
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

91

A Generic Graph-Oriented Mapping Strategy for a

Honeycomb Topology

ABSTRACT
REDEFINE [3] is a polymorphic ASIC, in which arbitrary com-

putational structures on hardware are defined at runtime. The

REDEFINE execution fabric comprises Compute Elements (CEs)

interconnected by a Honeycomb network, which also serves as the

distributed Network-on-chip. Each computational structure is

dynamically assigned to a subset of the CEs on the execution

fabric by the REDEFINE support logic. A HLL specification of

the application is compiled into Hyper Operations (HyperOps) by

the REDEFINE compiler [3], where each HyperOp is a set of

interacting operations. The compiler also determines partitions of

the HyperOps (pHyperOps) that can be assigned to CEs to

suitably meet the structural constraints of the execution fabric. In

this paper we propose an algorithm to map HyperOps onto

Computational Structures. A pHyperOp communication graph

(PCG) captures the communication between the various

pHyperOps. Through a sequence of transformations, the PCG is

transformed into a Cayley tree. The Cayley tree is then overlayed

on the Cayley graph to form a computational structure. The

proposed mapping algorithm offers a solution that incurs a penalty

18% on average over that of the optimal.

Categories and Subject Descriptors

G.2.2 [Mathematics of Computing]: DISCRETE

MATHEMATICS—Graph Theory

General Terms

Algorithm

Keywords

Honeycomb, mapping, REDEFINE, Cayley graph, Cayley tree

1. INTRODUCTION AND MOTIVATION

On the architecture front, ever changing requirements of

applications in terms of power, performance and throughput have

demanded reconfigurable architectures in contrast to ASIC

solutions due to prohibitive cost of ASICs. One such

reconfigurable architecture REDEFINE by Alle et al. [3] serves a

range of applications from a domain. This architecture comprises

homogeneous set of Compute Elements (CEs) connected by a

Network-on-chip (NoC). NoC is a novel approach to establish

inter-chip communication based on data communication network.

One of the influencing factors in energy

consumption, latency and other performance parameters of NoC

is topology. A special class of networks, called symmetric

interconnection networks has been widely used for the purpose.

The property of such network is that the network viewed from any

vertex of the network looks the same. In such a network,

congestion problems are minimized since the load is distributed

uniformly through all vertices. Moreover, this symmetry allows

for identical routers at every vertex with identical routing

algorithms. It is also very useful in designing algorithms that

exploit the structure of the network. In designing symmetric

interconnection networks, the overall objective has been to

construct large vertex symmetric graphs with small degree and

diameter, high connectivity, and offering simple routing

algorithms. Examples of this network are mesh, honeycomb, etc.

Honeycomb has a lower degree per node than a 2-D Mesh [12].

This reduces the complexity and area of the network router. A

detailed comparison of the honeycomb and mesh topologies is

provided in [13]. The architecture REDEFINE in [3] uses

Honeycomb topology as its underlying NoC.

REDEFINE [3,12] hardware resources, comprise Compute

Elements (CEs) with local storage and routers that communicate

over network on chip (NoC) as in Fig. 1. Resources are controlled

by the Support Logic. The Support Logic comprises HyperOp

Launcher (HL), Load Store Unit (LSU), Inter HyperOp Data

Forwarder (IHDF), Hardware Resource Manager (HRM) and

Resource Binder (RB). In [4], functional description of these

modules is briefly provided. In REDEFINE, diverse data paths

are composed in terms of computational structures at runtime. A

computational structure is a physical aggregation of hardware

resources that can perform a coarse grained operation, referred as

a Hyper Operation (HyperOp). Compiler for REDEFINE, compile

applications to an intermediate form and convert it into dataflow

graphs [3]. These dataflow graphs are directed graphs of nodes

where each node represents a HyperOp. Each HyperOp comprises

multiple fine grained operations. In order to exploit parallelism

that exists within a HyperOp (also due to storage limitation in a

CE), each HyperOp is divided into several partitions (pHyperOp)

and each pHyperOp is assigned a CE. Compiler captures the

computation to be performed by each pHyperOp in terms of

compute metadata and the inter/intra HyperOp communication in

terms of transport metadata. The exact CEs to which HyperOps

need to be loaded, is determined by the Resource Binder (RB).

