algorithms, the initiator 

gathers the information to determine the existence of deadlock 

whilst the information is spread across multiple sites in the 

distributed algorithms.   

In general, the distributed algorithms [4,5,7,10,12] have recorded 

the consistent snapshot of distributed WFG and removed the 

reducible nodes to determine a deadlock in a single or two phase. 

In Bracha and Toueg [4], the initiator propagates the probes along 

the WFG edges to record the snapshot in the first phase and the 

replies are directed towards the initiator in the second phase. If the 
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replies are insufficient to unblock the initiator, it declares a 

deadlock. In this algorithm, the second phase is nested within the 

first phase. It exchanges 4e messages in 4d time units to find out 

the existence of deadlock. However, the Wang et al [6] uses an 

effective termination technique to detect the end of the first phase 

before initiating the second phase. The algorithm in [14] records 

as well as reduces the WFG simultaneously to determine a 

deadlock. It records the processes that are reachable from the 

initiator in the outward sweep and eliminates the process that 

grants the resources in the inward sweep. It uses 4e-2n+4l 

messages in 2d time units to find out the generalized deadlock. 

The algorithm in [15] uses lazy evaluation technique to allow the 

reduction of any unblocked process until the initiator terminates 

the execution. It detects deadlock using 2e messages in 2d+2 time 

units with variable sized messages as compared to [14]. Since the 

initiator knows the resource requirement of deadlocked processes, 

it reduces the additional e messages to resolve deadlocks as 

compared to [14].  

The centralized algorithms [8,15,16] constructs the local Wait-For 

Graph (LWFG) to determine a deadlock in the system. The 

initiator of the algorithm in [8] sends a probe to all processes in 

its reachable set exactly once and collects the replies. It then 

incrementally constructs the LWFG based on the information in 

replies. It spends 2n messages in 2d time hops to determine a 

deadlock. The initiator of the algorithm infers ancestor-

descendent relationship among the nodes in replies to build the 

LWFG to determine a deadlock. In addition, it uses path encoding 

technique to minimize the message length.  It uses 2e messages in 

2d time units to detect a deadlock. However, the initiator of the 

algorithm in [16] collects the unblocking conditions of all blocked 

nodes and active nodes through replies. It then evaluates the 

unblocking conditions to find out the deadlocked processes. It 

spends less than 2e messages in d+2 time units to detect deadlock. 

We propose a new centralized algorithm to detect and resolve 

distributed deadlocks in the generalized model. The initiator of 

the proposed algorithm builds the Distributed Spanning Tree 

(DST) by propagating probes (CALL messages) along the edges 

of WFG and collects the replies. As a probe (CALL message) is 

propagated, each node sends a reply (REPORT) that carries its 

unblocking condition to the initiator directly. If the initiator 

receives a reply from an active node, it simplifies the unblocking 

conditions. The initiator declares all the nodes that have not been 

reduced at the end of termination as deadlocked. The algorithm 

uses diffusion based protocol to detect the termination using 

WEIGHT messages. It has a worst-case time complexity of d+1 

time units and message complexity of less than e+2n where d is 

the diameter , n is the number of nodes and e is the number of 

edges of the WFG. Since the unblocking condition of node is not 

merged unlike the earlier algorithms, its data traffic complexity is 

a constant. Further, it simplifies the resolution by reducing 

additional messages.   

The proposed algorithm propagates the probes and evaluates the 

unblocking conditions similar in [16]. However, it differs from 

Lee’s algorithm [16] and other centralized algorithms [8,15] in 

following aspects: 

1. The initiator of the proposed algorithm evaluates the 

unblocking conditions in response to replies from an active node 

like in [8] whereas the initiator of Lee’s algorithm [16] evaluates 

the conditions only at the termination of execution. 

2. Lee’s algorithm uses an explicit mechanism to 

distribute the unblocking conditions in order to reduce the 

message length. Similarly, the algorithm in [15] uses path 

encoding technique to reduce the message length. However, the 

proposed algorithm does not incorporate any additional 

techniques to optimize the data traffic complexity 

3. The initiator of proposed algorithm attempts to 

induce a distributed spanning tree whereas the initiator of Chen 

[8] algorithm does not consider any structural property of the 

WFG. 

4. The initiator of the algorithm attempts to reduce the 

blocked nodes prior to the termination of the algorithm unlike in 

[15,16]. 

