
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

57

ABSTRACT

This paper analyses the correctness of Multiversion Concurrency

Control(MVCC) algorithms that are commonly deployed in Real-

time Databases. Database systems for real-time applications

must satisfy timing constraints associated with transactions.

Typically, a timing constraint is expressed in the form of a

deadline and is represented as a priority to be used by

schedulers. MVCC Algorithms used here makes use of a

specialized version of Serialisation Graph, Called MultiVersion

Serialisation Graph(MVSG) to resolve data conflicts to maintain

the serialization order among conflicting transactions. Using

MVSG,MVCC algorithms can determine which lower priority

transactions should be aborted to avoid deadlocks.

Keywords: Transaction, Multiversion, Schedule,

Serialisable.

1. INTRODUCTION
The prime objective of real-time database systems is to maximize

the number of transactions that should be executed with timing

constraints[1]. A real-time database systems should schedule the

transactions based on its priority i.e., its deadline, its importance

in the real-time scenario, elapsed time etc., For example,

supposing there are two transactions T1 and T2 with T1 having

the smaller deadline. The Real-time transaction manager

schedules and favors T1 so that T1 can be finished before T2.

Whereas in contrast, Conventional database techniques schedules

and treats all transactions with equal priority. So, the deadline

requirement of the transactions cannot be met with Conventional

database techniques.

Concurrency control techniques are required for transaction

scheduling in order to maintain consistency of data. Common

real-time concurrency control techniques are based on Two-

Phase locking(2PL) and Validation(Optimistic

Techniques).Concurrency control is the activity of synchronizing

operations issued by concurrently executing programs on a

shared database. The purpose of the concurrency control is

 To produce an execution that has the same effect as a

serial (noninterleaved) one.

 To enforce Isolation (through mutual exclusion) among

conflicting transactions.

 To preserve database consistency through consistency

preserving execution of transactions.

 To resolve read-write and write-write conflicts.

When a transaction performs conflicting operations on data

objects among active transactions(Transactions that are in

execution and not yet committed),the transaction manager

resolves conflicting operations using one of the following two

approaches.

(i) Blocking(Transactions made to wait)

(ii) Rollback.

Two-Phase Locking uses (i) to resolve data conflicts by blocking

the transaction that causes it.2PL requires information about the

transactions such as read/write data sets to be locked and the

timestamp interval.Optimistic approach uses (ii) to resolve data

conflicts by aborting the transactions that conflict with the

transaction having a smaller timestamp. But it outsmarts 2PL by

discarding tardy transactions and it also ensures that it doesn’t

disturb other active transactions. The disadvantage of this

approach is that it could result in unnecessary restarts of the

aborted transactions but this could be controlled by adjusting

serialization order among concurrent transactions.

Multiversion concurrency control (MVCC) algorithms have been

tailored to suit real-time databases by using priorities of

transactions. Since every write operation produces a new version

of data objects, there is no conflict among write operations. The

main difference between multiversion and lock models is that in

MVCC, locks acquired for querying (reading) data don't conflict

with locks acquired for writing data and so reading never blocks

writing and writing never blocks reading.

The scope of this paper is to provide a comprehensive view on

MVCC algorithms deployed in practice for real-time databases

to increase the degree of concurrent transactions and avoid

unnecessary aborts which could degrade the performance of the

system. This paper is organized as follows: Section 2 discusses

the serialisability concepts behind MVCC. Section 3 brings out

the technical details in MultiVersion Serialisation

Graph(MVSG). Section 4 describes the MultiVersion Timestamp

Ordering algorithms. Section 5 describes the MultiVersion Two-

Phase Locking Algorithms. Both Section 4 and Section 5 hints on

the problems in applying these algorithms to real-time databases

and proposes the solution to it. Finally, Section 6 gives

concluding remarks.

2. MVCC Serialisability Concepts
Multiple transactions can be executed concurrently by

interleaving their operations. Operations include read (r), write

(w), commit (c), abort (a).A Schedule (or history) S of n

Analysis of Real-Time Multi version Concurrency

Control Algorithms using Serialisability Graphs

K M Prakash Lingam

University Visvesvaraya College of Engineering, India

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

58

transactions T1,T2,..Tn is an ordering of the operations of the

transactions subject to the constraint that, for each transaction Ti

that participates in S, the operations of Ti must appear in the

same order in which they occur in Ti. However the operations

from other transactions Tj can be interleaved with the operations

of Ti in S.

