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ABSTRACT 
REDEFINE [3] is a polymorphic ASIC, in which arbitrary com- 

putational structures on hardware are defined at runtime. The 

REDEFINE execution fabric comprises Compute Elements (CEs) 

interconnected by a Honeycomb network, which also serves as the 

distributed Network-on-chip. Each computational structure is  

dynamically assigned to a subset of the CEs on the execution 

fabric by the REDEFINE support logic. A HLL specification of 

the application is compiled into Hyper Operations (HyperOps) by 

the REDEFINE compiler [3], where each HyperOp is a set of 

interacting operations. The compiler also determines partitions of 

the HyperOps (pHyperOps) that can be assigned to CEs to 

suitably meet the structural constraints of the execution fabric. In 

this paper we propose an algorithm to map HyperOps onto 

Computational Structures. A pHyperOp communication graph 

(PCG) captures the communication between the various 

pHyperOps. Through a sequence of transformations, the PCG is 

transformed into a Cayley tree. The Cayley tree is then overlayed 

on the Cayley graph to form a computational structure. The 

proposed mapping algorithm offers a solution that incurs a penalty 

18% on average over that of the optimal. 
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1. INTRODUCTION AND MOTIVATION 

On the architecture front, ever changing requirements of 

applications in terms of power, performance and throughput have 

demanded reconfigurable architectures in contrast to ASIC 

solutions due to prohibitive cost of ASICs. One such 

reconfigurable architecture REDEFINE by Alle et al. [3] serves a 

range of applications from a domain. This architecture comprises 

homogeneous set of Compute Elements (CEs) connected by a 

Network-on-chip (NoC). NoC is a novel approach to establish 

inter-chip communication based on data communication network. 

One of the influencing factors in energy  

 

 

 

 

consumption, latency and other performance parameters of NoC 

is topology. A special class of networks, called symmetric 

interconnection networks has been widely used for the purpose. 

The property of such network is that the network viewed from any 

vertex of the network looks the same. In such a network, 

congestion problems are minimized since the load is distributed 

uniformly through all vertices. Moreover, this symmetry allows 

for identical routers at every vertex with identical routing 

algorithms. It is also very useful in designing algorithms that 

exploit the structure of the network. In designing symmetric 

interconnection networks, the overall objective has been to 

construct large vertex symmetric graphs with small degree and 

diameter, high connectivity, and offering simple routing 

algorithms. Examples of this network are mesh, honeycomb, etc. 

Honeycomb has a lower degree per node than a 2-D Mesh [12]. 

This reduces the complexity and area of the network router. A 

detailed comparison of the honeycomb and mesh topologies is 

provided in [13].  The architecture REDEFINE in [3] uses 

Honeycomb topology as its underlying NoC. 

REDEFINE [3,12] hardware resources, comprise Compute 

Elements (CEs) with local storage and routers that communicate 

over network on chip (NoC) as in Fig. 1. Resources are controlled 

by the Support Logic. The Support Logic comprises HyperOp 

Launcher (HL), Load Store Unit (LSU), Inter HyperOp Data 

Forwarder (IHDF), Hardware Resource Manager (HRM) and 

Resource Binder (RB). In [4], functional description of these 

modules is briefly provided. In REDEFINE, diverse data paths 

are composed in terms of computational structures at runtime. A 

computational structure is a physical aggregation of hardware 

resources that can perform a coarse grained operation, referred as 

a Hyper Operation (HyperOp). Compiler for REDEFINE, compile 

applications to an intermediate   form and convert it into dataflow 

graphs [3]. These dataflow graphs   are directed graphs of nodes 

where each node represents a HyperOp. Each HyperOp comprises 

multiple fine grained operations. In order to exploit parallelism 

that exists within a HyperOp (also due to storage limitation in a 

CE), each HyperOp is divided into several partitions (pHyperOp) 

and each pHyperOp is assigned a CE. Compiler captures the 

computation to be performed by each pHyperOp in terms of 

compute metadata and the inter/intra HyperOp communication in 

terms of transport metadata. The exact CEs to which HyperOps 

need to be loaded, is determined by the Resource Binder (RB). 