The rest of this paper is divided into five main sections. The basic 

assumptions about the underlying computational model and key 

definitions are described in Section 2. The basic idea behind the 

proposed algorithm along with an illustrative example is 

presented in section 3. Section 4 provides the formal proofs to 

prove the correctness of the proposed algorithm. The performance 

of new algorithm is analyzed and compared against the existing 

algorithms in section 5. Finally section 6 concludes the paper. 

2. SYSTEM MODEL 
The system has ‘N’ processes and each process has a unique 

system wide identity. The processes can interact only by passing 

messages through a logical communication channel. The messages 

are delivered in the same order sent by the sender to the 

destination within finite but arbitrary delay. The messages are 

neither lost nor duplicated and the entire system is fault-free. 

Events in the system are classified into computation events and 

control events and they are time stamped using Lamport’s logical 

clock [3]. The computation event triggers the computation 

messages such as REQUEST, REPLY, CANCEL and ACK due to 

the execution of applications. The control event generates the 

control messages CALL, REPORT and WEIGHT as a result of 

deadlock detection algorithm execution.  

Both computational and control messages are time stamped based 

on requester’s logical lock at which it was blocked. Hence, ACK 

or REPLY must be matched with the corresponding requests. And 

a blocked process can not send or withdraw a resource request 

spontaneously. In addition, they could not abort abnormally.  

These two assumptions are essential to ensure the consistency of 

snapshot that is recorded by the algorithm. We use the term 

process and node interchangeably throughout this paper. 

In the generalized model, each process resource 

requirements is expressed as a predicate involving the requested 

resources, the logical AND and OR operators. For example, a 

process resource requirement A∧(B∨C) specifies that it requires a 

resource from A and a resource from either B or C. In this 

algorithm, the generalized resource requirement of a process ‘i’ is 

represented as a function called the unblocking condition Fi. This 

unblocking condition is evaluated in the following manner. If a 

process has granted to access a resource, it substitutes true for a 

node in Fi. Otherwise, it substitutes false for a node. Then the 

entire function Fi is evaluated to determine its state. If a node has 

received sufficient replies to make Fi to be true, it becomes active 

and eventually withdraws the remaining requests.  
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Each process maintains the following data structure to 

keep track of its state. The initial value of each variable is given 

within parenthesis. 

t_blocki  the logical time at which i was last blocked (0) 

parenti    the process identifier from which i has received the  

probe recently (0)  

ini       :the set of tuples <k,t_blockk> where k is a process 

waiting for i and  t_blockk is the logical time at which k 

has sent its request to i.(φ) 

outi    :the set of processes for which i is waiting since the  last 

t_blocki (φ) 

Fi       the unblocking condition of process i 

A process is either active or blocked state at any instant. An active 

process can send both communication and control messages 

whereas the blocked process can send either control messages or 

ACK. When a process ‘i’ blocks on pi out-of qi requests, it records 

the qi processes in a set outi. It then sends a REQUEST message 

to qi processes. Upon receiving a REQUEST from i, a node j 

records <i, t_blocki> in the set inj. It then sends the ACK message 

as a receipt to the sender. When a node j sends a REPLY to i, it 

removes <i, t_blocki> from inj. A set of processes in ini is called 

the predessor of process ‘i’ and a set of processes in outi is called 

the successor of process ‘i’ A deadlock is defined as follows in 

[16]. 

Definition 1. Let evaluate(fi) be a recursive operation evaluated 

based on the following: 

1. evaluate (fi) = true for an active node i, 

2. evaluate (i) = evaluate (fi) 

3. evaluate (P∨Q) = evaluate (P) ∨ evaluate (Q) 

4. evaluate (P∧Q) = evaluate (P) ∧ evaluate (Q) 

where P and Q are nonempty AND/OR expressions of node 

identifiers. 

Definition 2: A generalized deadlock is a sub graph (D,K) of 

WFG (V,E) in which 

i) evaluate (fi) = false, ∀i∈D. 

ii) No message for computation is under transmission 

between any nodes in D 

Hence, each process in D is blocked forever and the nodes that do 

not exist in D are not deadlocked since their requests can be 

satisfied at any instant.   

The correctness of any deadlock detection algorithm depends on 

the following two conditions: 

Liveness: The algorithm shout detect and resolve only true 

deadlock within a finite time  

Safety:  If the algorithm reports a deadlock, it actually exists in the 

system. 