A schedule S is serial, if for every transaction T participating in

the schedule, all the operations of T are executed consecutively

in the schedule, without any interleaved operations from the

other transaction. So it represents inefficient processing and can

lead to low CPU utilisation while a transaction waits for disk

I/O, or for another transaction to terminate, thus slowing down

processing considerably. Every serial schedule is correct because

only one transaction at a time is active - the commit (or abort) of

the active transaction initiates execution of the next

transaction.Therefore, all the serial schedules can leave the

database in a consistent state.

For non-serial schedules the goal is to determine which, are

correct and which are erroneous. The concept used to

characterize schedules in this manner is called serialisability of

the schedule. A schedule S of n transactions is serializable if it is

equivalent to some serial schedule of the same n transactions.

Serializable is not the same as being serial. Serializable implies

that the schedule is a correct schedule. So, it will leave the

database in a consistent state. The interleaving is appropriate and

will result in a state as if the transactions were serially executed,

yet will achieve efficiency due to concurrent execution.

2.1 Conflict Equivalence

 Eg: T1: r(x) w(x) r(y) w(y) c

T2: r(x) w(x) c

Two operations are said to conflict if they satisfy all three

conditions:

(i) they belong to different transactions

(ii) they access the same item

(iii) at least one is a write operation

Ex.: A sample schedule

S1: r1(x) r2(x) w1(x) r1(y) w2(x) w1(y)

In the above example, r2(x) and w1(x) are conflicting

operations because they satisfy all the above three conditions.

Similarly w1(x) and w2(x), r1(x) and w2(x) are the other two

conflicting operations.

Two schedules are conflict equivalent, if the order of any two

conflicting operations is the same in both schedules. A schedule

is Conflict Serialisable if it is conflict equivalent to some Serial

schedule. Ex: Another sample schedule.

S2: r2(x) r1(x) w1(x) w2(x) r1(y) w2(x) w1(y)

Now S1 and S2 are conflict equivalent because the order of all the

three conflicting operations are preserved. Interleaving of

operations occurs in an operating system through some scheduler,

which allocates resources to all processes. Factors such as system

load time of transaction submission and priorities of processes

contribute to the ordering of operations in a schedule. It is

difficult to determine how the operations in a schedule will be

interleaved beforehand to ensure serialisability.

2.2 View Equivalence

Another less restrictive definition of equivalence of schedules is

called View Equivalence. Two schedules are said to be view

equivalent if they have the same reads-from relationships and

the same writes. The same reads-from relationships amounts to

having the same Read operations. Consider the following

schedule of three transactions

T1: r1(x), w1(x) T2: w2(x) and T3: w3(x)

Schedule S3: r1(x), w2(x) w1(x) w3(x)

In S3, the operations w2(X) and w3(X) are blind writes, since T2

and T3 do not read the value of X. S3 is view serializable, since

it is view equivalent to the serial schedule T1, T2, T3. However,

S3 is not conflict serializable, since it is not conflict equivalent

to any serial schedule. In a multiversion concurrency control

algorithm, each Write on a data item x produces a new version of

x. The Transaction manager(TM) that manages x therefore keeps

a list of versions of x, which is the history of values that the TM

has assigned to x. For each Read(x), the scheduler tells the TM

which one of the versions of x to read.

The cost of maintaining multiple versions is storage space but

still many recovery techniques such as Deferred Update and

Immediate Update requires some before image (BFIM)

information, at least of those data items that have been updated

by active transactions. BFIM of a data item corresponds to its list

of old versions and the recovery algorithm makes use of same in

case any active transactions aborts. It is a small step for the TM

to make those versions explicitly available to the scheduler.

The existence of multiple versions is only visible to the scheduler

and TM, not to user transactions. Transactions still reference

data items, such as x, y, etc. Users see as if there is only one

version of each data item, namely, the last one that was written

from that user’s perspective. When the scheduler decides to

assign a particular version of x to Read(x), the value returned

may be one produced by an active or committed transaction. If

the version read is one produced by an active transaction,

recoverability imposes one constraint. The constraint is that no

transaction T in Schedule S commits until all transactions that

have written an item (version of data item) that T reads have

committed. In other words, reading transaction’s commitment

would be delayed until the transaction that produced the version

has committed.

