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ABSTRACT 

The use of support vector machine (SVM) in all aspects of 

process engineering activities, such as modeling, design, 

optimization and control has considerably increased in recent 

years. Batch reactors mostly used in chemical and pharmaceutical 

industries. In this paper, a design procedure of support vector 

machine (SVM) based model identification and control strategy 

for a batch reactor process with input-output form is proposed. In 

order to implement the generic model control structure, straight 

model representation and identification methods are addressed in 

detail. The control of a simulated batch reactor illustrates the 

proposed design procedure and the properties of the SVM based 

model identification, for nonlinear systems. This non linear 

control is a generic model control (GMC) is found to be well 

suited for a system when there is no significant rate of change of 

the set point. 
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1. INTRODUCTION 
Batch reactor is an essential unit operation in almost all batch- 

processing industries.  The control of a batch reactor is a simple 

case consists of charging the reactor, controlling the reactor 

temperature to meet the processing criterion, shutting down and 

emptying the reactor.  Operating batch reactors efficiently and 

economically is very important as far as overall profitability is 

concerned. 

The dynamic optimization (optimal control) of batch reactors has 

received major attention in the past.  The focus of this paper is to 

obtain optimal operating policies of batch reactors in terms of 

reactor temperature and to track these temperatures by designing 

controllers based on non linear model. Generally, Mathematical 

descriptions of these complex systems are invariably difficult and 

hence numerical or empirical representations are usually sought 

for use in advanced model based control strategies[1].  

Different classes of functions can be used to define empirical 

equations. Most of these approaches are based on the Empirical 

Risk Minimization principle (ERM), where the best model is 

found by optimizing its performance on a training data set. These 

model classes include multilayer perceptron and radial basis 

function neural networks, multivariate adaptive regression splines, 

projection pursuit regression, etc. The ERM principle is generally 

employed in the classical methods, such as least square methods, 

maximum likelihood methods and traditional Artificial Neural 

Network (ANN). A relatively new learning paradigm, SVM 

learning, is based on minimizing the probability of incorrectly 

predicting yet to be seen future outputs for a fixed, but unknown 

probability distribution of the data-the Structural Risk 

Minimization (SRM) principle. This approach has proved 

successful instance where other model classes have failed [2]. 

In SVM the ERM is replaced by the SRM principle which seeks 

to minimize an upper bound of the generalization error rather than 

to minimize the training error. Based on this principle, SVM 

achieves an optimum network structure by striking a right balance 

between the quality of the approximation of the given data and the 

complexity of the approximating functions. Therefore, the over 

fitting phenomenon in General ANN can be avoided and excellent 

generalization performance can be obtained. Furthermore, in 

SVM support vectors corresponding to the hidden units of 

General ANN are automatically determined after the SVM 

training. This implies that the difficult task of determining the 

network structure in general ANN can be avoided [3].  

This paper is organized as follows. In section 2, model of the 

batch reactor is briefly presented. In section 3, SVM for nonlinear 

system identification of the reactor with SVM and detailed 

process of training and testing the SVM model are given. In 

section 4, design of GMC generic model control for the reactor is 

explained.  In section 5, simulation result, conclusions and 

suggestions for future work are summarized.  

2. BATCH REACTOR 
A complex reaction scheme representative of many 

industrial reactions and used by Cott and Macchietto (1989) is 

used here.  Reactions I and II has given in the following equation:  
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Where A, B are the raw materials, C is the desired 

product and D is the waste product.  The model equations for the 

batch reactor can be written as: 
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wherein the initial values of the above mentioned process 

parameters of  [MA, MB, MC, MD, Tj, Tr]=[12.0, 12.0, 0.0, 0.0, 

20.0,20.0] at t=0 respectively. The reactor temperature i

the control variable and is bounded between 20 and 100°C and the 

jacket temperature is the manipulated variable and it is bounded 

between 20 to 120°C.The batch time is fixed to 120 minutes.

the nominal parameter and constant values used in t

equations are given in Table 1; more details about this model are 

given by Cott and Macchietto (1989). 

 

3. SUPPORT VECTOR MACHINE
SVM is one of the methods whose motivation lies in maximizing 

the ability to generalize well from a small number of training 

samples by mapping the original space into a high dimensional 

inner product space called feature space via a kernel. SVMs 

solutions are characteristized by convex optimization problems 

[7]. So it can be applied in settling pattern recognition problems 

with small samples, nonlinearity and higher dimensions. SVM can 

be easily introduced into learning problems such as function 

estimation [6]. 