3. THE PROPOSED ALGORITHM 
Whenever a node blocks on pi out-of qi requests, it initiates the 

deadlock detection algorithm. Since several nodes may initiate the 

algorithm concurrently, a node involves the execution of several 

instances in concurrent executions. As a result, the same deadlock 

is detected by more than one initiator. If this happens, they may 

select different victims independently even though a single victim 

is sufficient to resolve a deadlock. Nevertheless few instances of 

the algorithm might be engaged in false deadlock resolution 

because of useless aborts. The issues associated with the 

concurrent execution of the algorithm is addressed only in 

[11,12,13,15,16]. We follow the method in [11,12] to handle 

concurrent executions. The method assigns a unique priority to 

each instance of the algorithm based on its identifier that 

comprises the initiator’s identifier and the block time or sequence 

numbers. All the control messages corresponding to a particular 

instance uses this label and hence one instance of the algorithm is 

distinguished from others. During the conflict, a node participate 

the execution of only high priority instance and suspends the 

execution of low priority instances. However, we focus the 

execution of a single instance of the algorithm.  

3.1 Algorithm Description 
When a node ‘i’ blocks on pi out-of qi, it initiates the deadlock 

detection algorithm. The initiator of the proposed algorithm builds 

the Distributed Spanning Tree (DST) of WFG through diffusing 

the CALL messages along the outgoing edges of the. To describe 

in detail, the initiator ‘i’ first sends CALL message to each node 

‘j’ in outi. It then adds its unblocking condition Fi into a set UC. 

Whenever a node ‘j’ receives the first CALL message, it became 

the child of the sender and delivers its unblocking condition (Fj) 

to the initiator directly through REPORT message. In addition, it 

forwards CALL message to its own successors. However, if a 

node that has already been in the tree receives the CALL message, 

it delays to deliver the message to the initiator until the arrival of 

all CALL messages from its predecessors. Thus the edges through 

which each node receives the CALL message induce DST of the 

WFG. Once a node receives all CALL messages, it delivers a 

singe WEIGHT message to the initiator for termination detection.  

Upon receiving the REPORT message from a unblocked node, the 

initiator updates the set of active nodes A by adding the sender of 

message. It then simplifies the unblocking conditions in the set 

UC. If any node in UC gets reduced successfully, it removes its 

unblocking condition from UC and adds its identifier into the set 

of active nodes A. The initiator continues the simplification until 

the nodes that have not been reduced exists in the UC.  If the 

initiator is reduced during this simplification, it reports the 

absence of deadlock without waiting for the termination. Finally, 

the initiator terminates the execution once its weight becomes one 

according to the weight distribution technique. It then declares all 

the nodes in the set UC are deadlocked.  

The algorithm uses weight distribution method [10,17] to detect 

the termination of execution like in [10,17]. According to the 

method, the initiator diffuses the weight of one among its 

successors which in turn distributes its own weight through CALL 

messages. Once the unblocked nodes and the node that have 

already been in the DST receives all CALL messages, it sends the 

weight to the initiator directly through WEIGHT messages. The 

initiator accumulates the weight in WEIGHT messages and stops 

the execution once the sum of weights equal to one. For example, 

if the initiator has n successors, it sends 1/n to each successor in 

CALL. If a node receives the CALL message through a tree edge, 

it distributes the weight w/n to each of its successors.  Here, n is 

the total number of its successors. A node returns the weight in to 

the initiator through WEIGHT message upon receiving all CALL 

messages through non-tree edges. 
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3.2 Algorithm Specification 
Data Structure of a node ‘i’ 

parenti       : a node from which ‘i’ has received the first CALL  

                  message (0) 

weighti    : the weight value of ‘i’ (0) 

ini   : the set of predecessors (φ) 

outi   : the set of successors(φ) 

fi   : the condition for ‘i’ to became unblock 

num_predi : number of predecessors (0) 

 

Additional Data Structures at initiator 

UC  � Set of Unblocked Conditions (φ) 

A  � Set of Active nodes (φ) 

weightinit  � the weight value of initiator (0) 

 

Message Formats  

CALL(initiator, sender, weight) 

REPORT( sender, fsender) 

ANSWER( sender, weight sender) 

 

I. When a node i initiates the algorithm 

initiatori := i; 

parenti:=i; 

weighti := 1; 

UC:= UC ∪ fi; 

send CALL(initiator, i, weighti / |outi|) to each j ∈ outi 

 