In MVCC, multiversion (MV) schedules represent the TM’s

execution of operations on a multiversion database, and single

version (1V) schedules represent the interpretation of MV

schedules in the users’ single version view of the database.

Serial 1V schedules are correct. But the system actually produces

MV schedules. So, to prove that a MVCC is correct, we must

prove that each of the MV schedules that it can produce is

equivalent to a serial 1V schedule. For each data item x, the

versions of x are designated by xi, xj, . . . , where the subscript

denote the index of the transaction that wrote the version. Thus,

each write in an MV history is always of the form wi[xi], where

the version subscript equals the transaction subscript. Reads are

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

59

denoted in the usual way, such as ri [xj]. Now, let us consider a

sample MV schedule

S4 = w1[x1]c1 w2[x2] c2 r3[x1]w3[y3]c3

Now, according to the definition of conflicts, the operations that

conflict are w1[x1]and r3[x1]. But w2[x2] doesn’t conflict with

either w1[x1] and r3[x1] because x2 and x1 are different data items

i.e. they are different versions of x. So, they don’t conflict. Now,

if we map S4 into an equivalent 1V schedule, we get

S5= w1[x]c1w2[x]c2r3[x] w3 [y]c3

The conflicting operations, namely w1[x1]and r3[x1]in S4 occur in

the same order in S5 also. But in S4, w2[x2] doesn’t conflict with

r3[x1]but their corresponding 1V operations, namely w2[x] and

r3[x] do conflict. So, here applying the conflict equivalence is not

suitable. Moreover, in S4, T3 reads x from T1, whereas in S5, T3

reads x from T2. Since T3 reads a different value of x in S4 and

S5, it may write a different value in y. So, S4 is not view

equivalent to S5. Let us denote the serialization graph of a

schedule S, by SG(S). Now, to prove that every MV schedule

that MVCC can generate is equivalent to a serial 1V schedule,

We will prove that SG of an MV schedule is acyclic, thereby

making it serial. Then we will check that every serial MV

schedule is equivalent to serial 1V schedule or not. Now,

consider an MV schedule

S6 =w1[x1]w1[y1]c1r2[x1]r2[y1]w2[x2]w2[y2]c2r3[x1] r3[y2]c3

SG(S6) =

 T2

T1

 T3

An edge from Ti-> Tj indicates that Tj reads some data item X

from Ti. These edges are called as Reads from Edges. Now S6 is

serial and the corresponding 1V schedule.

S7 = w1[x]w1[y]c1r2[x]r2[y]w2[x]w2 [y]c2r3[x] r3[y]c2

S6 is not equivalent to S7 because in S6 ,T3 reads x from

T1, whereas in S7, T3 reads x from T2.Therefore,not all serial MV

schedules are equivalent to serial 1V schedules.

Only a subset of serial MV schedules, called l-serial

MV schedules, are equivalent to serial 1V schedules. So, in

order to prove that MVCC is correct, we must prove that its MV

schedules are equivalent to serial 1V schedules.

For this, we will use a modified version of serialisation graph

called MultiVersion Serialisation Graph (MVSG). An MV

schedule is equivalent to a l-serial MV schedule iff (if and only

if) it has an acyclic MVSG.

3. MultiVersion Serialisation Graph (MVSG)
We know that two 1V schedules over the same transactions are

view equivalent if they contain the same operations, have the

same reads-from relationships and the same final writes. The

same definition is applicable for MV schedules except the term

final writes can be omitted because if two schedules are over the

same transactions then they have the same writes. Since no

versions are overwritten, all writes are effectively final writes.
Thus, if two MV schedules over the same transactions have the

same operations and the same reads-from relationships, then they

have the same final writes and are therefore view equivalent.

Here the meaning of reads from relationship is slightly different.

Transaction Tj reads x from Ti, in MV schedule S if Tj, reads the

version of x produced by Ti. Next, we will see the equivalence of

an MV schedule SMv to a 1V schedule S1v. SMv and S1v must be

over the same set of transactions and their operations must be in

one-to-one correspondence. That is,the mapping of SMv to S1v is

defined by mapping ci to ci, ai to ai, ri[x] to ri [xj] for some version

xj of x and wi [x] to wi[xi]. Since the operations of SMv and S1v

are in one-to-one correspondence, their reads-from relationships

would be the same. All of the final writes in S1v must be part of

the state produced by SMv, because SMv has all versions written in

it. So, just like MV schedules, an MV schedule and 1V SMv are

equivalent if they have the same reads-from relationships.

