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ABSTRACT 

This paper analyses the correctness of  Multiversion Concurrency 

Control(MVCC) algorithms that are commonly deployed in Real-

time Databases. Database systems for real-time applications 

must satisfy timing constraints associated with transactions. 

Typically, a timing constraint is expressed in the form of a 

deadline and is represented as a priority to be used by 

schedulers. MVCC Algorithms used here makes use of a 

specialized version of Serialisation Graph, Called MultiVersion 

Serialisation Graph(MVSG) to resolve data conflicts to maintain 

the serialization order among conflicting transactions. Using 

MVSG,MVCC algorithms can determine which lower priority 

transactions should be aborted to avoid deadlocks. 

Keywords: Transaction, Multiversion, Schedule, 

Serialisable. 

1. INTRODUCTION 
The prime objective of real-time database systems is to maximize 

the number of transactions that should be executed with timing 

constraints[1]. A real-time database systems should schedule  the 

transactions based on its priority i.e., its deadline, its importance 

in the real-time scenario, elapsed time etc., For example, 

supposing there are two transactions T1 and T2 with T1 having  

the smaller deadline. The Real-time transaction manager 

schedules and favors T1 so that T1 can be finished before T2. 

Whereas in contrast, Conventional database techniques schedules 

and treats all transactions with equal priority. So, the deadline 

requirement of the transactions cannot be met with Conventional 

database techniques. 

Concurrency control  techniques are required for transaction 

scheduling  in order to  maintain consistency of data. Common 

real-time  concurrency control techniques are based on Two-

Phase locking(2PL) and Validation(Optimistic 

Techniques).Concurrency control  is the activity of synchronizing 

operations issued by concurrently executing programs on a 

shared database. The purpose of the concurrency control  is   

 To produce an execution that has the same effect as a  

serial (noninterleaved) one. 

 To enforce Isolation (through mutual exclusion) among 

conflicting transactions.  

 To preserve database consistency through consistency 

preserving execution of transactions. 

 To resolve read-write and write-write conflicts. 

 

 

 

 

 

 

 

 

 

 

When a transaction performs conflicting operations on data 

objects among active transactions(Transactions that are in 

execution and not yet committed),the transaction manager 

resolves conflicting operations using one of the following two  

approaches. 

(i) Blocking(Transactions made to wait) 

(ii) Rollback. 

Two-Phase Locking uses (i) to resolve data conflicts by blocking 

the transaction that causes it.2PL requires information about the 

transactions such as read/write data sets to be locked and the 

timestamp interval.Optimistic approach uses (ii) to resolve data 

conflicts by aborting the transactions that conflict with the 

transaction having a smaller timestamp. But it outsmarts 2PL by 

discarding tardy transactions and it also ensures that it doesn’t 

disturb other active transactions.  The disadvantage of this 

approach is that  it could result in unnecessary restarts   of  the 

aborted transactions  but this could be controlled by adjusting 

serialization order  among concurrent transactions. 

Multiversion concurrency control (MVCC) algorithms have been 

tailored to suit real-time databases by using priorities of 

transactions. Since every write operation produces a new version 

of data objects, there is no conflict among write operations. The 

main difference between multiversion and lock models is that in 

MVCC, locks acquired for querying (reading) data don't conflict 

with locks acquired for writing data and so reading never blocks 

writing and writing never blocks reading. 

The scope of this paper is to provide a comprehensive view on 

MVCC algorithms deployed in practice  for real-time databases 

to increase the degree of concurrent transactions and avoid 

unnecessary aborts which could degrade the performance of the 

system. This paper is organized as follows: Section 2 discusses 

the serialisability concepts behind MVCC. Section 3 brings out  

the  technical details  in  MultiVersion Serialisation 

Graph(MVSG). Section 4 describes the MultiVersion Timestamp 

Ordering algorithms. Section 5 describes the MultiVersion Two-

Phase Locking Algorithms. Both Section 4 and Section 5 hints on 

the problems in applying these algorithms to real-time databases 

and proposes the solution to it. Finally, Section 6 gives 

concluding remarks. 