RB does this by, first maintaining a list of status (busy/idle) of all 

CEs and then by finding the appropriate place for each HyperOp. 

RB loads HyperOps in accordance to configuration matrix 

provided by compiler. Configuration matrix holds the information 

of relative positioning of nodes. Generation of configuration 
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matrix requires the embedding of nodes of PCG as per the 

architectural constraint of NoC. This embedding is needed 

primarily due to mismatch between the communication patterns 

among different modules of an application and the topology of the 

NoC. The problem hence translates to embedding an application 

represented by a source graph, G (that captures the 

communication patterns among modules of the application) onto a 

destination graph, H that depicts the topology of the NoC. In set 

theoretic definition, this is equivalent to assigning to each vertex 

u of G, a single vertex f(u) in H and each edge (u,v) of G to a path 

between  f(u) and f(v) in H. This path may have intermediate 

vertices between f(u) and f(v). The general mapping problem is 

(unfortunately) an NP-hard combinatorial optimization problem, 

thus inherently intractable as shown by Johnson [2]. This 

necessitates the elaboration of efficient heuristics. Some of the 

earlier heuristics in Sarkar [9] and Gerasoulis [10] have used 

clustering of nodes in the source graph before physical mapping 

onto the target graph (in the case of source graph having more 

nodes than target graph). 

        

 
 

Figure 1: Architecture of REDEFINE 

 

In this paper we present an embedding of a general 

graph into a honeycomb, with a constraint of one-to-one mapping 

of source graph to the target graph. Our embedding technique, 

called GOMAP (Graph Oriented Mapping) takes PCG generated 

by the compiler of REDEFINE [3] as source graph (limited to 16 

nodes) and maps it onto the honeycomb network topology of the 

architecture. We also discuss the format of configuration matrix 

and processing of this matrix by RB. The remainder of this paper 

is as follows: Section 2 reviews the graph models for source 

graph, target (destination) graph as well as cost function for 

evaluating physical mapping. We have defined the case of 

optimality and cost overhead for mapping with respect to this cost 

function. We have also introduced the terminology of Cayley 

graph and Cayley tree in the section. Section 3 outlines the 

approach and steps of proposed algorithm. Section 4 gives an 

example on proposed method. In section 5 the experimental 

results of proposed algorithmic approach are presented in 

comparison with optimal in terms of communication overhead for 

honeycomb. In Section 6 we conclude our approach and give 

perspectives into future work. 

 

2. GRAPH MODEL 
Application of graph theory to finding mapping of a source 

graph to a destination graph is well known [8]. We will represent 

the source graph as Gs (Vs , Es ) and the target graph as Gd (Vd , 

Ed ). We use the term “Hop" to indicate the unit distance between 

any two directly connected nodes in the target graph. The 

“distance" between two compute nodes u and v is the number of 

hops in the shortest path connecting u and v. 

Definition 1: The source graph is an undirected graph, Gs (Vs 

,Es) where each vertex vi GVs  represents a node and the edge (vi, 

vj ), 

denoted as ei,j G Es , represents the communication between vi 

and vj. The weight of the edge ei,j denoted by commi,j , represents 

the total number of communication between the two nodes. 

An example of source graph is Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2: Communication graph of 6 Nodes 

 

 
Definition 2: The target graph is an undirected graph Gd (Vd 

,Ed ) where each vertex vi GVd  represents a node in topology  

and  the direct edge (vi , vj) denoted as ei,j  represents the hop 

distance of one, between the two nodes. 

Source graph is a weighted graph, so we use adjacency matrix 

representation for weights. For example, adjacency matrix 

representation for weights of Fig. 2 is in Table 1. 