II. When node i receives CALL(initiator, j, weightj) from j 

/* Case II.1 node i receives the first CALL through tree edge */ 

if (parenti = udef ∧ |outi| >0 ∧ j∈ini) then 

initiatori := initiator; 

parenti:=j; 

send REPORT(j, fi) to initiatori 

weighti := weightj; 

send CALL(initiatori ,i, weighti /|outi|) to each j ∈ outi 

weighti := 0; 

num_predi --; 

  

/* Case II.2 node i receives the CALL through a non-tree edge */ 

if (parenti = def ∧ |outi| >0 ∧ j∈ini) then    

weighti := weighti + weightj; 

num_predi --; 

if (num_predi = 0) then 

 send ANSWER (i, weighti) to initiatori 

 

if (parenti = def ∧ |outi| >0 ∧ initiator=i ∧ j∈ini) then  

/* Case II.2.1 Initiator receives the CALL message 

weightinit= weighti + weightj; 

 

/* Case II.3 When an unblocked node i receives the first CALL*/ 

if (parenti =udef ∧|outi|=0 ∧ j∈ini) then 

initiatori := j; 

parenti:=j; 

send REPORT(i , φ) to initiatori 

weighti := weightj; 

num_predi --; 

if (num_predi = 0) then 

 send WEIGHT(i, weighti) to initiatori 

 

/* Case II.4 When an unblocked node j receives subsequent 

CALL*/ 

if (parenti =def ∧ |outi|=0 ∧ j∈ini) then 

weighti := weighti + weightj; 

num_predi --; 

if (num_predi = 0) then 

 send ANSWER( i, weighti) to initiatori 

 

/* Case II.5 a phantom edge */ 

 if (j∉ini) then 

     send WEIGHT(i, weighti) to initiatori 

 

III. When initiator receives REPORT(sender, fi) 

if (fi = φ) then   // from an unblocked node 

  A = A ∪ {sender}; 

  evaluation(); 

 else // from the blocked nodes  

UC= UC ∪ fi; 

 end if 

IV. When initiator receives WEIGHT(sender, weighti) 

        weightinit= weighti 

if(weightinit =1) // from the blocked nodes  

 evaluation(); 

 end if 

V. procedure evaluation() 

      begin 

      do  

for each  i ∈ UC 

  if (evalvate(fi) = true ) then 

   A:=A ∪ {i}; 

   UC := UC – {fi} 

  end if 

     until (∀i∈UC, evalvate(i)=false ∨ UC=φ ); 

     if ( UC = φ ) then 

 No deadlock; exit; 

    else 

 if (weightinit=1) 

 resolution();  // Declare a Deadlock 

    else 

    end procedure 

  

VI. rocedure resolution() 

    begin 

     /* Select a victim i that unblocks more nodes */ 

     send ABORT to i 

     A :=A ∪ {i}; 

    UC := UC – {fi}; 

    if (UC != φ) then  evaluation(); 

    else    exit;   

    end if  

    end procedure 

3.3 An Example 
We illustrate the idea behind the proposed algorithm using an 

example. The distributed WFG shown in Figure.1 spans 10 nodes 

labeled 1 to 10. All the nodes except 2, 6 and 10 are blocked 

initially. The unblocking conditions of each blocked node is as 

follows: f1=(2 ∧3)∨4, f3=(5∧6) ∨7, f4=8∧9, f5=1, f7=4, f8=7 and  

f9=(8∧10) ∨1. 
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Let us consider node 1 initiates the algorithm and the messages 

are propagated in such a way to induce a Distributed Spanning 

Tree (DST) of WFG. In the Figure.2, the solid lines indicate the 

tree edge and dashed lines refers the non-tree edges.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) When node 1 initiates the algorithm, it sends CALL(1,1,1/3) to 

2,3 and 4 respectively. 

2) When node 2 receives the CALL from 1, it sends REPORT(2, 

φ) to 1. In addition, it sends WEIGHT(1,1/3) to 1 

3) When node 3 receives the CALL from 1, it sends REPORT (3, 

(5∧6) ∨7) to 1. In addition, it sends CALL(1,3,1/9) to 5, 6 and 7. 

4) When node 4 receives the CALL from 1, it sends REPORT(4, 

8∧9) to 1 and sends CALL(1.4,1/6) to 8 and 9 respectively. 

5) When node 5 receives the CALL from 3, it sends REPORT(5, 

1) to 1. It also sends CALL (1,5, 1/9) to 1. 

6) When node 6 receives the CALL from 3, it sends REPORT(6, 

φ) to 1. Then it sends WEIGHT(6, 1/9) to 1. 