2. MVCC Serialisability Concepts 
Multiple transactions can be executed concurrently by 

interleaving their operations. Operations include read (r), write 

(w), commit (c), abort (a).A Schedule (or history) S of n 
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transactions T1,T2,..Tn is an ordering of the operations of the 

transactions subject to the constraint that, for each transaction Ti 

that participates in S, the operations of Ti must appear in the 

same order in which they occur in Ti. However the operations 

from other transactions Tj can be interleaved with the operations 

of Ti in S. 

A schedule S is serial, if for every transaction T participating in 

the schedule, all the operations of T are  executed consecutively 

in the schedule, without  any interleaved operations from the 

other transaction. So it represents inefficient processing and can 

lead to low CPU  utilisation while a transaction waits for disk 

I/O, or for another transaction to terminate, thus slowing down 

processing considerably. Every serial schedule is correct because 

only one transaction at a time is active - the commit (or abort) of 

the active transaction initiates execution of the next 

transaction.Therefore, all the serial schedules can leave the 

database in a consistent state. 

For non-serial schedules the goal is to determine which, are 

correct and which are erroneous. The concept used to 

characterize schedules in this manner is called serialisability of 

the schedule. A schedule S of n transactions is serializable if it is 

equivalent to some serial schedule of the same n transactions. 

Serializable is not the same as being serial. Serializable implies 

that the schedule is a correct schedule. So, it will leave the 

database in a consistent state. The interleaving is appropriate and 

will result in a state as if the transactions were serially executed, 

yet will achieve efficiency due to concurrent execution.  

2.1 Conflict Equivalence 

 Eg: T1: r(x) w(x) r(y) w(y) c 

T2: r(x) w(x) c 

Two operations are said to conflict if they satisfy all three 

conditions: 

(i) they belong to different transactions   

(ii) they access the same item   

(iii) at least one is a write operation 

Ex.: A sample schedule 

S1: r1(x) r2(x) w1(x) r1(y) w2(x) w1(y)                

In the above example, r2(x) and w1(x) are conflicting 

operations because they satisfy all the above three conditions. 

Similarly w1(x) and w2(x), r1(x) and w2(x) are the other two 

conflicting operations. 

Two schedules are conflict equivalent, if the order of any two 

conflicting operations is the same in both schedules. A schedule 

is Conflict Serialisable if it is conflict equivalent to some Serial 

schedule. Ex: Another sample schedule. 

S2: r2(x) r1(x) w1(x) w2(x) r1(y) w2(x) w1(y)       

Now S1 and S2 are conflict equivalent because the order of all the 

three conflicting operations are preserved. Interleaving of 

operations occurs in an operating system through some scheduler, 

which allocates resources to all processes. Factors such as system 

load time of transaction submission and priorities of processes 

contribute to the ordering of operations in a schedule. It is 

difficult to determine how the operations in a schedule will be 

interleaved beforehand to ensure serialisability. 

2.2 View Equivalence 

Another less restrictive definition of equivalence of schedules is 

called View Equivalence. Two schedules are said to be view 

equivalent if they have the same reads-from relationships and 

the same writes. The same reads-from relationships amounts to 

having the same Read operations. Consider the following 

schedule of three transactions  

T1: r1(x), w1(x) T2: w2(x) and T3: w3(x) 

Schedule S3: r1(x), w2(x) w1(x) w3(x) 

In S3, the operations w2(X) and w3(X) are blind writes, since T2 

and T3 do not read the value of X. S3 is view serializable, since 

it is view equivalent to the serial schedule T1, T2, T3. However, 

S3 is not conflict serializable, since it is not conflict equivalent 

to any serial schedule. In a multiversion concurrency control 

algorithm, each Write on a data item x produces a new version of 

x. The Transaction manager(TM) that manages x therefore keeps 

a list of versions of x, which is the history of values that the TM 

has assigned to x. For each Read(x), the scheduler tells the TM 

which one of the versions of x to read. 

The cost of maintaining multiple versions is storage space but 

still many recovery techniques such as Deferred Update and 

Immediate Update requires some before image (BFIM) 

information, at least of those data items that have been updated 

by active transactions. BFIM of a data item corresponds to its list 

of old versions and  the recovery algorithm makes use of same in 

case any  active transactions aborts. It is a small step for the TM 

to make those versions explicitly available to the scheduler. 