[2]Two operations in an MV schedule are said to be conflict if

they are from different transaction ,operate on the same version

and one is a Write. Only one form of conflict is possible in an

MV schedule: wi[xi] and rj[xi] conflict provided the former

precedes the latter .The other way is not possible because Tj

cannot read xi until it has been produced. Conflicts of the form

wi[xi] < wj[xi] are impossible, because each write produces a

unique new version. Thus, all conflicts in an MV schedule

correspond to reads-from relationships.

But since only one kind of conflict is possible in an MV history,

SGs are simple to draw. Let S be an MV schedule. SG(S) has

nodes for the committed projection C(S),which includes only the

operations in S that belong to the committed transactions and

also edge Ti-> Tj is present iff for some X, rj[xi] (i # j) is an

operation of C(S) A serial MV schedule S is 1-serial if for all i,j,

and x, if Ti reads x from Tj then i = j, or Tj is the last

transaction preceding Ti, that writes into any version of x.In other

words, a serial MV history is 1-serial if for each reads-from

relationship, say Ti reads x from Tj, Tj is the last transaction

preceding Ti, that writes any version of x. Schedule S6 is not l-

serial because w0[x0]< w1[x1] < r2[x0]. Here T2 should have read x

from T1 because it has written x last. Consider another sample

schedule:

S8 = w1[x1] w1[y1] w1[z1] c1 r2[x1] w2[y2]c2 r3[x1] r3[z1] w3[x3]c3

r4[z1] w4[y4] w4[z4] c4 r5[x3] r5[y4] r5[z4] . The schedule S8 is 1-

serial.

[6]An MV schedule is 1- Serializable (or 1SR) if its committed

projection is equivalent to a l-serial MV schedule. A serial

schedule can be 1SR even though it is not 1-serial.

Eg: S9 = w1[x1]c1 r2[x1] w2[x2]c2 r3[x1] c3.

is not l-serial because w1[x1]< w2[x2] < r3[x1].But it is lSR,

because it is equivalent to

S10 = w1[x1]c1 r3[x1] c3 r2[x1] w2[x2]c2

To determine if a MVCC is correct, we must determine if all of

its schedules are 1SR. MVCC algorithms sort the versions of

each data item into a total order. MVSG uses this total order of

versions to include the edges.These edges are called as Version

Order Edges(VOE).[6]

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

60

Given an MV schedule S and a data item x, a version order

denoted by << for any x in S is a total order of versions of any x

in H. A version order for H is the union of the version orders for

all data items. Eg; For S8, a version order is x1 << x2,, y1 << y2

<< y4, and z1 << z4.

SG(S8) = T2

 T1 T4 T5

 T3

Explanation for SG(S8):

Edge(ROE) Comments

T1 ->T2 r2[x1] because T2 reads x from T1

T1 ->T3 r3[x1] because T3 reads x from T1

T1 ->T4 r4[z1] because T4 reads z from T1

T3->T5 r5[x3] because T5 reads x from T3

T4->T5 r5[z4] because T5 reads z from T4

MVSG(S) is SG(S) with the inclusion of version order

edges for any serial MV schedule S.MVSG(S) should be

constructed for SG(S),provided SG(S) is acyclic. If wi[xi] and

rk[xj] are in C(S), then the version order edge forces wi[xi] to

either precede wj[xj] or follow rk[xj] in S.More formally, for each

rk[xj] and wi[xi] in C(S) where i, j, and k are distinct, if xi << xj,

then include Ti-> Tj otherwise include Tk-> Ti as version order

edge. The purpose of adding version order edges is to prevent

S’s reads-from relationships from change when version

operations are mapped into data item operations.

MVSG(S8)=

 T2

T1 T4 T5

 T3

Explanation for MVSG(S8):

VOE Comments (i,j,k)

T2 ->T3 r2[x1] and w3[x3] since x1<< x3 (3,1,2)

T3 ->T4 r3[z1] and w4[z4] since z1<< z4 (4,1,3)

T2 ->T4 w2[y2] and r5[y4] since y2<< y4 (2,4,5)

Now, we will explore two commonly used MVCC algorithm in

practice, namely

i) MultiVersion Timestamp Ordering(MVTO) and

ii) MultiVersion 2PL(MV2PL)

4.MultiVersion Timestamp Ordering (MVTO)

Timestamp is a unique identifier created by the DBMS

(DataBase Management System) to identify a transaction.