RB does this by, first maintaining a list of status (busy/idle) of all

CEs and then by finding the appropriate place for each HyperOp.

RB loads HyperOps in accordance to configuration matrix

provided by compiler. Configuration matrix holds the information

of relative positioning of nodes. Generation of configuration

Gaurav Kumar Singh, Mythri Alle, Keshavan Vardarajan, S K Nandy
 Indian Institute of Science, Bangalore

Ranjani Narayan
 Morphing Machines, Bangalore, India

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

92

matrix requires the embedding of nodes of PCG as per the

architectural constraint of NoC. This embedding is needed

primarily due to mismatch between the communication patterns

among different modules of an application and the topology of the

NoC. The problem hence translates to embedding an application

represented by a source graph, G (that captures the

communication patterns among modules of the application) onto a

destination graph, H that depicts the topology of the NoC. In set

theoretic definition, this is equivalent to assigning to each vertex

u of G, a single vertex f(u) in H and each edge (u,v) of G to a path

between f(u) and f(v) in H. This path may have intermediate

vertices between f(u) and f(v). The general mapping problem is

(unfortunately) an NP-hard combinatorial optimization problem,

thus inherently intractable as shown by Johnson [2]. This

necessitates the elaboration of efficient heuristics. Some of the

earlier heuristics in Sarkar [9] and Gerasoulis [10] have used

clustering of nodes in the source graph before physical mapping

onto the target graph (in the case of source graph having more

nodes than target graph).

Figure 1: Architecture of REDEFINE

In this paper we present an embedding of a general

graph into a honeycomb, with a constraint of one-to-one mapping

of source graph to the target graph. Our embedding technique,

called GOMAP (Graph Oriented Mapping) takes PCG generated

by the compiler of REDEFINE [3] as source graph (limited to 16

nodes) and maps it onto the honeycomb network topology of the

architecture. We also discuss the format of configuration matrix

and processing of this matrix by RB. The remainder of this paper

is as follows: Section 2 reviews the graph models for source

graph, target (destination) graph as well as cost function for

evaluating physical mapping. We have defined the case of

optimality and cost overhead for mapping with respect to this cost

function. We have also introduced the terminology of Cayley

graph and Cayley tree in the section. Section 3 outlines the

approach and steps of proposed algorithm. Section 4 gives an

example on proposed method. In section 5 the experimental

results of proposed algorithmic approach are presented in

comparison with optimal in terms of communication overhead for

honeycomb. In Section 6 we conclude our approach and give

perspectives into future work.

2. GRAPH MODEL
Application of graph theory to finding mapping of a source

graph to a destination graph is well known [8]. We will represent

the source graph as Gs (Vs , Es) and the target graph as Gd (Vd ,

Ed). We use the term “Hop" to indicate the unit distance between

any two directly connected nodes in the target graph. The

“distance" between two compute nodes u and v is the number of

hops in the shortest path connecting u and v.

Definition 1: The source graph is an undirected graph, Gs (Vs

,Es) where each vertex vi GVs represents a node and the edge (vi,

vj),

denoted as ei,j G Es , represents the communication between vi

and vj. The weight of the edge ei,j denoted by commi,j , represents

the total number of communication between the two nodes.

An example of source graph is Fig. 2.

Figure 2: Communication graph of 6 Nodes

Definition 2: The target graph is an undirected graph Gd (Vd

,Ed) where each vertex vi GVd represents a node in topology

and the direct edge (vi , vj) denoted as ei,j represents the hop

distance of one, between the two nodes.

Source graph is a weighted graph, so we use adjacency matrix

representation for weights. For example, adjacency matrix

representation for weights of Fig. 2 is in Table 1.

Table 1: Adjacency-Matrix Representation for Weighted

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

93

Graph

Node 0 1 2 3 4 5

0 0 0 8 6 4 3

1 0 0 0 0 0 1

2 8 0 0 5 7 2

3 6 0 5 0 5 0

4 4 0 7 5 0 4

5 3 1 2 0 4 0

2.1 Mapping Formulation
 The mapping of the source graph Gs (Vs , Es) onto the target

graph G
d
(V

d , Ed) is defined by an injection function

map fmap : Vs → V

d , s.t map (vs) = v
d , ∀ vs ∈ Vs , ∃!vd ∈ Vd ,

where | Vs |≤| Vd |

2.2 Cost Function Formulation

To evaluate our technique, we define a Cost Function (CF), similar

to the kind of cost function used in Koziris [5] and Zhonghai [6].