 

Table 1: Adjacency-Matrix Representation for Weighted 
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Graph 

 

Node 0 1 2 3 4 5 

0 0 0 8 6 4 3 

1 0 0 0 0 0 1 

2 8 0 0 5 7 2 

3 6 0 5 0 5 0 

4 4 0 7 5 0 4 

5 3 1 2 0 4 0 
 

 

2.1 Mapping Formulation 
    The mapping of the source graph Gs (Vs , Es) onto the target 

graph G
d 
(V

d , Ed ) is defined by an injection function 

 
map fmap  : Vs  → V

d , s.t map (vs ) = v
d , ∀ vs  ∈ Vs , ∃!vd ∈ Vd , 

where | Vs  |≤| Vd  | 
 

2.2 Cost Function Formulation 

To evaluate our technique, we define a Cost Function (CF), similar  

to  the  kind  of  cost  function  used  in  Koziris  [5]  and Zhonghai [6]. 

CF(fmap ) = Σ dist(fmap (us ), fmap (vs )) × comm(us , vs) 

where: 

• dist(fmap (us), fmap (vs)) gives the shortest distance between  

the two nodes (ud ,vd) in target graph onto which nodes (us ,vs) in the 

source graph are mapped. 

• comm(us,vs) is the weight of the edge e(us,vs) in the source 

graph. 

Our objective is to find the mapping fmap which minimizes CF( 
fmap ). We also define case of optimality for fmap(optimal) as : 

 

CF(fmap(optimal)) = min { CF(fmap) ∀ fmap ∈ M APALL } 

 

where MAPALL is the set of all possible mapping exist for this 
particular target graph 

• Cost Overhead of mapping is defined in comparison to optimal 

as follows: 

  

CF(fmap) - CF(fmap(optimal) 

 
 

Cost Overhead = 
 

 X 100 % 

 
CF(fmap(optimal) 

  
2.3 Cayley Graph and Cayley Tree 
In section 1 we mentioned that our target graph is a honeycomb 

network, which is a symmetric interconnection network. From 

group theory perspective, honeycomb networks come under a 

special type of algebraic model, called Cayley graph (see Fig. 3). 

Krishnamurthy [1] discusses Cayley Graph and describe its 

properties in terms of degree, diameter, connectivity and routing 

algorithms. 

 

 

Figure 3: Honeycomb as Representation of Cayley Graph 

 

Cayley tree is a connected cycle-free graph where each non-leaf 

node is connected to Z neighbors, where Z is called the 

coordination number. This can be viewed as a tree-like structure 

emanating from a central node, with all the nodes arranged in 

concentric shells around the central node. The central node is 

termed as root or origin. Ancestor and descendant relationships in 

the Cayley tree are defined relative to the root. 

 
 

Figure 4: Cayley Tree (Bethe Lattice) of degree 3 

 

The number of nodes in the kth shell is given by, 

 

Nk = Z(Z-1)k-1 for k > 0 
 

A star type Cayley tree of degree 3, also known as Bethe lattice 

[7] of coordination number 3 is shown in Fig. 4. Levels in Cayley 

graph and Cayley tree are defined with respect to root as 

concentric circles as shown by dotted circles in Fig 3 and Fig 5.  

For example, in Fig 3 node 0 is at level 0, nodes 1, 2, 3 are at level 

1. The use of Cayley tree and Cayley graph is in section 3. 
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3. THE GRAPH ORIENTED MAPPING 

ALGORITHM (GOMAP) 
Primary objective of our heuristic is to minimize the cost 

function. In order to do this, our approach is to place the nodes of 

the source graph as close as possible in the target graph. In other 

words, we start with the node which has maximum communication 

with its neighbors and map it to a vertex in the target graph. We 

then place nodes having direct communication with this node 

close to it (on the target graph), in the descending order of 

communication. We iteratively repeat this procedure for all the 

nodes that are already mapped onto the target graph and stop the 

procedure when all the nodes of the source graph are mapped onto 

the target graph. There could be conflicts arising during this 

procedure, which will be resolved in accordance with the steps 

described in this section. 