Timestamp values are assigned in the order in which the

transactions are submitted to the system, so a timestamp can be

thought of as the transaction start time, denoted by TS(T), where

T is the transaction. Let TS(Ti)=i for all transaction i. In MVTO,

the value of version xi of each data item and the following two

timestamps are maintained.[4]

(i)RTS (xi)- The read timestamp of xi is the largest of all the

timestamps of all transaction s that have successfully read x i.

(ii)WTS (xi)-The write timestamp of xi is the timestamp of the

transaction that wrote the value of xi .

A MVTO scheduler processes operations first-come first-served.

It translates operations on data items into operations on versions

to give an illusion as if it has processed these operations in

timestamp order on a single version database. When the

transaction, say i, issues a read operation on data item x, the

scheduler processes ri[x] by first translating it into ri[xk], where

xk is the version of x with the largest timestamp less than or

equal to TS(Ti), and then sending ri[xk] to the TM. Otherwise ,it

rejects ri[x] . If TS(Ti) > RTS(xk) then set RTS(xk) = TS(Ti).

Eg: If r3(x) comes for processing and x1 is the version with the

largest timestamp, then the scheduler translates into r3(x1) and if

TS(T3) > RTS(x1),then set RTS(x1)= TS(T3)

It processes wi[x] by considering two cases. If it has already

processed a Read rj[xk] such that TS(Tk) < TS(Ti) < TS(Tj), then

it rejects wi[x] and the transaction Ti is aborted and rollbacked.

Otherwise, it translates wi[x] into wi[xi] ,sends it to the TM and
WTS(xi) = RTS(xi)=TS(Tj). However, to ensure recoverability, Ti

is not allowed to commit until after all the transactions that have

written some versions that Ti has read have committed. Since

MVTO need not process operations in timestamp order, a write

could arrive whose processing would invalidate a Read that the

scheduler already processed.

Eg: Suppose in S11:w1[x1] < r3[x1] represents the status of

execution of MVTO scheduler. Now suppose if a write w2[x]

comes and if the scheduler translates into w2[x2], then it produces

a schedule that no longer has the same effect as the operations

that are executed in timestamp order on a single version

database. The reason is in S11, T3 reads x1,but it should have

read the value written by T2,namely x2.So,the scheduler rejects

w2[x] it has already processed r3[x1] such that TS(Tk) < TS(Ti)

< TS(Tj) where i=2,j=3,k=1 in this example.

Now, if the read and write operations are processed in the above

manner, all the schedules that are generated by MVTO is 1SR.To

prove this, we must prove that MVSG is acyclic. For every edge

Ti-> Tj in MVSG, if TS(Ti) < TS(Tj) then MVSG is acyclic.

This must be true for every VOE also. Version order is xi<xj iff

TS(Ti) < TS(Tj).If Tj reads x from Ti, then TS(Ti) < TS(Tj)

because read operation is processed only if xi timestamp is less

than or equal to Tj. Let S be a schedule over {T1, . . . Tn}

produced by MVTO.Assume there exists rk[xj] and wi[xi]

operations in schedule S where i, j, and k are distinct, where i, j,

and k are distinct, and there are two possible way of generating

version order edges.

(i) if xi << xj, then it implies Ti-> Tj is in MVSG(S) and since xi

<< xj, then TS(Ti) < TS(Tj) which is needed to show that

MVSG is acyclic.

(ii) if xj << xi, which implies either Ti-> Tj or Tk-> Tj.The former

is not possible because the version order xj << xi implies TS(Tj)

<TS(Ti).So, TS(Tk) < TS(Ti) which is needed to show that

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

61

MVSG is acyclic. Hence all the schedules by MVTO is

1SR.So,they are equivalent to serial 1V history.

4.1 MVTO in Real-Time databases

[3][7]Unlike MV2PL, it doesn’t suffer from deadlock. The

problem with timestamp ordering is that there is no apparent way

to bound the number of times that a transaction can be aborted.

