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ABSTRACT 

This paper evaluates the performance of OGWE (Optimized 

Generalized Weighted Estimator) ICA (Independent Component 

Analysis) algorithm in a biomedical blind source separation 

problem. Independent signals representing Fetal ECG (FECG) 

and Maternal ECG (MECG) are generated and then mixed 

linearly in the presence of white or pink noise to simulate a 

recording of electrocardiogram. While ICA has been used to 

extract FECG, very little literature is available on its 

performance in clinical environment. So there is a need to 

evaluate performance of these algorithms in Biomedical. To 

quantify the performance of OGWE algorithm, two scenarios, 

i.e., (a) different amplitude ratios of simulated maternal and fetal 

ECG signals, (b) different values of additive white Gaussian 

noise or pink noise, were investigated. Higher order and second 

order performances were measured by performance index and 

signal-to-error ratio respectively. The selected ICA algorithm 

separates the white and pink noises equally well. This paper 

reports on the performance of the ICA algorithm.   

Categories and Subject Descriptors 

I.1.2 [Algorithms]: Analysis of Algorithm, I.5.4 Applications- 

Signal Processing  

General Terms 

Algorithm, Performance, Experimentation. 

Keywords 

BSS, ICA, Biomedical Signal Processing.  

1. INTRODUCTION 
The Electro Cardiogram (ECG) of an adult describes the 

electrical activity of the heart. This ECG is an important tool for 

the physician for identifying abnormalities in the heart activity. 

Similarly, it is important to obtain the Fetal Electro Cardiogram 

(FECG) of an unborn baby to trace possible problems in its heart 

activity. Most methods for acquiring the FECG are invasive 

which require placing an electrode on the fetal scalp. This 

procedure is available during delivery time only. It is important 

to try and find non-invasive techniques for earlier diagnosis. 

Obtaining FECG from recordings of electrodes on the mother’s 

skin is fundamentally equivalent to the adult ECG with 

additional difficulties. The FECG is generated from a very small 

heart so the signal amplitude is low. Noise from 

electromyograpic activity affects the signal due to its low voltage.  

 

Another interesting source is the maternal ECG (MECG), which 

can be 5-1000 times higher in its intensity. There is no place to 

put an electrode on the mother’s skin and to receive just the fetal 

signal without the signal being addled by the mother’s signal. In 

all cases where the FECG is observed, the MECG is higher in 

magnitude. Hence eliminating the MECG from the recorded 

signal is very important [1] for good fetal reading. 

Technically, the above problem can be thought of as a set of 

desired and undesired signals linearly mixed to produce another 

set of body surface signals. These signals are assumed to be non-

Gaussian (except the random noise signal) and independent. ICA 

decomposes the mixed signals into as many statistically 

independent components as possible. ICA has been used to 

extract FECG [2][3][4][5]. However, very little literature is 

available on its performance in clinical environment. This needs 

an evaluation of its performance in clinical environment. Several 

ICA algorithms have been proposed. In this paper, we evaluate 

the performance of OGWE algorithm [6] in a biomedical blind 

source separation problem. The signals, which are best suited for 

ICA, are designed to be biologically motivated for independent 

FECG and MECG. They are linearly mixed. The ICA separation 

produces independent FECG and MECG estimates. 

2. METHODOLOGY 
We consider the classical ICA model with instantaneous Mixing 

x = As + n                                  (1) 

where the sources s = [s1, s2… sn]
T are mutually independent 

random variables and Anxn is an unknown invertible mixing 

matrix and noise n = [n1, n2, ..., nn]
T . The goal is to find only 

from observations, x, a matrix W such that the output  

y = Wx                                            (2) 

is an estimate of the possible scaled and permutated source 

vector s.  