On the basis of classical SVM, Suykens and Vandewalle 

presented the LS-SVM approach, in which the following function 

is used to approximate the unknown function: 
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Table 1: Nominal values of the parameters

             

where ,  RxRy :)(,φ∈
that maps the input space into a higher dimension feature space, w 

Constant  Parameters 

pAC  
Specific heat capacity of 

component A 

pBC  
Specific heat capacity of 

component B 

pCC  
Specific heat capacity of 

component C 

pDC  
Specific heat capacity of 

component D 

1H∆  
Heat of reaction of reaction 1

2H∆  
Heat of reaction of reaction 2

pC  
Mass heat capacity of reactant

pjC  
Molar heat capacity of 

component j 

U Heat transfer coefficient 

jρ  
Density 

1

1k  
Pre-exponential rate constant for 

reaction 1 

2

1k  
Pre-exponential rate constant for 

reaction 1 

1

2k  
Pre-exponential rate constant for   

reaction 2 

2

2k  
Pre-exponential rate constant for  

reaction 2 

jV  
Jacket volume 

A Heat transfer area 

Mr Number of moles of component

jτ  
Jacket time constant 
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Table 1: Nominal values of the parameters 

              

nR is a nonlinear function 

that maps the input space into a higher dimension feature space, w 

Values 

18.0 kcal/kmol°C 

40.0 kcal/kmol°C 

52.0 kcal/kmol°C 

80.0 kcal/kmol°C 

Heat of reaction of reaction 1 -10000.0 kcal/kmol 

Heat of reaction of reaction 2 -6000.0 kcal/kmol 

Mass heat capacity of reactant 0.45 kcal/kg°C 

0.45 kcal/kg°C 

9.76 kcal/min 
2m °C 

1000.0 kg/
3m  

exponential rate constant for 20.9057 

exponential rate constant for 10000 

exponential rate constant for   38.9057 

exponential rate constant for  17000 

0.6921 

6.24 

of moles of component 1560 kg 

3.0 min 



is the weight vector and b is the bias term. Then the frame work of 

empirical risk minimization, the cost function is formulated as
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where ei is the random errors and γ is a regularization 

parameter in determining the trade-off between minimizing the 

training errors and minimizing the model complexity. To solve 

this optimization problem, following Lagrange function is 

constructed        
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where α  ∈  R   is the Lagrange multiplier. The 

conditions for optimality solution can be obtained by partially 

differentiating with respect to w, b, e and αi 
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This finally result into the following SVM model for regression 

function (SVR) 
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where αk and b are the solution to the linear system, 

the kernel function satisfying the Mercer's condition represents the 

high dimensional feature space that is nonlinearly mapped from 

the input space x. The SVR approximates the nonlinear

using equation (20). In this paper, the polynomial is used as the 

kernel function. 

The traditional identification methods cannot build accurate 

mathematical models. Being different from traditional neural 

network, SVM is based on structural risk minimization principle, 

while the later on empirical risk minimization principle. In 

addition, because SVM algorithm is a convex optimization 

problem, local optimal solution must be global optimal solution. 

SVM utilizes optimization dual theory to make it easy to compute 

the estimation of model parameters in the high 

feature space. The complexity of computation has little relation 

with the dimension or problem. SVM considers small sample 

enough when training, so it can solve ‘over fitting’ better. 

According to finite samples, SVM makes a good compromise 

between the complexity of model and learning capabilit

best generalization[4]. 

 In this modeling procedure, the relationship between measurable 

and kinetic variables of batch process can be emphasized. In order 
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feature space that is nonlinearly mapped from 

the input space x. The SVR approximates the nonlinear function 

In this paper, the polynomial is used as the 

The traditional identification methods cannot build accurate 

hematical models. Being different from traditional neural 

network, SVM is based on structural risk minimization principle, 

while the later on empirical risk minimization principle. In 

addition, because SVM algorithm is a convex optimization 

optimal solution must be global optimal solution. 

SVM utilizes optimization dual theory to make it easy to compute 

the estimation of model parameters in the high – dimensional 

feature space. The complexity of computation has little relation 

ion or problem. SVM considers small sample 

enough when training, so it can solve ‘over fitting’ better. 

According to finite samples, SVM makes a good compromise 

between the complexity of model and learning capability to obtain 

In this modeling procedure, the relationship between measurable 

and kinetic variables of batch process can be emphasized. In order 

to establish the expected nonlinear model of process, we choose 

reactor temperature is control and input variable. The outpu

desired product. 

3.1 Identification structure of SVM 
In general, a wide class of nonlinear systems can be described by 

nonlinear auto regressive model with exogenous inputs (NARX)
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Where k = 1, 2, …, N. 