As mentioned in section 2, honeycomb topology is a Cayley  

graph  of  degree  3  and  is  a  graph  having  the  following 

property:  i) root node (node 0 in Fig. 3) at center with three edges 

emanating from the it, ii) for all nodes, that are independent (only 

one immediate ancestor) children (node 1,2), two edges emanate 

from that node, iii) for all other nodes that are shared (two 

immediate ancestors) children (node 10,13), only one edge 

emanate from that node, iv) there exists cycles of length 6 nodes 

and every node of a cycle is part of two other different cycles of 

length 6. 

 

 

 

Figure 5: Cayley Tree Representation from a Cayley 

Graph Perspective 

 

Property (i) and (ii), gives the basis for construction of Cayley tree 

of degree 3.  From this we deduce that, in a Cayley graph, if we 

relax property (iii) and (iv) among nodes, then Cayley tree data 

structure can be applied for the purpose of mapping onto Cayley 

graph.  Refer Fig. 5 for an illustration of the same.  With this basis 

we go in detail of our mapping formulation. We will discuss 

relaxation of (iii) and (iv) later (3.2) in this section. Approach is to  

 

Figure 6: Conflict Scenario 

 

start from the source graph and construct an intermediate 

representation as close a Cayley tree as possible. We term this 

intermediate representation as MAP-Tree, which is constructed 

incrementally by best-fitting two highly communicating nodes (in 

the source graph) as close as possible in the target graph. Our 

mapping algorithm comprises three phases.  In the first phase, 

MAP-Tree is constructed. In the second phase, conflicts arise in 

MAP-Tree, due to relaxation of property (iii) and (iv) of Cayley 

graph, are resolved and in the final phase, mapping information is 

generated and physical placement of compute nodes is done. 

 

3.1 First Phase: MAP-Tree Construction 
Initially there is no mapping on NoC architecture tiles, and with 

nodes mapping, the possibility of better mapping would be 

decreased, nodes with higher commi,j  should be mapped earlier. 

At first the root with the highest priority for MAP-Tree is 

determined by the function highest-priority(vj). 

highest-priority(vj) = maxj(comm(vi,vj)), G vi G Vs 

 

Figure 7: Different Conflict Cases of MAP-Tree 

Then  the  function  finds  the  highest  commi,j , between  the 

source  (root  node  in  MAP-Tree)  and  its  edge  destination. 
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The node with higher ranking(vj) will be selected as the first 

choice. 

 

Ranking(vj) = maxj (comm(vi,vj)), G vi G MAP-Tree and G vj 

/G MAP-Tree 

We iteratively calculate the Ranking of each vj (G Vs )  and not in 

MAP-Tree with respect to the nodes vi G MAP-Tree and 

incrementally add the selected vj in MAP-Tree with the 

edge(vi,vj). If degree of vi  is 3, we select the descendants(k,m) of 

vi  and compute sum of remaining communications, which have 

not been considered for MAP-Tree, individually for both k and m. 

Select node with lower sum under constraint degree[selected 

node] < 3.  If constraint not fulfilled, repeat for other node.  If 

none applies iterate this until we find one descendant node (say p). 

Then we add vj with edge(p,vj). We repeat this for each node vj in 

source graph Gs (Vs ,Es ) that are not in MAP-Tree. Pseudo code 

for MAP-Tree construction is given in Algorithm 1. 

 
function MAPTreeConstruction(Gs (Vs , Es ),T(V,E) ) 
/*  Root  Selection */ 

root ← highest-prioirty(vs ∈ Vs ); 
/*  Include  Root  in  MAP-Tree */ 

V ← V ∪ {root}; 

Vs  ← Vs  - V; 

/*  Find  highest  communicative  between  root  and all  it 

descendants */ 

for Each descendant vs  of root in Gs (Vs , Es ) do 
Ranking(vs ) = comm(root,vs ) ∀ vs  ∈ Vs 

endfor 

/*  Select  the  highest  ranked  node. Add  it  to MAP-Tree 
*/  
vhrank  ← highest{ Ranking(vs ) }; 

Vs  ← Vs - vhrank ;  