Preprocessing for ICA: 

Some preprocessing is useful before attempting to estimate W.  

i.  The observed signals should be centered by 

subtracting their mean value E{x} 

x = x − E{x}                         (3) 

ii.  Then they are whitened, which means they are linearly 

transformed so that the components are uncorrelated 

and has unit variance. 

iii. Whitening can be performed via eigenvalue 

decomposition of the covariance matrix, VΛV
T, V is 

the matrix of orthogonal eigenvectors and Λ is a 

diagonal matrix with the corresponding eigenvalues. 
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The whitening is done by multiplication with the 

transformation matrix P 

P = VΛ
1/2

V
T   (4) 

Z = Px   (5) 

This is closely related to principal component analysis. The 

covariance of the whitened data E{ZZT } equals the identity 

matrix. For simplicity, let x be the centered mixed vector x^, i.e. 

x = x^ 

Jutten and Herault provided one of the first significant 

approaches to the problem of blind separation of instantaneous 

linear mixtures [7]. Since then, many different approaches have 

been attempted by numerous researches using neural networks, 

artificial learning, higher order statistics, minimization of mutual 

information, beam forming and adaptive noise cancellation, each 

claiming various degrees of success. Several algorithms exist for 

blind source separation. We evaluate the performance of OGWE 

algorithm [6] in a blind source separation problem. This section 

presents a brief description of the respective approaches of the 

algorithm. 

 

2.1 OGWE Algorithm 
In OGWE (Optimized Generalized Weighted Estimator) [6], the 

marginal entropy contrast function (ΦME) is written in terms of 

second-order and fourth-order cumulants, and then it is 

minimized for all possible distributions for the sources s, it 

follows that 

           (6) 

where, for zero-mean signals,  are the 

marginal cumulants or autocumulants. In the two dimensional 

case, the pair of normalized sources sl = [sp(t)sq(t)]
T in polar 

coordinates may be written as (r(t), α(t)) so that the outputs yield 

      
where Zt = [Zp(t)Zq(t)]

T are the whitened mixtures, and matrix V 

performs a rotation of  so that ρ(t) =  +  is the angle of 

vector y. Note that ideally, at separation  + = α(t). 

1. The whitening matrix P is computed to whiten the vector x     

and the vector y = Px is formed.  

2. One Sweep. For all g = m(m − 1)/2 pairs, i.e., for 1 ≤ p ≤ q ≤ 

m, the following steps have to be done:  

a. The Given angle pq
 
= GWE is computed [6]. 

b. If pq > min, the pair (Zp,Zq) is rotated by pq
  

according to Eq.(6) and also the rotation matrix R is 

updated. The value of min is selected in such a way 

that rotations by a smaller angle are not statistically 

significant. Typically min = 10-2/√N where N is the 

number of samples. 

3. End if the number of iterations nit satisfies nit  ̧ 1+√n or no 

angle pq
 
has been updated, stop. Otherwise go to step (2) for 

another sweep. 

4. Then the demixing matrix W = RP and the independent 

sources are estimated as ŝ = Wx 

 

3.    EXPERIMENT SETUP 
As the different noise in the biomedical system grows, it 

becomes necessary to improve the efficiency of common 

biomedical resources. Independent Component Analysis (ICA) 

use as an advanced tool for blind suppression of interfering 

FECG and MECG signals contaminated by noise. The role of 

ICA is to provide a mitigated FECG signal to the conventional 

analysis. As the different noise in the biomedical system grows, 

also the ratio of FECG and MECG varies in amplitude; it 

becomes necessary to measure the performance of ICA algorithm. 

 

3.1 Signal generation 
The observed signals (Fig 1) at the electrodes were simulated by 

taking two different ECG signals from the MIT-BIH 

(Massachusetts Institute of Technology-Beth Israel Hospital 

Arrhythmia Laboratory) database [8]. These signals are sampled 

at 360 HZ. The FECG is generated from a very small heart so the 

signal amplitude is low. Noise from electromyograpic activity 

affects the signal due to its low voltage. Another interesting 

source is the maternal ECG (MECG), which can be 5-1000 times 

higher in its intensity. To simulate real conditions, the second 

signal (assumed as FECG) was 10 or 1000 times less in 

amplitude and with double the number of cycles/second 

compared to the first (assumed as MECG). We remove the mean 

of the original ECG signals and normalize the two ECG signals 

to unity. As a result, the desired maternal to fetal amplitude ratio 

can be obtained by multiplying the signal with that constant. 

 

 
Figure 1 Generation of MECG and FECG signals 

 

3.2 Linear mixing and Noise 
We set the mixing coefficient between the MECG and FECG 

signals to 

 
The additive white Gaussian noise was generated by MATLAB. 

In the body many electrical signals are time correlated and would 

be modeled better by colored noise instead of white noise [9]. 