CF(fmap) = Σ dist(fmap (us), fmap (vs)) × comm(us , vs)

where:

• dist(fmap (us), fmap (vs)) gives the shortest distance between

the two nodes (ud ,vd) in target graph onto which nodes (us ,vs) in the

source graph are mapped.

• comm(us,vs) is the weight of the edge e(us,vs) in the source

graph.

Our objective is to find the mapping fmap which minimizes CF(
fmap). We also define case of optimality for fmap(optimal) as :

CF(fmap(optimal)) = min { CF(fmap) ∀ fmap ∈ M APALL }

where MAPALL is the set of all possible mapping exist for this
particular target graph

• Cost Overhead of mapping is defined in comparison to optimal

as follows:

CF(fmap) - CF(fmap(optimal)

Cost Overhead =

 X 100 %

CF(fmap(optimal)

2.3 Cayley Graph and Cayley Tree
In section 1 we mentioned that our target graph is a honeycomb

network, which is a symmetric interconnection network. From

group theory perspective, honeycomb networks come under a

special type of algebraic model, called Cayley graph (see Fig. 3).

Krishnamurthy [1] discusses Cayley Graph and describe its

properties in terms of degree, diameter, connectivity and routing

algorithms.

Figure 3: Honeycomb as Representation of Cayley Graph

Cayley tree is a connected cycle-free graph where each non-leaf

node is connected to Z neighbors, where Z is called the

coordination number. This can be viewed as a tree-like structure

emanating from a central node, with all the nodes arranged in

concentric shells around the central node. The central node is

termed as root or origin. Ancestor and descendant relationships in

the Cayley tree are defined relative to the root.

Figure 4: Cayley Tree (Bethe Lattice) of degree 3

The number of nodes in the kth shell is given by,

Nk = Z(Z-1)k-1 for k > 0

A star type Cayley tree of degree 3, also known as Bethe lattice

[7] of coordination number 3 is shown in Fig. 4. Levels in Cayley

graph and Cayley tree are defined with respect to root as

concentric circles as shown by dotted circles in Fig 3 and Fig 5.

For example, in Fig 3 node 0 is at level 0, nodes 1, 2, 3 are at level

1. The use of Cayley tree and Cayley graph is in section 3.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

94

3. THE GRAPH ORIENTED MAPPING

ALGORITHM (GOMAP)
Primary objective of our heuristic is to minimize the cost

function. In order to do this, our approach is to place the nodes of

the source graph as close as possible in the target graph. In other

words, we start with the node which has maximum communication

with its neighbors and map it to a vertex in the target graph. We

then place nodes having direct communication with this node

close to it (on the target graph), in the descending order of

communication. We iteratively repeat this procedure for all the

nodes that are already mapped onto the target graph and stop the

procedure when all the nodes of the source graph are mapped onto

the target graph. There could be conflicts arising during this

procedure, which will be resolved in accordance with the steps

described in this section.

As mentioned in section 2, honeycomb topology is a Cayley

graph of degree 3 and is a graph having the following

property: i) root node (node 0 in Fig. 3) at center with three edges

emanating from the it, ii) for all nodes, that are independent (only

one immediate ancestor) children (node 1,2), two edges emanate

from that node, iii) for all other nodes that are shared (two

immediate ancestors) children (node 10,13), only one edge

emanate from that node, iv) there exists cycles of length 6 nodes

and every node of a cycle is part of two other different cycles of

length 6.