V ← V U{ vhrank}; 

E ← edge(root, vhrank ); 

while  Vs  != φ do 
foreach descendant(vi ) of VMAP−Tree  ∈ V in Gs (Vs ,Es ) do 

Ranking(vi ) = comm(VMAP−Tree ,vi ) ∀ vi  ∈ Vs 

endfch 

/*  Select  the  highest  ranked  node. Add  it  to 

MAP-Tree  */ 
vhrank  ← highest{ Ranking(vi  }; 

Vs  ← Vs  - vhrank ; 

V ← V U {vhrank }; 

vsource ← (node in MAP-Tree that has highest communication 

with v
hrank ); 

if  degree[vsource ]<3 then 
E ← edge(vsource , vhrank); 
endif 

Select vsource as the descendant of vMAP−Tree with 

min{remaining highest communication}; 
if degree[vsource ] = 3 then  
vsource  ← other descendant of vMAP−Tree ; 
endif 

if degree[vsource ] = 3 then 

/*  do  selection  recursively */ 

Endif 

E ← edge(vsource , vhrank ); 
Endw 

Algorithm 1: MAP-Tree Construction 

 
 

3.2 Second Phase : MAP-Tree Conflict Check 
and Resolution 
 

After constructing MAP-Tree as aforesaid methodology, we get 
MAP-Tree similar to Fig. 5. This MAP-Tree doesn’t ensure an 
embedding for the target graph. The "conflict" could occur in this 
MAP-Tree as shown in Fig. 6. Conflict is the case, where two or 
more nodes of MAP-Tree contend for the same node of NoC. The 
sole basis of conflict is:  consideration of independent child node 
in 
MAP-Tree construction with contradiction to shared child node in 
target graph due to relaxation of constraint (iii) and (iv) as in 
section (3.1). Difference in these two gets to appear only after, if 
MAP-Tree has atleast 15 nodes (see Fig 6).  With lesser than 15, 
in practice we can always map it to target graph without any 
change in MAP-Tree. Fig. 7 shows three different conflict cases. 
All the conflicts only occur either at level 3 or greater (see Fig. 3), 
considering root as level 0 and always occurs when any 4 of the 
nodes at level 2 has two descendants each.  This is because before 
level 3 there are no shared nodes in target graph (see Fig. 3), and 
at level 3, two of these eight children (nodes 10-17 in Fig. 5) get 
conflicted for allocation on target graph (nodes 10-16 in Fig.  3), 
as we have only 7 nodes in target graph to get mapped as shown in 
Fig. 6. Pseudo code for conflict detection is given in Algorithm 2. 
 
Resolution : Conflict occurs because of mapping 8 nodes in 7 
positions available, so conflict resolution has been made by  
moving  "one"  among  conflicted  node  as  a  descendant to it’s 
parent descendants. Least communicative node has been chosen 
and associated as a descendant, of its parent (immediate ancestor) 
immediate descendant. The new MAP-Tree will be conflict free as 
shown in Fig. 8 and ready to place. Pseudo code for conflict 
resolution is given in Algorithm 3. 
 

 
Figure 8: Conflict Resolution of MAP-Tree 
 
 

3.3 Final Phase : Resource Matrix Generation and Physical 

Placement 

 
The MAP-Tree is placed on target graph, considering the order of 
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children from root to leaf nodes. After placing all nodes we need 
to send the mapping information as configuration matrix to the 
module RB of Support Logic for physical placement.  This step is 
needed, because as per the configuration matrix, RB finds the 
suitable position (CE) for each node to place it on NoC. Mapping  
 
function Conflict(T(V,E))  
/*  Returns  TRUE  if  there  is  conflict  in  MAP-Tree  
otherwise  FALSE  */ 

|V| = no. of nodes in MAP-Tree 

if  |V| < 15 then 
return FALSE; 

else 

switch degree[root] do  

     case 1 
Run BreadthFirstSearch on T(V,E); 