The existence of multiple versions is only visible to the scheduler 

and TM, not to user transactions. Transactions still reference 

data items, such as x, y, etc.  Users see as if there is only one 

version of each data item, namely, the last one that was written 

from that user’s perspective. When the scheduler decides to 

assign a particular version of x to Read(x), the value returned 

may be one produced by an active or committed transaction. If 

the version read is one produced by an active transaction, 

recoverability imposes one constraint. The constraint is that no 

transaction T in Schedule S commits until all transactions that 

have written an item (version of data item) that T reads have 

committed. In other words, reading transaction’s commitment 

would be delayed until the transaction that produced the version 

has committed. 

In MVCC, multiversion (MV) schedules represent the TM’s 

execution of operations on a multiversion database, and single 

version (1V) schedules represent the interpretation of MV 

schedules in the users’ single version view of the database. 

Serial 1V schedules are correct. But the system actually produces 

MV schedules. So, to prove that a MVCC is correct, we must 

prove that each of the MV schedules that it can produce is 

equivalent to a serial 1V schedule. For each data item x, the 

versions of x are designated  by xi, xj, . . . , where the subscript 

denote the index of the transaction that wrote the version. Thus, 

each write in an MV history is always of the form wi[xi], where 

the version subscript equals the transaction subscript. Reads are 
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denoted in the usual way, such as ri [xj]. Now, let us consider a 

sample MV schedule 

S4 = w1[x1]c1 w2[x2] c2 r3[x1]w3[y3]c3 

Now, according to the definition of conflicts, the operations that 

conflict are w1[x1]and r3[x1]. But w2[x2] doesn’t conflict with 

either w1[x1] and r3[x1] because x2 and x1 are  different data items 

i.e. they are different versions of x. So, they don’t conflict. Now, 

if we map S4 into an equivalent 1V schedule, we get 

S5= w1[x]c1w2[x]c2r3[x] w3 [y]c3 

The conflicting operations, namely w1[x1]and r3[x1]in S4 occur in 

the same order in S5 also. But in S4, w2[x2] doesn’t conflict with  

r3[x1]but their corresponding 1V operations, namely w2[x] and  

r3[x] do conflict. So, here applying the conflict equivalence is not 

suitable. Moreover, in S4, T3 reads x from T1, whereas in S5, T3 

reads x from T2. Since T3 reads a different value of x in S4 and 

S5, it may write a different value in y. So, S4  is not view 

equivalent to S5. Let us denote the serialization graph of a 

schedule S, by SG(S). Now, to prove that every MV schedule 

that MVCC can generate is equivalent to a serial 1V schedule, 

We will prove that  SG of an MV schedule is acyclic, thereby 

making it serial. Then we will check that every serial MV 

schedule is equivalent to serial 1V schedule or not. Now, 

consider an MV schedule 

S6 =w1[x1]w1[y1]c1r2[x1]r2[y1]w2[x2]w2[y2]c2r3[x1] r3[y2]c3 

SG(S6) =  

                            T2 

 

T1 

 

                             T3 

An edge from Ti-> Tj indicates that Tj  reads some data item X 

from Ti. These edges are called as Reads from Edges. Now S6 is 

serial and the corresponding 1V schedule. 

S7 = w1[x]w1[y]c1r2[x]r2[y]w2[x]w2 [y]c2r3[x] r3[y]c2 

S6 is not equivalent to S7 because in S6 ,T3 reads x from 

T1, whereas in S7, T3 reads x from T2.Therefore,not all serial MV 

schedules are equivalent to  serial  1V schedules. 

Only a subset of serial MV schedules, called l-serial 

MV schedules, are equivalent to serial 1V schedules. So, in 

order to prove that MVCC is correct, we must prove that its MV 

schedules are equivalent to serial 1V schedules. 

For this, we will use a modified version of serialisation graph 

called MultiVersion Serialisation Graph (MVSG). An MV 

schedule is equivalent to a l-serial MV schedule iff (if and only 

if) it has an acyclic MVSG. 