Figure 5: Cayley Tree Representation from a Cayley

Graph Perspective

Property (i) and (ii), gives the basis for construction of Cayley tree

of degree 3. From this we deduce that, in a Cayley graph, if we

relax property (iii) and (iv) among nodes, then Cayley tree data

structure can be applied for the purpose of mapping onto Cayley

graph. Refer Fig. 5 for an illustration of the same. With this basis

we go in detail of our mapping formulation. We will discuss

relaxation of (iii) and (iv) later (3.2) in this section. Approach is to

Figure 6: Conflict Scenario

start from the source graph and construct an intermediate

representation as close a Cayley tree as possible. We term this

intermediate representation as MAP-Tree, which is constructed

incrementally by best-fitting two highly communicating nodes (in

the source graph) as close as possible in the target graph. Our

mapping algorithm comprises three phases. In the first phase,

MAP-Tree is constructed. In the second phase, conflicts arise in

MAP-Tree, due to relaxation of property (iii) and (iv) of Cayley

graph, are resolved and in the final phase, mapping information is

generated and physical placement of compute nodes is done.

3.1 First Phase: MAP-Tree Construction
Initially there is no mapping on NoC architecture tiles, and with

nodes mapping, the possibility of better mapping would be

decreased, nodes with higher commi,j should be mapped earlier.

At first the root with the highest priority for MAP-Tree is

determined by the function highest-priority(vj).

highest-priority(vj) = maxj(comm(vi,vj)), G vi G Vs

Figure 7: Different Conflict Cases of MAP-Tree

Then the function finds the highest commi,j , between the

source (root node in MAP-Tree) and its edge destination.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

95

The node with higher ranking(vj) will be selected as the first

choice.

Ranking(vj) = maxj (comm(vi,vj)), G vi G MAP-Tree and G vj

/G MAP-Tree

We iteratively calculate the Ranking of each vj (G Vs) and not in

MAP-Tree with respect to the nodes vi G MAP-Tree and

incrementally add the selected vj in MAP-Tree with the

edge(vi,vj). If degree of vi is 3, we select the descendants(k,m) of

vi and compute sum of remaining communications, which have

not been considered for MAP-Tree, individually for both k and m.

Select node with lower sum under constraint degree[selected

node] < 3. If constraint not fulfilled, repeat for other node. If

none applies iterate this until we find one descendant node (say p).

Then we add vj with edge(p,vj). We repeat this for each node vj in

source graph Gs (Vs ,Es) that are not in MAP-Tree. Pseudo code

for MAP-Tree construction is given in Algorithm 1.

function MAPTreeConstruction(Gs (Vs , Es),T(V,E))
/* Root Selection */

root ← highest-prioirty(vs ∈ Vs);
/* Include Root in MAP-Tree */

V ← V ∪ {root};

Vs ← Vs - V;

/* Find highest communicative between root and all it

descendants */

for Each descendant vs of root in Gs (Vs , Es) do
Ranking(vs) = comm(root,vs) ∀ vs ∈ Vs

endfor

/* Select the highest ranked node. Add it to MAP-Tree
*/
vhrank ← highest{ Ranking(vs) };

Vs ← Vs - vhrank ;

V ← V U{ vhrank};

E ← edge(root, vhrank);

while Vs != φ do
foreach descendant(vi) of VMAP−Tree ∈ V in Gs (Vs ,Es) do

Ranking(vi) = comm(VMAP−Tree ,vi) ∀ vi ∈ Vs

endfch

/* Select the highest ranked node. Add it to

MAP-Tree */
vhrank ← highest{ Ranking(vi };

Vs ← Vs - vhrank ;

V ← V U {vhrank };

vsource ← (node in MAP-Tree that has highest communication

with v
hrank);

if degree[vsource]<3 then
E ← edge(vsource , vhrank);
endif

Select vsource as the descendant of vMAP−Tree with

min{remaining highest communication};
if degree[vsource] = 3 then
vsource ← other descendant of vMAP−Tree ;
endif