Node3 ← all nodes at level 3 with degree 3 ; 

if |Node3| < 4 then 
return FALSE; 

else 
return TRUE; 

endif 

break;  

case 2  

case 3 
Node2 ← all nodes at level 2 with degree 3 ; 

if |Node2| < 4 then  
return FALSE; 

else  

return TRUE; 

      endif 

break;  

endsw  

otherwise 

 ; 

       endsw  

endif 

 
 
Algorithm 2: Conflict in MAP-Tree 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 3: Conflict Resolution of MAP-Tree 
 

information can be passed to RB in different ways.  One way of 

representing this information is binary matrix structure (0/1-

Matrix). Binary matrices consist of 1 and 0 as element values. In   

 

architecture [3], 1’s are the relative position of nodes which need 

to get placed on NoC in exactly same fashion with respect to each 

other  and  0  as relative positions, which are don’t care 

(irrespective of CEs status) place in NoC. Don’t care position 

assumes that RB need not pay attention to the availability status of 

relative CEs on NoC while making decision for physical 

placements of nodes.  Resource Binder gives the start position 

(0,0) of configuration matrix in the NoC, after comparing 

free/busy CEs topology of NoC to binary matrix structure. Design 

criteria for RB includes variable sized matrix versus fix sized 

matrix. Variable sized matrix requires lesser memory to be stored, 

because it uses minimal number of elements to capture all 1’s 

information, whereas fixed size matrix (dimension k) always use 

the same number of elements (k × k) to do this, thus giving 

uniformity and ease of implementation of Resource Binder. It can 

be shown, that configuration matrices fit in a matrix of dimension 

6 × 4 to map a pHyperOp communication graph upto 16 nodes 

onto honeycomb NoC. 

 
4. EXAMPLE 
 

Let take Ge (Ve , Ee ) with communication cost as shown in Fig. 9. 
. 

 

 

Figure 9: Source Graph 

 

 

Table 2: Sorted table of Total Communication For Each 

Node 

 

Node Number Total 

communication 

Ranking 

 

A 3 8 

B 9 3 

C 4 7 

D 10 2 

E 8 4 

F 11 1 

G 5 6 

H 5 5 
 

 

4.1 MAP-Tree Construction 
initialize: Sets INCLUDED  = φ and NOTINCLUDED  = 

{A, B, C, D, E, F, G, H } 

step1 (Root Selection): Root is decided as per the Table 2, node 

function ConflictResolution(T(V,E)) 

/*  Move  the  "one"  among  conflicted  one  level 

Down */ 

level ← Level at which Conflict(T(V,E)) is TRUE; 

foreach edge(node[level],descendant[node[level]]) in E 

do 

Find edge w(node,descendant) with minimum 

communication; 

y ← descendant;  

E ← E - w; 

E ← edge(descendant[node],y); 
endfch 
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with highest ranking. F is selected as root. 

step2:  Now two sets INCLUDED = {F} and NOTINCLUDED = 

{A, B, C, D, E, G, H } 
 

1st iteration : 

step3:  Of the two sets, highest communicated edge is selected. 

adjacent{F} = {D,E,H} 

Select edge = max{F-D,F-E,F-H} = F − E 

Node = {E} 

INCLUDE = {F, E} and NOTINCLUDED = {A, B, C, D, G, H } 

step4: Adding edge F − E 

 

2nd iteration : 

step3: adjacent{F, E} = {D, H, A} 

Select edge = max{F − D, F − H, E − D, E − A} = F − D 

Node = {D} 

INCLUDED = {F, E, D} and NOTINCLUDED = {A, B, C, G, H 
} 

step4: Adding edge F – D 
 

 
Figure 10: MAP-Tree Construction from Source Graph 
 
3rd iteration : 

step3: adjacent{F, E, D} = {H, A, B, G} 
Select edge = max{F − H, E − A, D − B, D − G, D − H } = 