3. MultiVersion Serialisation Graph (MVSG) 
We know that two 1V schedules over the same transactions are 

view equivalent if they contain the same operations, have the 

same reads-from relationships and the same final writes. The 

same definition is applicable for MV schedules except the term 

final writes can be omitted because if two schedules are over the 

same transactions then they have the same writes. Since no 

versions are overwritten, all writes are effectively final writes. 
Thus, if two MV schedules over the same transactions have the 

same operations and the same reads-from relationships, then they 

have the same final writes and are therefore view equivalent. 

Here the meaning of reads from relationship is slightly different. 

Transaction Tj reads x from Ti, in MV schedule S if Tj, reads the 

version of x produced by Ti. Next, we will see the equivalence of 

an MV schedule SMv to a 1V schedule S1v. SMv and S1v must be 

over the same set of transactions and their operations must be in 

one-to-one correspondence. That is,the mapping of  SMv to S1v is 

defined by mapping ci to ci, ai to ai, ri[x] to  ri [xj] for some version 

xj of x and  wi [x] to wi[xi]. Since  the operations of   SMv and S1v 

are in one-to-one  correspondence, their reads-from relationships 

would be the same. All of the final writes in S1v must be part of 

the state produced by SMv, because SMv has all versions written in 

it. So, just like MV schedules, an MV schedule and 1V SMv are 

equivalent if they have the same reads-from relationships. 

[2]Two operations in an MV schedule are said to be conflict if 

they are from different transaction ,operate on the same version 

and one is a Write. Only one form of conflict is possible in an 

MV schedule:  wi[xi] and rj[xi] conflict provided the former 

precedes the latter .The other way is not  possible because Tj 

cannot read xi until it has been produced. Conflicts of the form 

wi[xi] < wj[xi] are impossible, because each write produces a 

unique new version. Thus, all conflicts in an MV schedule 

correspond to reads-from relationships. 

But since only one kind of conflict is possible in an MV history, 

SGs are simple to draw. Let S be an MV schedule. SG(S) has 

nodes for the committed projection C(S ),which includes only the 

operations in S that belong to the committed  transactions and 

also edge Ti-> Tj is present iff for some X, rj[xi] (i # j) is an 

operation of C(S) A serial MV schedule S is 1-serial if for all i,j, 

and x, if Ti reads x from Tj then i = j, or Tj is   the  last 

transaction preceding Ti, that writes into any version of x.In other 

words, a serial MV history is 1-serial if for each reads-from 

relationship, say Ti reads x from Tj, Tj is the last transaction 

preceding Ti, that writes any version of x. Schedule S6  is not l-

serial because w0[x0]< w1[x1] < r2[x0]. Here T2 should have read x 

from T1 because it has written x last. Consider another sample 

schedule: 

S8 = w1[x1] w1[y1] w1[z1] c1 r2[x1] w2[y2]c2 r3[x1] r3[z1] w3[x3]c3 

r4[z1] w4[y4] w4[z4] c4 r5[x3] r5[y4] r5[z4] . The schedule S8  is 1-

serial. 

[6]An MV schedule is 1- Serializable (or 1SR) if its committed 

projection is equivalent to a l-serial MV schedule. A serial 

schedule can be 1SR even though it is not  1-serial.  

Eg: S9 = w1[x1]c1 r2[x1] w2[x2]c2 r3[x1] c3. 

is not l-serial because w1[x1]< w2[x2] < r3[x1].But it is lSR, 

because it is equivalent to 

S10 = w1[x1]c1 r3[x1] c3 r2[x1] w2[x2]c2  

To determine if a MVCC is correct, we must determine if all of 

its schedules are 1SR. MVCC algorithms sort the versions of 

each data item into a total order. MVSG uses this total order of 

versions to include the edges.These edges are called as Version 

Order Edges(VOE).[6]  
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Given an MV schedule S and a data item x, a version order 

denoted by << for any x in S is a total order of versions of any  x 

in H. A version order for H is the union of the version orders for 

all data items. Eg; For S8, a version order  is x1 << x2,, y1 << y2 

<< y4, and z1 << z4. 

