
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 2

85

Extraction of Desired Partial Block of a Frame from MPEG

Video Stream
Sandeep Kumar

Division of Computer Engineering
Netaji Subhas Institute of Technology

Sector-3, Dwarka, New Delhi – 110 078 India

Satish Chand
Division of Computer Engineering

Netaji Subhas Institute of Technology
Sector-3, Dwarka, New Delhi – 110 078 India

ABSTRACT

In MPEG video encoding, the next frame is encoded based on the

previous frame. For forward replay of the video, extraction of

data of the next frame from the current frame is a trivial process.

However, for backward replay, it may not always be possible to

extract data of the next (previous) frame completely from the

currently displayed frame. In this paper, we propose a method for

extracting unpredictable portion of a frame from MPEG video.

This helps in extracting the desired portion rather than decoding

the entire frame.

Categories and Subject Descriptors

I.4.0 [Image Processing and Computer Vision]: General –

Image displays, Image processing software.

General Terms

Algorithms, Design.

Keywords

Video Streaming, MPEG Video

1. INTRODUCTION
The MPEG [1]-[4] is one of the most widely acceptable standards

for video encoding in which a video has three types of frames,

namely, I-, P-, and B-frames. The I-frame is independently

encoded. The P-frame is encoded based on previous I- or P-frame

and the B-frame is encoded using previous and/or next (I or P)

frame. The I-frames occur periodically. Between two I-frames,

there is a well defined combination of P- and B-frames. The

frames starting from an I-frame up to the next I-frame constitute

a group of pictures (GOP). A particular sequence of I-, P-, and B-

frames is IBBPBBPBBPBBI… comprising 12 frame in a GOP.

For encoding a frame, it is divided into macroblocks of 16x16

pixels. Each macroblock is further divided into blocks of 8x8

pixels. To carry out I-frame coding, each block is transformed

using Discrete Cosine Transform (DCT). First element of the

block is called DC coefficient and the remaining are called AC

coefficients. These DCT coefficients are then quantized. The DC

coefficients are differentially coded with respect to the DC

coefficient of the previous block. AC coefficients are run-length

encoded and then Huffman coded. Coding of P-frame is done

with reference to the previous I- or P-frame and hence called

inter-frame coded. Inter-frame coding exploits the temporal

redundancy which occurs in consecutive frames of a scene. Each

macroblock of the frame is compared to the respective

macroblock and its neighbors in the reference frame (previous I-

or P-frame). The best matched macroblock is taken into

consideration. This process is called Motion Estimation [5]. The

offset of the best matched macroblock from the current

macroblock is recorded as its motion vector. This is the

horizontal and vertical length of the offset. The difference

between both macroblocks is found and called as prediction

errors. These prediction errors are coded in the same way as the

I-frame coding. B-frame uses both past and future frames as

reference frame. If it uses past frame or future frame as reference

frame, then its coding is same as that of the P-frame. If it refers

to both past and future frames, then average of both prediction

errors is taken and both of the motion vectors are recorded and

coded. Coding of prediction errors is same as in the P-frames

coding.

While decoding a P-frame, we need previous frame which in turn

depends on the previous to previous frame and so on. This

process continues till the last I-frame. In order to find a small

portion of a frame, we need to decode the desired frame

completely and for that we need to decode the previous frame

completely up to the last I-frame. Many applications may require

partial data of a frame, e.g., when the transmitting channel is

error prone and data gets corrupted or reverse play of MPEG

video. To extract even very small portion of a frame, we need to

decode the entire frame. This process is not only inefficient but it

wastes important resources too. Therefore, a new mechanism is

required so that the required portion of frame is decoded rather

than decoding the entire frame. In this paper, we propose a new

algorithm for extracting the desired partial block of the frame

from MPEG video stream by only decoding the required portion

of the frame.

The rest of the paper is organized into four sections. In Section 2,

we propose a method for extracting partial block from the MPEG

stream. In section 3, we present the results. Finally, in Section 4

we conclude the paper and discuss the further scope of research.