if degree[vsource] = 3 then

/* do selection recursively */

Endif

E ← edge(vsource , vhrank);
Endw

Algorithm 1: MAP-Tree Construction

3.2 Second Phase : MAP-Tree Conflict Check
and Resolution

After constructing MAP-Tree as aforesaid methodology, we get
MAP-Tree similar to Fig. 5. This MAP-Tree doesn’t ensure an
embedding for the target graph. The "conflict" could occur in this
MAP-Tree as shown in Fig. 6. Conflict is the case, where two or
more nodes of MAP-Tree contend for the same node of NoC. The
sole basis of conflict is: consideration of independent child node
in
MAP-Tree construction with contradiction to shared child node in
target graph due to relaxation of constraint (iii) and (iv) as in
section (3.1). Difference in these two gets to appear only after, if
MAP-Tree has atleast 15 nodes (see Fig 6). With lesser than 15,
in practice we can always map it to target graph without any
change in MAP-Tree. Fig. 7 shows three different conflict cases.
All the conflicts only occur either at level 3 or greater (see Fig. 3),
considering root as level 0 and always occurs when any 4 of the
nodes at level 2 has two descendants each. This is because before
level 3 there are no shared nodes in target graph (see Fig. 3), and
at level 3, two of these eight children (nodes 10-17 in Fig. 5) get
conflicted for allocation on target graph (nodes 10-16 in Fig. 3),
as we have only 7 nodes in target graph to get mapped as shown in
Fig. 6. Pseudo code for conflict detection is given in Algorithm 2.

Resolution : Conflict occurs because of mapping 8 nodes in 7
positions available, so conflict resolution has been made by
moving "one" among conflicted node as a descendant to it’s
parent descendants. Least communicative node has been chosen
and associated as a descendant, of its parent (immediate ancestor)
immediate descendant. The new MAP-Tree will be conflict free as
shown in Fig. 8 and ready to place. Pseudo code for conflict
resolution is given in Algorithm 3.

Figure 8: Conflict Resolution of MAP-Tree

3.3 Final Phase : Resource Matrix Generation and Physical

Placement

The MAP-Tree is placed on target graph, considering the order of

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

96

children from root to leaf nodes. After placing all nodes we need
to send the mapping information as configuration matrix to the
module RB of Support Logic for physical placement. This step is
needed, because as per the configuration matrix, RB finds the
suitable position (CE) for each node to place it on NoC. Mapping

function Conflict(T(V,E))
/* Returns TRUE if there is conflict in MAP-Tree
otherwise FALSE */

|V| = no. of nodes in MAP-Tree

if |V| < 15 then
return FALSE;

else

switch degree[root] do

 case 1
Run BreadthFirstSearch on T(V,E);

Node3 ← all nodes at level 3 with degree 3 ;

if |Node3| < 4 then
return FALSE;

else
return TRUE;

endif

break;

case 2

case 3
Node2 ← all nodes at level 2 with degree 3 ;

if |Node2| < 4 then
return FALSE;

else

return TRUE;

 endif

break;

endsw

otherwise

 ;

 endsw

endif

Algorithm 2: Conflict in MAP-Tree

Algorithm 3: Conflict Resolution of MAP-Tree

information can be passed to RB in different ways. One way of

representing this information is binary matrix structure (0/1-

Matrix). Binary matrices consist of 1 and 0 as element values. In

architecture [3], 1’s are the relative position of nodes which need

to get placed on NoC in exactly same fashion with respect to each

other and 0 as relative positions, which are don’t care

(irrespective of CEs status) place in NoC. Don’t care position

assumes that RB need not pay attention to the availability status of

relative CEs on NoC while making decision for physical

placements of nodes. Resource Binder gives the start position

(0,0) of configuration matrix in the NoC, after comparing

free/busy CEs topology of NoC to binary matrix structure. Design

criteria for RB includes variable sized matrix versus fix sized

matrix. Variable sized matrix requires lesser memory to be stored,

because it uses minimal number of elements to capture all 1’s

information, whereas fixed size matrix (dimension k) always use

the same number of elements (k × k) to do this, thus giving

uniformity and ease of implementation of Resource Binder. It can

be shown, that configuration matrices fit in a matrix of dimension

6 × 4 to map a pHyperOp communication graph upto 16 nodes

onto honeycomb NoC.

4. EXAMPLE

Let take Ge (Ve , Ee) with communication cost as shown in Fig. 9.
.