SG(S8) =            T2 

 T1                      T4                     T5 

 

              T3               

Explanation for SG(S8): 

Edge(ROE) Comments 

T1 ->T2 r2[x1] because T2 reads x from T1 

T1 ->T3 r3[x1] because T3 reads x from T1 

T1 ->T4 r4[z1] because T4 reads z from T1 

T3->T5 r5[x3] because T5 reads x from T3 

T4->T5 r5[z4] because T5 reads z from T4 

MVSG(S) is SG(S) with the inclusion of version order 

edges for any serial MV schedule S.MVSG(S) should be 

constructed for SG(S),provided SG(S) is acyclic. If wi[xi] and 

rk[xj] are in C(S), then the version order edge forces wi[xi] to 

either precede wj[xj] or follow rk[xj] in S.More formally, for each 

rk[xj] and wi[xi] in C(S) where i, j, and k are distinct, if xi << xj, 

then include Ti-> Tj otherwise include Tk-> Ti as version order 

edge. The purpose of adding version order edges is to prevent  

S’s reads-from relationships from change when version 

operations are mapped into data item operations. 

MVSG(S8)=  

            T2 

             

T1                      T4                     T5 

 

              T3       

Explanation for MVSG(S8): 

VOE Comments (i,j,k) 

T2 ->T3 r2[x1] and w3[x3] since x1<< x3 (3,1,2) 

T3 ->T4 r3[z1] and  w4[z4] since z1<< z4 (4,1,3) 

T2 ->T4 w2[y2] and r5[y4] since y2<< y4 (2,4,5) 

Now, we will explore two commonly used MVCC algorithm in 

practice, namely  

i) MultiVersion Timestamp Ordering(MVTO) and 

ii) MultiVersion  2PL(MV2PL) 

4.MultiVersion Timestamp Ordering (MVTO) 

Timestamp is a unique identifier created by the DBMS 

(DataBase Management System) to identify a transaction. 

Timestamp values are assigned in the order in which the 

transactions are submitted to the system, so a timestamp can be 

thought of as the transaction start time, denoted by TS(T), where  

T is the transaction. Let TS(Ti)=i for all transaction i. In  MVTO, 

the value of version xi of each data item and the following two 

timestamps are maintained.[4] 

(i)RTS (xi)- The read timestamp of  xi is the largest of all the 

timestamps of all transaction s that  have successfully read x i. 

(ii)WTS (xi)-The write timestamp of  xi is the timestamp of the 

transaction that wrote the value of xi .  

A MVTO scheduler processes operations first-come first-served. 

It translates operations on data items into operations on versions 

to give an illusion as if it has processed these operations in 

timestamp order on a single version database. When the 

transaction, say i, issues a read operation on data item x, the 

scheduler processes ri[x] by first translating it into ri[xk], where 

xk is the version of x with the largest timestamp less than or 

equal to TS(Ti), and then sending ri[xk] to the TM. Otherwise ,it 

rejects ri[x] . If TS(Ti ) >  RTS(xk) then set RTS(xk) = TS(Ti ). 

Eg: If r3(x) comes for processing and x1 is the version with the 

largest timestamp, then the scheduler translates into r3(x1) and if 

TS(T3 ) > RTS(x1),then set RTS(x1)= TS(T3 ) 

It processes wi[x] by considering two cases. If it has already 

processed a Read rj[xk] such that TS(Tk) < TS(Ti) < TS(Tj), then 

it rejects wi[x] and the transaction Ti  is aborted and rollbacked. 

Otherwise, it translates wi[x] into wi[xi] ,sends it to the TM and  
WTS(xi) = RTS(xi)=TS(Tj). However, to ensure recoverability, Ti  

is not allowed to commit until after all the transactions that have 

written some versions that Ti has read have committed. Since 

MVTO need not process operations in timestamp order, a write 

could arrive whose processing would invalidate a Read that the 

scheduler already processed.   

Eg: Suppose in S11:w1[x1] < r3[x1] represents the status of 

execution of MVTO scheduler. Now suppose if a write w2[x] 

comes and if the scheduler translates into w2[x2], then it produces 

a schedule that no longer has the same effect as the operations 

that are executed in timestamp order  on a single version 

database. The reason is in S11, T3 reads  x1,but it should have 

read the value written by T2,namely x2.So,the scheduler rejects 

w2[x] it has already processed r3[x1]  such that   TS( Tk) < TS( Ti) 

< TS( Tj) where i=2,j=3,k=1 in this example. 