The pink noise was created with a Fourier domain generator with 

the power spectrum given by  

 
 These noise records (consider as n in Equation 1) were added to 

the mixed signals with a specified signal to noise ratio (SNR) 

(which is measured with respect to the mixed signals in the given 

channel). In this way, the SNR in both channels are the same, but 

the amplitudes are quite different. The results in our two 

channels are the simulated FECG and simulated MECG.  

 

3.3 Performance evaluation 
To quantify the higher order performance of the demixing we use 

the performance index, PI. This is a measure on the global 
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system matrix P=WA suitable for the degeneracy conditions W= 

A-1 and is calculated as  

 
where pij is the (i, j)th element of the global system matrix P = 

WA and maxjpij represents the maximum value among the 

elements in the ith row vector of P, maxjpji does the maximum 

value among the elements in the ith column vector of P. When 

perfect signal separation is carried out, the performance index PI 

is zero. Since we are looking at the estimation of the FECG and 

MECG signals, we also consider the SER, which is a second 

order measure. The SER was obtained by using the following 

relation  

 
where s(t) is the desired signal and e(t) = ŝ(t) − s(t) is the error. 

Here ŝ(t) is the estimated source signal and ŝ(t) and s(t) should 

be at the same energy level and phase while calculating e(t). 

 

4. EXPERIMENTAL RESULTS AND 

DISCUSSION 
The output SNR results for MECG from the OGWE algorithm 

separation of our simulation are shown for Gaussian noise in Fig 

2, 3, and for pink noise in Fig 4, 5. As MECG to FECG ratio 

varies from 10 to 100 the output SNR of MECG increases. To 

make more robust, when the ratio varies from 100 to 1000, 

results show that there is no changes in output SNR for 0 to 20 

dB input SNR, but gives different output SNR for 20 to 30 dB 

input SNR.  

The output SNR results for FECG from the OGWE 

algorithm separation of our simulation shown for Gaussian noise 

in Fig 6, 7, and for pink noise in Fig 8, 9. As MECG to FECG 

ratio varies from 10 to 100 the output SNR of FECG decreases. 

To make more robust, ratio varies from 100 to 1000, results show 

that there is no changes in output SNR for 0 to 5 dB input SNR, 

but gives different output SNR decrease for 5 to 30 dB input 

SNR. 

OGWE algorithm separates the white and pink noise 

equally well. By processing the data we clearly achieve a better 

second order estimate of the FECG independent of the noise 

color. In fact, the SNR of the extracted FECG is equivalent to the 

SNR specified for the added noise up to 30 dB level. In this 

duration, OGWE algorithm performs well. The OGWE ICA 

algorithm is able to extract FECG considerably if the amount of 

input SNR is of the order of 10 dB or less. Even if the SNR 

approach 0 dB the OGWE algorithm is still able to extract the R 

wave. 

The Performance Index results from the OGWE 

algorithm separation of our simulation are shown in Fig 10, 11, 

and for pink noise in Fig 12, 13. The output performance index 

results show a peak at in between 0 to 8 dB input SNR, but as 

the MECG to FECG ratio increase from 10 to 100 this peak shift 

to other input SNRs. Finally peak decrease for more MECG to 

FECG ratio and performance index becomes lower.  

The performance index of the performance matrix 

P=WA indicates the same decay in higher order separation. As 

the noise contamination becomes dominant, the demixing 

performance is poorer between 0 to 5 dB. Performance index 

zero indicates a good separation of the two signals. OGWE 

algorithm has good performance index as the MECG to FECG 

ratio increase. 

 

5. CONCLUSIONS 
In this paper, we have calculated the performance of the OGWE 

algorithm in a simple electro physiologically motivated Blind 

Source Separation (BSS) problem to extract the FECG. Using 

simulated independent signals from the skin of a pregnant 

woman (FECG and MECG); we observe that the BSS 

performance are unaffected by noise as long as the added noise 

does not exceed the corruption due to mixing. By processing the 

data, we clearly achieve a better estimate of the FECG 

independent of the noise color. We also observe that MECG to 

FECG sources amplitude ratio increase affects the BSS 

performances of the OGWE algorithm. For amplitude of 

interference sources increase, OGWE algorithm is able to extract 

the sources but with different performance index. Even for high 

value of performance index, quality of separated signals is quite 

satisfactory. 

 
Figure 2 show extracted output SNR of MECG for 10 to 100 

amplitude ratios of simulated MECG and FECG signals in 

presence of Gaussian noise. 