7) When node 7 receives the CALL from 1, it sends REPORT(7, 

8) to 1.Then it sends CALL(1,7,1/9) to 4 

8) When node 8 receives the CALL from 4, it sends REPORT(8, 

7) to 1 and it sends CALL(1,8,1/6) to 7. 

9) When node 9 receives the CALL from 4, it sends REPORT(9, 

(8∧10) ∨1) to 1.Furthermore, it sends CALL(1,9,1/18) to 1,8 an 

10 respectively. 

10) When node 1 receives the CALL from 5, it updates weightinit 

11) When node 4 receives the CALL from 7, it sends WEIGHT 

(4, 1/9) to 1. 

12) When node 7 receives the CALL from 8, it sends 

WEIGHT(7,1/6) to 1. 

13) When the initiator 1 receives the CALL from 9 through a back 

edge, it updates weightinit. 

14) When node 8 receives the CALL from 9, it sends 

WEIGHT(8,1/18) to 1. 

15) When node 10 receives the CALL from 9, it sends 

REPORT(10, φ) and WEIGHT(10,1/18) to 1 

Whenever the initiator receives the REPORT from 2, 6 

and 10, it simplifies the wait-for relations in the set UC. It finally 

declares nodes 1,3,4,5,7,8 and 9 are deadlocked. 

3.4 Correctness Proofs 
The correctness of the proposed algorithm is proved by using the 

following four theorems. 

Theorem 1: The algorithm terminates within a finite time. 

Proof of Sketch: By step 1, the initiator distributes the weight of 

one to its successors through CALL messages. When a blocked 

node receives the weight, it distributes the weight to its own 

successors by step II.2. Once a weight is distributed, it 

immediately reinitializes its weight into zero. If an active node 

receives the weight, it adds the weight with its own by step II.3 

and II.4. Upon receiving CALL messages from all its 

predecessors, the leaves of distributed spanning tree are return the 

weight to the initiator directly through the WEIGHT message by 

step II.1 to II.4. The initiator adds the weight in WEIGHT 

message with weightinit by step IV. If the initiator receives the 

CALL through back edges, it updates the weightinit by step II.2.1 

The messages are delivered within finite time and they are neither 

lost nor duplicated according to our system assumptions. The 

initiator stops the execution of the current instance once the sum 

of its weight (weightinit) upto one. Thus the theorem holds. 

 

Theorem 2: The algorithm records the consistent snapshot of 

distributed Wait-For Graph. 

Proof of Sketch: Consider an edge (p,q) ∈ LWFGi. It is included 

in the LWFG only if a blocked process q sends a REPORT 

message to the initiator according to the step II.1. By step II, 

process q receives the CALL message from p iff q ∈ outp. And the 

process p has sent the REQUEST message to q earlier and it exists 

in inq. As a result, the edge (p,q) is included in the LWFGi only if 

both the processes p and q are blocked and a node q has received 

the CALL message from p. Therefore the snapshot is consistent 

and hence the theorem holds.   

1 

2

  

3 4 

7 9 8 

6 

5 

10 

Figure 2. The Message Flow 
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6 10 
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Theorem 3: The algorithm detects a deadlock within a finite time.  

Proof of Sketch: Let us consider the contrary that the algorithm 

does not detect a deadlock D in the underlying system. Assume 

that there is a node i∈D where evaluate (fi) = true exists in the 

initiator. Since a node i is a member of deadlock D, it will be 

blocked forever. The evaluate(fi)=true implies that fi consists of 

only those nodes that are not deadlocked in the WFG. It 

contradicts our assumption i∈D. As a result, there exist a node j∈ 

Domain(fi) and whose state determines the state of i. Since  

evaluate (fi)=true, evaluate (fj) is also true. Similar to i, there is at 

least one node j’∈Domain(fJ) and whose state determines the state 

of j. By induction, there must exist a node n+1∈D such that 

n∈Domain(fn+1) and evaluate(fn)=true. Since active nodes have 

true unblocking conditions by step V, the algorithm does not 

evaluate(fi) as true during the simplification. So the algorithm 

does not report i∈D which contradicts our assumption. Thus, the 

algorithm reports deadlock iff it exists in the underlying system. 

Hence, the theorem is proved.  

Theorem 4 The algorithm does not report any false deadlock. 