Now, if the read and write operations are processed in the above 

manner, all the schedules that are generated by MVTO is 1SR.To 

prove this, we must prove that MVSG is acyclic. For every edge 

Ti-> Tj  in MVSG, if TS( Ti) < TS( Tj) then MVSG is acyclic. 

This must be true for every VOE also. Version order is xi<xj iff 

TS( Ti) < TS( Tj).If Tj reads x from Ti, then TS( Ti) < TS( Tj) 

because  read operation is processed only if xi timestamp is less 

than or equal to Tj. Let S be a schedule over {T1, . . . Tn} 

produced by MVTO.Assume  there exists rk[xj] and wi[xi ] 

operations in schedule S where i, j, and k are distinct, where i, j, 

and k are distinct, and there are two possible way of generating 

version order edges. 

(i) if xi << xj, then it implies  Ti-> Tj is in MVSG(S) and since  xi 

<< xj, then TS( Ti) < TS( Tj) which is needed to show that 

MVSG is acyclic. 

(ii) if xj << xi, which implies either Ti-> Tj or Tk-> Tj.The former 

is not possible because the version order  xj << xi implies TS( Tj) 

<TS( Ti).So, TS( Tk) < TS( Ti) which is needed to show that 
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MVSG is acyclic. Hence all the schedules by MVTO is 

1SR.So,they are equivalent to serial 1V history. 

4.1 MVTO  in Real-Time databases 

[3][7]Unlike MV2PL, it doesn’t suffer from deadlock. The 

problem with timestamp ordering is that there is no apparent way 

to bound the number of times that a transaction can be aborted. 

In the above example, in S11,if T2 has higher priority than T3 

,then w2[x] cannot be rejected. On the contrary, Transaction T3 

has to be aborted. Suppose transaction Tj issues an operation on 

data item x. ,which  conflicts with an operation issued by 

transaction Ti . If TS(Ti) < TS(Tj )does not hold, Tj  must be 

aborted and restarted later with a larger timestamp. 

Eg;S12: w1[x1]c1 w3[x3]w2[x2] c2 r3[x1] 

T3 will be aborted because the value of x1 is overwritten. If the 

MVTO maintains several versions in memory, late read r3[x1] 

won’t be rejected. Normally version will be deleted from the 

oldest to newest in the database. 

5.MultiVersionTwo-phase Locking (MV2PL) 
A transaction is said to satisfy the two-phase locking (2PL) 

protocol if all of its locking operations precede the first unlock 

operation A transaction satisfying this protocol consists of 2 

phases - the expanding phase during which new locks are 

acquired but no locks can be released and the shrinking phase 

during which locks are released but no new lock can be acquired. 

     In this locking scheme[4], Scheduler uses three types of 

locks, namely, read ,write and certify locks. In the standard 

locking scheme with only read and write locks, a write lock is an 

exclusive lock. That is, once a transaction obtains a write lock on 

an item, no other transactions can access that item. But, this is 

not so in MV2PL. The main difference between multiversion and 

lock models is that in MVCC, locks acquired for querying 

(reading) data don't conflict with locks acquired for writing data 

and so reading never blocks writing and writing never blocks 

reading. MV2PL allows other transactions to read an item x 

while a single transaction holds a write lock on x. This is 

accomplished by maintaining two versions for each item x. One 

version was written by a committed transaction and the other 

versions created by a transaction T that acquires a write lock on 

the item x but not yet committed. Other transactions can use the 

committed version of x while T holds the write lock. T can write 

the value of x  but without affecting the committed version of x 

that the other transactions uses. This form of MV2PL is called 

2V2PL because it uses two versions. But ,when T wants to 

commit, it must obtain a certify lock on all item that it currently 

holds write locks on before it can commit. The certify lock is 

exclusive lock. That is, the transaction cannot commit until all its 

write locked items are released by any reading transactions. 

Therefore, certify lock is not compatible with read locks and this 

is illustrated in the lock compatibility table. 

Lock Compatibility Table 

 Read   Write Certify 

Read   Yes Yes No 

Write Yes No No 

Certify No No No 

In 2V2PL,multiple reads can happen concurrently with 

single writes .But this comes  at the expense of transaction’s 

delay  in commitment until it obtains exclusive certify locks on 

all the items that it holds write locks. But this avoids cascading 

aborts, since transactions are allowed to ∩ rφead the committed 

version of item x. Using more than two versions is called 

MV2PL.If the write locks don’t conflict, then any number of 

uncertified versions may be used. It is possible for a transaction 

here to read any number of uncertified versions  but it  cannot be 

certified until all  of the versions(uncertified) that it has read are 

certified. But, this may result in cascading aborts. Certify lock 

can be granted only if there are no read lock on the certified 

versions. 