Figure 9: Source Graph

Table 2: Sorted table of Total Communication For Each

Node

Node Number Total

communication

Ranking

A 3 8

B 9 3

C 4 7

D 10 2

E 8 4

F 11 1

G 5 6

H 5 5

4.1 MAP-Tree Construction
initialize: Sets INCLUDED = φ and NOTINCLUDED =

{A, B, C, D, E, F, G, H }

step1 (Root Selection): Root is decided as per the Table 2, node

function ConflictResolution(T(V,E))

/* Move the "one" among conflicted one level

Down */

level ← Level at which Conflict(T(V,E)) is TRUE;

foreach edge(node[level],descendant[node[level]]) in E

do

Find edge w(node,descendant) with minimum

communication;

y ← descendant;

E ← E - w;

E ← edge(descendant[node],y);
endfch

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

97

with highest ranking. F is selected as root.

step2: Now two sets INCLUDED = {F} and NOTINCLUDED =

{A, B, C, D, E, G, H }

1st iteration :

step3: Of the two sets, highest communicated edge is selected.

adjacent{F} = {D,E,H}

Select edge = max{F-D,F-E,F-H} = F − E

Node = {E}

INCLUDE = {F, E} and NOTINCLUDED = {A, B, C, D, G, H }

step4: Adding edge F − E

2nd iteration :

step3: adjacent{F, E} = {D, H, A}

Select edge = max{F − D, F − H, E − D, E − A} = F − D

Node = {D}

INCLUDED = {F, E, D} and NOTINCLUDED = {A, B, C, G, H
}

step4: Adding edge F – D

Figure 10: MAP-Tree Construction from Source Graph

3rd iteration :

step3: adjacent{F, E, D} = {H, A, B, G}
Select edge = max{F − H, E − A, D − B, D − G, D − H } =

D − B

Node = {B}

INCLUDED = {F, E, D, B} and NOTINCLUDED = {A, C, G, H
}

step4: Adding edge D − B

4th iteration :

step3: adjacent{F, E, D, B} = {H, A, G, C }

Select edge = max{F −H, E −A, D −G, D −H, B −C, B −A}

= B − C

Node = {C }

INCLUDED = {F, E, D, B, C } and NOTINCLUDED = {A, G,
H }

step4: Adding edge B − C

5th iteration :

step3: adjacent{F, E, D, B, C } = {H, A, G}

Select edge = max{F − H, E − A, D − G, D − H, B − A} =

D − G

Node = {G}

INCLUDED = {F, E, D, B, C, G} and NOTINCLUDED = {A, H
}

step4: Adding edge D – G

6th iteration :

step3: adjacent{F, E, D, B, C, G} = {A, H }

Select edge = max{F − H, E − A, D − H, B − A, G − H } =
F − H

Node = {H }

INCLUDED = {F, E, D, B, C, G, H } and NOTINCLUDED =
{A}

step4: Adding edge F − H

7th iteration :

step3: adjacent{F, E, D, B, C, G, H } = {A}

Select edge = max{E − A, B − A} = B − A

Node = {A}

INCLUDED = {F, E, D, B, C, G, H, A} and NOTINCLUDED = { }

step4: Adding edge B − A

Set NOTINCLUDED is empty, MAP-Tree is done. MAP-Tree
construction is shown in Figure 10. MAP-Tree looks like
Cayley tree as we see in Fig 11. Configuration Matrix for MAP-
Tree is in Table 3.

Figure 11: MAP-Tree with Placing on HoneyComb

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

98

4.2 MAP-Tree Conflict Check and Resolution

Numbers of nodes are less than 15, so MAP-Tree is conflict free.

Table 3: Configuration Matrix

N 0 1 2 3 4 5

0 0 1 1 1 0 0

1 0 1 1 1 1 0

2 0 0 0 1 0 0

3 0 0 0 0 0 0

4.3 Resource Matrix generation and Physical

Placement
MAP-Tree is Placed as described in section 3 to generate

the mapping information. Root is placed at any location. Childs

are placed with respect to root. Subsequently, children are placed

with left and right consideration. After mapping we get the

configuration matrix as in TABLE 3.

The physical placement of configuration matrix on execution

fabric is shown in Fig 11. The overall cost for this mapping is 36,

whereas optimal cost is 33.