In the above example, in S11,if T2 has higher priority than T3

,then w2[x] cannot be rejected. On the contrary, Transaction T3

has to be aborted. Suppose transaction Tj issues an operation on

data item x. ,which conflicts with an operation issued by

transaction Ti . If TS(Ti) < TS(Tj)does not hold, Tj must be

aborted and restarted later with a larger timestamp.

Eg;S12: w1[x1]c1 w3[x3]w2[x2] c2 r3[x1]

T3 will be aborted because the value of x1 is overwritten. If the

MVTO maintains several versions in memory, late read r3[x1]

won’t be rejected. Normally version will be deleted from the

oldest to newest in the database.

5.MultiVersionTwo-phase Locking (MV2PL)
A transaction is said to satisfy the two-phase locking (2PL)

protocol if all of its locking operations precede the first unlock

operation A transaction satisfying this protocol consists of 2

phases - the expanding phase during which new locks are

acquired but no locks can be released and the shrinking phase

during which locks are released but no new lock can be acquired.

 In this locking scheme[4], Scheduler uses three types of

locks, namely, read ,write and certify locks. In the standard

locking scheme with only read and write locks, a write lock is an

exclusive lock. That is, once a transaction obtains a write lock on

an item, no other transactions can access that item. But, this is

not so in MV2PL. The main difference between multiversion and

lock models is that in MVCC, locks acquired for querying

(reading) data don't conflict with locks acquired for writing data

and so reading never blocks writing and writing never blocks

reading. MV2PL allows other transactions to read an item x

while a single transaction holds a write lock on x. This is

accomplished by maintaining two versions for each item x. One

version was written by a committed transaction and the other

versions created by a transaction T that acquires a write lock on

the item x but not yet committed. Other transactions can use the

committed version of x while T holds the write lock. T can write

the value of x but without affecting the committed version of x

that the other transactions uses. This form of MV2PL is called

2V2PL because it uses two versions. But ,when T wants to

commit, it must obtain a certify lock on all item that it currently

holds write locks on before it can commit. The certify lock is

exclusive lock. That is, the transaction cannot commit until all its

write locked items are released by any reading transactions.

Therefore, certify lock is not compatible with read locks and this

is illustrated in the lock compatibility table.

Lock Compatibility Table

 Read Write Certify

Read Yes Yes No

Write Yes No No

Certify No No No

In 2V2PL,multiple reads can happen concurrently with

single writes .But this comes at the expense of transaction’s

delay in commitment until it obtains exclusive certify locks on

all the items that it holds write locks. But this avoids cascading

aborts, since transactions are allowed to ∩ rφead the committed

version of item x. Using more than two versions is called

MV2PL.If the write locks don’t conflict, then any number of

uncertified versions may be used. It is possible for a transaction

here to read any number of uncertified versions but it cannot be

certified until all of the versions(uncertified) that it has read are

certified. But, this may result in cascading aborts. Certify lock

can be granted only if there are no read lock on the certified

versions.

[6] We will now prove that all the schedules that are

generated by 2V2PL is 1SR. Let S be a schedule over {T1, . . .

Tn} produced by 2V2PL. Let CEi denote the certification of

transaction i. Version order is xi<xj iff CEi <CEj…We can show

that MVSG is acyclic if there exists an edge Ti-> Tj in MVSG,

then CEi <CEj . This must be true for every VOE also. Let Ti->

Tj be in SG(S) Since certification is done after the read and write

operation and before committing, rj[xi]< CEj. Since every read

operation reads the certified version (Even in MV2PL,even if

transaction reads a uncertified version, it cannot be certified until

the version that it has read is certified),so CEi < rj[xi].Therefore,

CEi <CEj and hence MVSG is acyclic. Assume there exists rk[xj]

,wi[xi] and wj[xj] operations in schedule S where i, j, and k are

distinct, where i, j, and k are distinct, and there are two possible

way of generating version order edges.

(i) if xi <<xj, then it implies Ti-> Tj is in MVSG(S)

and since xi << xj,then CEi <CEj which is needed to show that

MVSG is acyclic.

(ii) if xj << xi, then the version order edge is Tk-> Ti.
Transaction Ti that writes x must obtain a certify lock on X. For

each transaction Tk that reads x, either Ti must delay its

certification until Tk has been certified (if it has not already been

so), or else Tk must wait for Ti to be certified before it can set its

read lock on x.The former is not possible because it implies CEi

<CEj and xj << xi implies CEj < CEi which is a contradiction.