[6] We will now prove that all the schedules that are 

generated by 2V2PL is 1SR. Let S be a schedule over {T1, . . . 

Tn} produced by 2V2PL. Let CEi denote the certification of 

transaction i. Version order is xi<xj iff CEi <CEj…We can show 

that MVSG is acyclic if there exists an edge Ti-> Tj in MVSG, 

then  CEi <CEj . This must be true for every VOE also. Let Ti-> 

Tj be in SG(S) Since certification is done after the read and write 

operation and before committing, rj[xi]< CEj. Since  every read 

operation reads the certified version (Even in MV2PL,even if 

transaction reads a uncertified version, it cannot be certified until 

the version that it has read  is certified),so CEi < rj[xi].Therefore, 

CEi <CEj and hence MVSG is acyclic. Assume there exists rk[xj] 

,wi[xi ] and wj[xj]  operations in  schedule S where i, j, and k are 

distinct, where i, j, and k are distinct, and there are two possible 

way of generating version order edges. 

(i) if xi <<xj, then it implies  Ti-> Tj is in MVSG(S) 

and since  xi << xj,then CEi <CEj which is needed to show that 

MVSG is acyclic. 

(ii) if xj << xi, then the version order edge is Tk-> Ti. 
Transaction Ti that writes x must obtain a certify lock on X. For 

each transaction Tk that reads x, either Ti must delay its 

certification until Tk has been certified (if it has not already been 

so), or else Tk must wait for Ti to be certified before it can set its 

read lock on x.The former is not  possible because it implies CEi 

<CEj and xj << xi implies CEj < CEi which is a contradiction. 

Hence the latter leads to the conclusion CEk < CEi and MVSG is 

acyclic. Hence all the schedules by 2V2PL is 1SR.So,they are 

equivalent to serial 1V history. 

5.1 MV2PL in Real-Time databases 

[3][5][9]Though MV2PL allows multiple writes, it may 

have priority inversion problem when the scheduler resolves data 

conflicts by blocking a transaction which requests a conflicting 

operation. Let CEi (x) denotes the certify operation on x of 

transaction i. Assume that transaction T2 has a higher priority 

than T1. 

Eg: S13 = w1(y)r2(y)w2(x)r1(x)CE2(x)CE1(y) 

 When the scheduler encounters CE2(x),it cannot be 

certified,T2 is blocked  because x is held by T1.This is priority 

inversion because higher priority transaction T2 is blocked by 

lower priority transaction T1. [8]When T1 requests CE1(y),it must 

wait for T2 to release y .This results in  circular wait and hence it 

results in deadlock. An attempt to resolve this is to abort the 

lower priority transaction, namely T1 here. Deadlock prevention 

schemes such as Wait-die /wound-wait scheme can be used. 
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6. CONCLUSION 

This paper uses serialisation graphs to analyse the correctness of 

MVCC algorithms in real-time databases. Both MVTO and 

MV2PL algorithm produces a serialisable schedule. MVTO 

algorithm doesn’t incur deadlock and it can decrease the 

violation of time constraints due to resource waiting. The MVTO 

algorithm discussed here also proposes when the lower priority 

transaction has to be aborted. Generally transaction aborts 

prevents deadlocks, which could degrade the performance of 

real-time database systems. But it will result in  wastage of 

system resources.So, aborts should be done whenever necessary. 

In 2V2PL / MV2PL,priority inversion could result in 

deadlock. But this can be prevented by aborting the lower 

priority transaction. But this should be done when the higher 

priority transaction wants to acquire certify lock to commit. But 

supposing if a higher priority transaction T2 requests a lock that 

conflicts with the lower priority transaction T1,then T2  can be 

made to wait for T1  to release the lock. Hence the balance can be 

striked between the urgent demands of higher priority 

transactions and unnecessary aborts of the lower priority 

transaction. 
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