D − B 

Node = {B} 

INCLUDED  = {F, E, D, B} and NOTINCLUDED  = {A, C, G, H 
} 

step4: Adding edge D − B 
 

4th iteration : 

step3: adjacent{F, E, D, B} = {H, A, G, C } 

Select edge = max{F −H, E −A, D −G, D −H, B −C, B −A} 

= B − C 

Node = {C } 

INCLUDED  = {F, E, D, B, C } and NOTINCLUDED  = {A, G, 
H } 

step4: Adding edge B − C 
 

5th iteration : 

step3: adjacent{F, E, D, B, C } = {H, A, G} 

Select edge = max{F − H, E − A, D − G, D − H, B − A} = 

D − G 

Node = {G} 

INCLUDED  = {F, E, D, B, C, G} and NOTINCLUDED  = {A, H 
} 

step4: Adding edge D – G 
 

6th iteration : 

step3: adjacent{F, E, D, B, C, G} = {A, H } 

Select edge = max{F − H, E − A, D − H, B − A, G − H } = 
F − H 

Node = {H } 

INCLUDED  = {F, E, D, B, C, G, H } and NOTINCLUDED  = 
{A} 

step4: Adding edge F − H 
 

7th iteration : 

step3: adjacent{F, E, D, B, C, G, H } = {A} 

Select edge = max{E − A, B − A} = B − A 

Node = {A} 

INCLUDED  = {F, E, D, B, C, G, H, A} and NOTINCLUDED  = { } 

step4: Adding edge B − A 

 
Set NOTINCLUDED is empty, MAP-Tree is done. MAP-Tree 
construction is shown in Figure 10. MAP-Tree looks like 
Cayley tree as we see in Fig 11. Configuration Matrix for MAP-
Tree is in Table 3. 

 

 

Figure 11: MAP-Tree with Placing on HoneyComb 
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4.2 MAP-Tree Conflict Check and Resolution 
 

Numbers of nodes are less than 15, so MAP-Tree is conflict free. 

 

Table 3: Configuration Matrix 

N 0 1 2 3 4 5 

0 0 1 1 1 0 0 

1 0 1 1 1 1 0 

2 0 0 0 1 0 0 

3 0 0 0 0 0 0 
 

 
4.3 Resource Matrix generation and Physical 

Placement 
MAP-Tree  is  Placed  as  described  in  section  3  to  generate 

the mapping information.  Root is placed at any location. Childs 

are placed with respect to root. Subsequently, children are placed 

with left and right consideration. After mapping we get the 

configuration matrix as in TABLE 3. 

The physical placement of configuration matrix on execution 

fabric is shown in Fig 11. The overall cost for this mapping is 36, 

whereas optimal cost is 33. 

 

5. RESULTS 
   We run the GOMAP algorithm for graphs generated by 
REDEFINE [3] compiler for two applications FFT and IDCT. For 
FFT, the graph size ranged upto 7 nodes while for IDCT it 
reached upto 16 nodes. We also implemented Optimal mapping 
for graph size limit upto 16 for honeycomb network for the 
purpose of comparison. Graph size higher than this was not 
feasible as well as not practical for the purpose of comparison.   

As per our knowledge, there exists no mapping algorithm 

specifically meant for honeycomb, which keeps our comparison 

limited to the case of Optimality. PCG (pHyperOp communication 

graph) which we used as source graph is random while the target 

graph is honeycomb topology. For FFT we incurred cost overhead 

upto 2%, because all the graph (PCG) sizes were of small size 

(upto 7 nodes only). For IDCT we incurred on average 18% cost 

overhead. 

 
6. CONCLUSION 
In this paper we have reported a polynomial time heuristic  to  
map  a  source  graph  onto  a  target  graph  in  general. The 
source graph is an intermediate representation of the application 
transformed by a compiler for a runtime reconfigurable SoC. The 
target graph represents the Compute Elements and their 
interconnections provided by the NoC. The nodes of the source 
graph represent the computations and the edges denote the require 
communication between them. We show that the proposed scheme 
incurs on average a cost overhead of 18% in terms of performance 
when compared to an optimal mapping. 
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