 

 
Figure 3 show extracted output SNR of MECG for 100 to 

1000 amplitude ratios of simulated MECG and FECG signals 

in presence of Gaussian noise. 
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Figure 4 show extracted output SNR of MECG for 10 to 100 

amplitude ratios of simulated MECG and FECG signals in 

presence of pink noise. 

 
Figure 5 show extracted output SNR of MECG for 100 to 

1000 amplitude ratios of simulated MECG and FECG signals 

in presence of pink noise. 

 
Figure 6 show extracted output SNR of FECG for 10 to 100 

amplitude ratios of simulated MECG and FECG signals in 

presence of Gaussian noise. 

. 

 

Figure 7 show extracted output SNR of FECG for 100to 1000 

amplitude ratios of simulated MECG and FECG signals in 

presence of Gaussian noise. 

 
Figure 8 show extracted output SNR of FECG for 10 to 100 

amplitude ratios of simulated MECG and FECG signals in 

presence of pink noise. 

 
Figure 9 show extracted output SNR of FECG for 10 to 100 

amplitude ratios of simulated MECG and FECG signals in 

presence of pink noise. 
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Figure 10 show output Performance Index for 10 to 100 

amplitude ratios of simulated MECG and FECG signals in 

presence of Gaussian noise. 

.  

 

Figure 11 show output Performance Index for 100 to 1000 

amplitude ratios of simulated MECG and FECG signals in 

presence of Gaussian noise.  

 

Figure 12 show output Performance Index for 10 to 100 

amplitude ratios of simulated MECG and FECG signals in 

presence of pink noise.  

 

Figure 13 show output Performance Index for 100 to 1000 

amplitude ratios of simulated MECG and FECG signals in 

presence of pink noise.  

5. REFERENCES 
[1] Amit Kam and Arnon Cohen, “Maternal ECG ellimination 

and Foetal ECG detection-Comparision of several 

Algorithms,” Procee. of the 20th annual international 

conference of the IEEE Engineeing in Medicine and Biology 

Society., vol. 20, No.1, pp-174-177, 1998.  

[2] V.Zarzoso and A.Nandi, “Noninvasive fetal ECG extraction: 

Blind separation versus adaptive noise cancellation,” IEEE 

trans, Biomed Engg., vol 48, No1, pp. 12-18, 2001. 

Seungjin choi, A.Chichocki, s.Amari, “flexible independent 

component analysis”, journal of VLSI Signal Processing, 

kluwer academic publishers., boston, 2000.    

[3] S.D.Parmar and J.S.Sahambi, “A Comparative Survey on 

removal of MECG artifacts from FECG using ICA 

algorithms,” Proceeding of International Conference on 

Intelligent Sensing and Imformation Processing-2004, 

Chennai-India, ICISIP-2004, pp-88-91. 

[4]  Seungjin choi, A.Chichocki, S.Amari, “Flexible independent 

component analysis”, journal of VLSI Signal Processing, 

kluwer academic publishers. boston, 2000. 

[5] S.D.Parmar and Bhuvan Unhelkar, “Separation Performance 

of ICA Algorithms in FECG and MECG signals contaminated 

by Noise”, International Conference on Computing, 

Communication and Networking (ICCCN-2008), 18th -20nd   

December 2008, Karur-TN, India. 

[6] Juan J. Murillo-Fuentes and Rafael Boloix-Tortosa, Francisco 

J. Gonzt’alez-Serrano, “Initialized Jacobi Optimization in 

Independent Component Analysis”. 4th International 

Symposium on Independent Component Analysis and Blind 

Signal Separation (ICA2003), Nara, Japan, pp 1053-1058, 

April 2003. 

[7]  C.Jutten and J.Herault,“Blind separation of sources part I: 

An adaptive algorithm based on neuromimatic architecture,” 

Signal Processing., vol.24, pp. 1-10, July 1991. 

[8]  MIT-BIH Database Distribution. [Online]. “Available: 

http://ecg.mit.edu”. 

[9] M.Potter, N.Gadhok, and W.Kinsner, “Separation 

performance of ICA on simulated EEG and ECG signals 

contaminated by noise,” Proc. of the 2002 IEEE canadian 

conf. on Electrical and computing engg., pp.1099-1104, 2002. 

http://ecg.mit.edu/