Proof of Sketch: Let us consider the contrary that the algorithm 

declares a deadlock D although it does not exist in the underlying 

system. It implies that there are some edges recorded at the 

initiator but they do not exist in the WFG. Let us consider a edge 

(i,j) one among them. Since a node j sends REPLY to i, this edge 

is disappeared first in the WFG. If the edge (i,j) exists at the 

initiator, the node i executes either step I or II.1 of the algorithm. 

By step I, the initiator sends CALL message to its successor j. If it 

is executed the later step, a node i sends CALL message to each 

one of its successor including j. Let us assume that (i,j) is a tree 

edge of distributed spanning tree induced by the algorithm. When 

node j has received the CALL message from i, it records fj by 

executing the step II.1 or II.3. Furthermore, the unblocking 

condition is delivered to the initiator directly. Since the edge (i,j) 

is disappeared first from the WFG, fj is evaluated as true and the 

initiator does not record the edge(i,j) by step III. Since the edge 

(i,j) exists in D, node j must be deadlocked. If j executes step II.3 

or II.4, it is included in the set A and the algorithm does not 

declare it as deadlocked. Let us now assume that (i,j) is a non tree-

edge of the spanning tree and disappeared first from the WFG. 

Therefore, j has sent a REPLY to i at some time, say t. If j 

receives the CALL message after t, the edge is not included at the 

initiator by step II.5. Similarly, when j receives the CALL 

message before t, it is included in the list of active nodes by step 

III. Hence, the edge (i,j) does not included in the initiator. Thus 

the theorem is proved.  

3.5 Deadlock Resolution 
The algorithm selects a deadlocked node that unblocks more 

number of blocked nodes in the set UC as a victim of deadlock. 

The initiator is then sent the ABORT message directly to the 

victim. If a victim is insufficient to resolve a deadlock, the 

algorithm selects another node as a victim. This process continues 

until the unblocking conditions of remaining nodes in UC are 

satisfied.       

4. PERFORMANCE ANALYSIS 
We compare the performance of the proposed algorithm with the 

existing algorithms in terms of time, message and data traffic 

complexities. The measurements are based on the assumption that 

the message transmission between any two nodes take one time 

unit. The initiator of the algorithm propagates the CALL messages 

along the edges of the WFG and receives exactly one REPORT 

message from each node. In addition, it receives one WEIGHT 

message from the leaves of induced distributed spanning tree. 

Hence, the total number of messages generated by the algorithm is 

less than e+2n where e is the number of edges and n is the number 

of nodes in the WFG. Since the REPORT messages are delivered 

to the initiator directly, its worst-case time complexity is d+1 

where d is the diameter of the spanning tree induced by the 

algorithm.  Since the proposed algorithm does not merge the 

unblocking conditions of several nodes, its worst-case data traffic 

complexity is O(1). The Table.1 compares the performance of the 

proposed algorithm with the previous algorithms.  

Table 1. Performance Comparison of Generalized Deadlock  

Detection and Resolution Algorithms 

Algorithms Delay 

Number  

Of 

Messages        

Message 

Length 
Resolution 

Barcha-Toueg 

[4] 

4d 4e O(1) no Scheme 

Wang et.al [5] 3d+1 6e O(1) no Scheme 

Kshemkalyani.e

t.al [10] 

2d 4e-

2n+2l 

O(1) e messages 

Kshemkalyani 

et.al [12] 

2d 2e O(e) 1 message 

Brzezinski et.al 

[7] 

4n ½ n2 O(n) no Scheme 

Chen et .al [8] 2d 2n O(e) 3n messages 

Soojung Lee 

[13] 

n e O(d) no Scheme 

Soojung Lee 

[15] 

2d 2e O(e+2n) 1 message 

Soojung Lee 

[16] 

d+1 <2e O(d) 1 message 

Our algorithm 
d+1 < e+2n O(1) 1 message 

 

5. CONCLUSION 
We have presented a new algorithm to detect and resolve 

generalized deadlocks in distributed systems. In this algorithm, 

the initiator collects the unblocking condition of all nodes in its 

reachable set exactly once. The initiator simplifies the unblocking 

conditions to determine a deadlock. It spends d+1 time units and 

e+2n messages to detect the deadlocked nodes. We formally 

proved its correctness and illustrate the idea using an example. 

The performance of the proposed algorithm is better or 

comparable with the existing algorithms in terms of time, message 

and data traffic complexities. Furthermore, it simplifies the 

deadlock resolution by minimizing the additional round of 

messages. 
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