2. BLOCK FINDING METHOD
The client requests a block from the server using the coordinates

of the upper left corner of the block (a, b), its width (w), height

(h) and the corresponding frame number (n). On receiving this

request the server invokes FindBlock algorithm to find the

requested block out of the MPEG stream. The first step is to find

out the macroblock that contains this requested block. The

requested block may fall in many macroblocks. We first spilt the

requested block into separate parts such that each part falls in a

single macroblock. Falling of a block in different macroblocks

can be of anyone of the four scenarios as shown in Figure 1.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 2

86

Figure 1. Four different Scenario of a block falling in

multiple macroblocks

First we need to find the scenario out of above four scenarios for

the requested block. This is done by finding the row & column

numbers of the macroblocks that contain the upper left and lower

right corners of the requested block. Let rmb & cmb denote row

& column number of the macroblock that contains the upper left

corner (a, b) and rmb1 & cmb1 denote row & column number of

the macroblock that contains the lower right corner (a-1+h, b-

1+w). If rmb and rmb1 are different and cmb and cmb1 are also

different, then it is Horizontal-Vertical scenario. In this scenario,

the block is divided into four separate parts and for each part the

algorithm FindBlock is called recursively. If rmb and rmb1 are

same but cmb and cmb1 are different, then it is Horizontal

scenario. In this scenario, the block is divided into two separate

parts horizontally. If rmb and rmb1 are different but cmb and

cmb1 are equal, then it is vertical scenario and block is divided

into two parts vertically. For each part obtained the same

algorithm FindBlock is called recursively. Lastly, if rmb & rmb1

are equal and cmb & cmb1 are also equal, then it falls in a single

macroblock and no division is required. In this case, we check

the type of the macroblock and decode it. For a P-frame, the

decoded information would be the prediction error of the

macroblock that is to be added to the corresponding motion

compensated macroblock of the previous frame as per the

following equation:

n n-1 n nMB = MCMB (mv)+ e
(rmb,cmb) (rmb,cmb) (rmb,cmb) (rmb,cmb)

where

nMB
(rmb,cmb) signifies macroblock at (rmb, cmb) position in

the nth frame,

n-1MCMB
(rmb,cmb) is motion compensated macroblock at (rmb,

cmb) in (n-1)th frame,

nmv
(rmb,cmb) is motion vector of the macroblock at (rmb, cmb)

position in nth frame,

ne
(rmb,cmb) is prediction errors of the macroblock at (rmb, cmb)

position in nth frame.

The algorithm FindBlock is called recursively for the previous

frame with the coordinates obtained by adding the motion vectors

to the coordinates of the requested block. The decoded prediction

error is added to the block data returned by the FindBlock

algorithm. For an I-frame, the decoded data is the frame data and

it is returned by the FindBlock algorithm. The above process is

pictorially shown in Figure 2. Pseudo code of the algorithm is

given bellow.

[Block] Algorithm FindBlock(a, b, w, h, n)

Begin

Calculate rmb as ceil(a/16).

Calculate cmb as ceil(b/16).

Calculate rmb1 as ceil((a-1+h)/16).

Calculate cmb1 as ceil((b-1+w)/16).

If (rmb=rmb1) and (cmb=cmb1)

Decode the (rmb, cmb) macroblock of nth frame and save it

in mb.

Calculate x as (a-((rmb-1)*16)).

Calculate y as (b-((cmb-1)*16)).

If nth frame is an I-frame

Set block as the mb(x to x-1+h, y to y-1+w).

Else

Set error as the mb(x to x-1+h, y to y-1+w).

(a,b)
w

 b) Horizontal c) Vertical d) Single

1

2

3

1 2 3

(a-1+h,b-1+w)

h

a) Horizontal-Vertical

cmb cmb1

 rmb

rmb1

Frame No. 6 7 8 9

 I-frame P-frame P-frame P-frame

(21,37) 5

 18

(18,36) 5

 12

(37,36) 5 6

(10,35) 5

 12

(40,35) 5 6

(8,35) 5 7

(20,36) 5 5

(37,33) 5 6

Figure 2. Block Finding Process

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 2

87

Set mvx as the x motion vector of (rmb, cmb)

macroblock of nth frame

Set mvy as the y motion vector of (rmb, cmb)

macroblock of nth frame

Update a with a + mvx.

Update b with b + mvy.

Set block as the (error + FindBlock(a, b, w, h, n-1)).

End if

Else if (rmb=rmb1) and (cmb!=cmb1)

Set w1 as (cmb*16)-(b-1)

Set w2 as (w-w1).

Get the block1 by calling FindBlock(a, b, w1, h, n).