The training sample set is first constructed 

sample data can be mapped as the linear outputs in high 

dimensional feature space by using SVM.
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4. GENERIC MODEL CONTROL (
Generic model control (GMC), a model

developed by Lee and Suvillivan (1988) is one of

advanced process control algorithms developed in the recent past.  

The GMC uses non-linear models of a process to determine the 

control action.  The desired response can be obtained by 

incorporating two tuning parameters.  There are several 

advantages that make GMC a good framework for developing 

reactor controllers (Cott and Macchietto, 1989):

1. The process model directly appears in the co

algorithm. 

2. The process model does not need to be linearised 

before use, allowing for the inherent nonlinearity 

of the exothermic batch reactor operation to be 

taken account. 

3. By design, GMC provides feedback control of the 

rate of change of the 

suggests that the rate of temperature change, which 

is very important in heat

used directly as a control variable.

4. The relationship between feed forward and 

feedback control is explicitly stated in GMC 

algorithm. 

5. The GMC algorithm is relatively easy to 

implement. 

It can be written as  

kxxk
dt

dx
sp )(1 +−=

Where x is the current value and xsp 

control variable.  The first expression in the algorithm is to bring 

back to steady state due to change in 

expression is introduced to make the zero offset.

For temperature control of the batch reactor, a process model 

relating to the reactor temperature, Tr to the manipulated variable 

for the jacket temperature Tj is required.  Assuming that the 

amount of heat retained in the walls of the reactor is small in 
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to establish the expected nonlinear model of process, we choose 

reactor temperature is control and input variable. The output is the 

Identification structure of SVM  
In general, a wide class of nonlinear systems can be described by 

nonlinear auto regressive model with exogenous inputs (NARX) 
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e set is first constructed and then the nonlinear 

sample data can be mapped as the linear outputs in high 

dimensional feature space by using SVM. 
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CONTROL (GMC) 
Generic model control (GMC), a model-based control strategy 

(1988) is one of the several 

advanced process control algorithms developed in the recent past.  

linear models of a process to determine the 

action.  The desired response can be obtained by 

incorporating two tuning parameters.  There are several 

advantages that make GMC a good framework for developing 

reactor controllers (Cott and Macchietto, 1989): 

The process model directly appears in the control 

The process model does not need to be linearised 

before use, allowing for the inherent nonlinearity 

of the exothermic batch reactor operation to be 

By design, GMC provides feedback control of the 

rate of change of the control variable.  This 

suggests that the rate of temperature change, which 

is very important in heat-up operations, can be 

used directly as a control variable. 

The relationship between feed forward and 

feedback control is explicitly stated in GMC 

The GMC algorithm is relatively easy to 

dtxxk sp )(2 −∫
 (23)  

 is the desired value of the 

control variable.  The first expression in the algorithm is to bring 

ate due to change in dx/dt.  The second 

expression is introduced to make the zero offset. 

For temperature control of the batch reactor, a process model 

the reactor temperature, Tr to the manipulated variable 

required.  Assuming that the 

amount of heat retained in the walls of the reactor is small in 
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comparison to the heat transferred in the rest of the system, an 

energy balance around the reactor contents gives the model in 

equation 8. 

Replacing x with Tr in the general algorithm the control 

formulation GMC is 

[ ]
UA

Q
dtTTkTTk
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       (24) 

The success of the GMC controller is largely dependent on the 

ability to measure, estimate or predict the heat release, Qr at any 

given time [8]. 

5. RESULTS 
Support vector machine is used to identify the model of the batch 

reactor by taking the data’s from the first principle model based 

simulated equations described in the section 2.   

With this model the GMC controller is included with Tj as the 

manipulating variable and Tr is the control variables by adjusting 

the tuning parameter k1,k2 to get the required desired output Mc.  

In figure.3 the used values of tuning parameters are k1=0.2 and k2 

=1.00e-4.  These values are adjusted to get suitable output.  The 

responses are shown in figure 1,2 and 3. 

6. CONCLUSION 
SVM model is more attractive and it avoids using complicated 

differential equations to describe the process and the input – 

output characteristics can be achieved quickly by SVM 

estimation. The performance of our proposed SVM modeling 

approach has been compared with the reference model and 

simulation results show that the SVM approach yield very high 

prediction accuracy. 

With reference to the complex reaction scheme in the batch 

reactor the GMC controller is designed and performance are 

evaluated and compared with SVM model.  Tuning of the GMC is 

required.  In the future, based on this black box SVM model some 

optimal control scheme studies such as robust control, direct  

inverse model control and model predictive control can be 

developed. 
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Figure 1. Reactor temperature as control variable 
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Figure 2. Output Response (Desired product). 

 
Figure 3.GMC response for dynamic setpoint. 

 