5. RESULTS
 We run the GOMAP algorithm for graphs generated by
REDEFINE [3] compiler for two applications FFT and IDCT. For
FFT, the graph size ranged upto 7 nodes while for IDCT it
reached upto 16 nodes. We also implemented Optimal mapping
for graph size limit upto 16 for honeycomb network for the
purpose of comparison. Graph size higher than this was not
feasible as well as not practical for the purpose of comparison.

As per our knowledge, there exists no mapping algorithm

specifically meant for honeycomb, which keeps our comparison

limited to the case of Optimality. PCG (pHyperOp communication

graph) which we used as source graph is random while the target

graph is honeycomb topology. For FFT we incurred cost overhead

upto 2%, because all the graph (PCG) sizes were of small size

(upto 7 nodes only). For IDCT we incurred on average 18% cost

overhead.

6. CONCLUSION
In this paper we have reported a polynomial time heuristic to
map a source graph onto a target graph in general. The
source graph is an intermediate representation of the application
transformed by a compiler for a runtime reconfigurable SoC. The
target graph represents the Compute Elements and their
interconnections provided by the NoC. The nodes of the source
graph represent the computations and the edges denote the require
communication between them. We show that the proposed scheme
incurs on average a cost overhead of 18% in terms of performance
when compared to an optimal mapping.

7. REFERENCES
[1] B. Akers and B. Krishnamurthy. A group-theoretic model for
symmetric interconnection networks, IEEE Trans. on Computers,
vol. 38, pp. 555-566, 1989
[2] M. R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness, W.H Freema and
Co, 1979
[3] Mythri Alle, Keshavan Varadarajan, Alexander Fell,
Ramesh Reddy C, Nimmy Joseph, Saptarsi Das, Prasenjit Biswas,
Jugantor Chetia, Adarsh Rao, S K Nandy. REDEFINE: Runtime
Reconfigurable Polymorphic Asic, IEEE Transaction On
Embedded Computing Systems, Special Issue on configuring
Algorithms, Process and Architecture, 2008
[4] Alexander Fell, Mythri Alle, Keshavan Varadarajan, Saptarsi
Das, Prasenjit Biswas, Jugantor Chetia, S K Nandy. Streaming
FFT on REDEFINE-v2: An Application Architecture Design
Space Exploration, to be appeared in CASES ’09, 2009
[5] Koziris N., Romesis M., Papakonstantinou G. and Tsanakas P.
An Efficient Algorithm for the Physical Mapping of Clustered
Task Graphs onto Multiprocessor Architectures, Proceedings PDP
2000 Conference, pp. 406-413, Rhodes, 2000
[6] Zhonghai Lu, Lei Xia, Axel Jantsch. Cluster-based Simulated
Annealing for Mapping Cores onto 2D Mesh Networks on Chip,
ddecs, pp. 1-6, 2008 11th IEEE Workshop on Design and
Diagnostics of Electronic Circuits and Systems, 2008
[7] M. E. Fisher , J. W. Essam. Rev. Mod. Phys. 42:271, 1970
[8] W.K. Chen and E. Gehringer. A graph-oriented mapping
strategy for a hypercube, Proc. Third Conference on Hypercube
Concurrent Computers and Applications. pp. 200-209, 1988
[9] Sarkar V. Partitioning and Scheduling Parallel Programs for
Execution on Multiprocessors, Cambridge, MA, MIT Press, 1989.
[10] Yang T. and Gerasoulis A. DSC: Scheduling Parallel Tasks
on an Unbounded Number of Processors, IEEE Transactions on
Parallel and Distributed Systems,Vol.5, No.9, pp. 951-967, 1994
[11] Mythri Alle et al. Synthesis of Application Accelerators on
Runtime Reconfigurable Hardware. In ASAP ’08, Proceedings of
the 19th IEEE International Conference on Application specific
Systems, Architectures and Processors, July 2008
[12] A. N. Satrawala et al. Redefine: Architecture of a SOC Fabric
for Runtime Composition of Computation Structures, In FPL ’07:
Proceedings of the international Conference on Field
Programmable Logic and Applications, August 2007
[13] I. Stojmenovic. Honeycomb Networks: Topological
 properties and Communication Algorithms. In IEEE Trans,
 Parallel and Distributed Systems, vol. 8, no. 10, pp. 1036-
 1042, Oct. 1997.