Get the block2 by calling FindBlock(a, (cmb*16)+1, w2, h,

n).

Set block(1to h,1 to w1) as block1.

Set block(1 to h,w1+1 to w) as block2.

Else if (rmb!=rmb1) and (cmb=cmb1)

Set h1 as ((rmb*16)-(a-1))

Set h2 as (h-h1).

Get the block1 by calling FindBlock(a, b, w, h1, n).

Get the block2 by calling FindBlock((rmb*16)+1, b, w, h2,

n).

Set block(1 to h1,1 to w) as block1.

Set block(h1+1 to h,1 to w) as block2.

Else

Set w1 as ((cmb*16)-(b-1))

Set w2 as (w-w1).

Set h1 as ((rmb*16)-(a-1)).

Set h2 as (h-h1).

Get the block1 by calling FindBlock(a, b, w1, h1, n).

Get the block2 by calling FindBlock(a, (cmb*16)+1, w2, h1,

n).

Get the block3 by calling FindBlock((rmb*16)+1, b, w1, h2,

n).

Get the block4 by calling FindBlock((rmb*16)+1,

(cmb*16)+1, w2, h2, n).

Set block(1 to h1,1 to w1) as block1.

Set block(1 to h1,w1+1 to w) as block2.

Set block(h1+1 to h,1 to w1) as block3.

Set block(h1+1 to h,w1+1 to w) as block4.

End if

End Algorithm FindBlock

The limitation of algorithm is that we have to decode the

complete macroblock in spatial domain to get a small portion out

of it. Still this process is better because we do not need to decode

the complete frame; only the related macroblock needs to be

decoded.

3. RESULTS
To evaluate the practical aspect of the proposed algorithm, we

have performed simulations on three video sequences Clarie,

Carphone, and Football. These video sequences have been taken

from [6]. These video sequences are standard sequences and have

been used in literature for video processing research. These video

sequences have been encoded and decoded as given in [7].

Figures 3(a)-5(a) show the partially predicted frames which we

obtained during our reverse play experiments [8]. In these

figures, the black region corresponds to predicted pixels and

white region signifies unpredicted pixels. These small portions of

unpredicted pixels are to be found from MPEG stream. Figures

3(b)-5(b) show the completely constructed frames in which

unpredicted pixels have been obtained using our algorithm

4. CONCLUSION AND FUTURE SCOPE
In order to find a small portion of a frame, we need to decode the

desired frame completely and for that we need to decode the

previous frame completely up to the last I-frame. To extract even

very small portion of frame, we need to decode the entire frame.

In this paper we have discussed an algorithm to find the desired

portion of a frame from the MPEG video stream without

decoding the entire frame. Extraction of the partial frame data is

required in many applications such as reverse play, transmission

of data using error prone channels. Currently this algorithm

decodes a macroblock in spatial domain. Its performance can be

further improved by doing this in compressed domain.

5. REFERENCES
[1] Mohammed Ghanbari, Video Coding – An introduction to

standard codecs, IEE, 1999

[2] Fred Halsall, “Multimedia Communications: Applications,
Networks, Protocols and Standards”, Addison-Wesley,
2000.

[3] D.L. Gall, “MPEG: A Video Compression Standard for
Multimedia Applications”, Communications of the ACM,
Vol.34 No. 4, pp. 46-58, April 1991.

[4] “MPEG-1 Video Codec”,
http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/
mpeg1/index.html

[5] “Motion Estimation in MPEG I”,
http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/
motion/me3-1.html

[6] http://media.xiph.org/video/derf/

[7] Steve Hoelzer, “MPEG-2 overview and MATLAB codec
project”, April 18, 2005,
http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples
/Compression/mpegproj/

[8] Sandeep Kumar, Satish Chand, "A New Method for Reverse
Prediction of MPEG frames in Video Streaming," IEEE
International Advance Computing Conference, 2009. pp.
1119-1123, 6-7 March 2009

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 2

88

Figure 3. P124 frame of the football sequence encoded at the

quality scale=31

Figure 4. P189 frame of the Carphone sequence encoded at

quality scale=16

Figure 5. P244 frame of the Claire sequence encoded at

quality scale=16

a) Reverse predicted frame

b) Completely constructed frame

a) Reverse predicted frame

b) Completely constructed frame

a) Reverse predicted frame

b) Completely constructed frame