Hence the latter leads to the conclusion CEk < CEi and MVSG is

acyclic. Hence all the schedules by 2V2PL is 1SR.So,they are

equivalent to serial 1V history.

5.1 MV2PL in Real-Time databases

[3][5][9]Though MV2PL allows multiple writes, it may

have priority inversion problem when the scheduler resolves data

conflicts by blocking a transaction which requests a conflicting

operation. Let CEi (x) denotes the certify operation on x of

transaction i. Assume that transaction T2 has a higher priority

than T1.

Eg: S13 = w1(y)r2(y)w2(x)r1(x)CE2(x)CE1(y)

 When the scheduler encounters CE2(x),it cannot be

certified,T2 is blocked because x is held by T1.This is priority

inversion because higher priority transaction T2 is blocked by

lower priority transaction T1. [8]When T1 requests CE1(y),it must

wait for T2 to release y .This results in circular wait and hence it

results in deadlock. An attempt to resolve this is to abort the

lower priority transaction, namely T1 here. Deadlock prevention

schemes such as Wait-die /wound-wait scheme can be used.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

62

6. CONCLUSION

This paper uses serialisation graphs to analyse the correctness of

MVCC algorithms in real-time databases. Both MVTO and

MV2PL algorithm produces a serialisable schedule. MVTO

algorithm doesn’t incur deadlock and it can decrease the

violation of time constraints due to resource waiting. The MVTO

algorithm discussed here also proposes when the lower priority

transaction has to be aborted. Generally transaction aborts

prevents deadlocks, which could degrade the performance of

real-time database systems. But it will result in wastage of

system resources.So, aborts should be done whenever necessary.

In 2V2PL / MV2PL,priority inversion could result in

deadlock. But this can be prevented by aborting the lower

priority transaction. But this should be done when the higher

priority transaction wants to acquire certify lock to commit. But

supposing if a higher priority transaction T2 requests a lock that

conflicts with the lower priority transaction T1,then T2 can be

made to wait for T1 to release the lock. Hence the balance can be

striked between the urgent demands of higher priority

transactions and unnecessary aborts of the lower priority

transaction.

REFERENCES

[1] Seok Hee Hong,Myoung Ho Kim, “A Real-Time

Concurrency control algorithm:Use of Multiversion and

Precedence Relationship,” takenfrom

csd.ks.ac.kr/~shhong/sources/jsa.ps.gz

[2] P.A. Bernstein and N. Goodman, “Multiversion

Concurrency Control-Theory and Algorithms,”ACM Trans.

Database Systems, vol. 8, no. 4, pp. 465-483, Dec. 1983.

[3] R.Abbott, “Scheduling Real-Time Transactions:A

performance Evaluation,” ACM Trans. Database

Systems,Vol.17,no.3 , pp. 513-560, Sep.1992

[4] Elmasri,Navathe, “Fundamentals Of Database

Systems,” 3rd edition,pp.629-678,Addison –Wesley,1997

[5] P. Bernstein, V. Hadzilacos, and N. Goodman,

“Concurrency Control and Recovery in Database Systems,”

Addison-Wesley, 1987.

[6] “Multiversion concurrency control,”chapter 5 taken from

research.microsoft.com/en-us/people/philbe/chapter5.pdf

[7] S.H.Son, “Advances in Real-Time Systems,”PHI,1995

[8] Quilong Han,Haiwei pan, “A Concurrency Control

Algorithm Access to Temporal Data in Real-Time Database

Systems,” imsccs, pp.168-171, 2008 International Multi-

symposiums on Computer and Computational Sciences,

2008

[9] Michael J. Carey and Waleed A. Muhanna. “The

performance of multiversion concurrency control

algorithms,” ACM Transactions on Computer Systems,

4(4):338{378, November 1986

http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1145/12518&rfr_dat=cr_pub=CS;cr_dest=ACM;cr_src_DOI=10.1109/TKDE.2002.1033780
http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1145/12518&rfr_dat=cr_pub=CS;cr_dest=ACM;cr_src_DOI=10.1109/TKDE.2002.1033780
http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1145/12518&rfr_dat=cr_pub=CS;cr_dest=ACM;cr_src_DOI=10.1109/TKDE.2002.1033780

