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ABSTRACT 

In this paper, a simple design method of proportional-integral (PI) 

controllers is proposed for higher order (HO)-plus delay time 

(HOPDT) processes. This controller is designed to handle higher 

order processes with long dead times, long time constants, and 

monotonic or oscillatory responses. The method is based on the 

real and imaginary values of the higher order processes for the 

desired settling time, and constraints on the complementary 

sensitivity function to handle the high frequency noise rejection. 

The procedure seems to be simpler, effective and improved 

performance can be expected of the various processes. The 

method has guarantee of existence of the solution. A simulation 

example and real time experimental level system are included to 

show the effectiveness, simplicity and practical applicability of 

the proposed method.  
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J.7 [COMPUTERS IN OTHER SYSTEMS]: Industrial 

Control, Process Control and real time 
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Design, Theory, Experimentation. 

Keywords 
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1. INTRODUCTION 
Modern control theory has been developed significantly in the last 

two decades, however the use of the proportional-integral(PI)-

derivative (PID) controllers in various industries remained 

unaffected. The PID controllers are effectively used in many 

industries including process control, motor drives, magnetic and 

optic memories, automotive, flight control, instrumentation, 

chemical and petrochemical etc. The main reason of PID being 

used is its advantage of simple structure, good stability, high 

reliability, and simplicity of implementation in practice by control 

and process engineers. Over the past 60 years, the number of 

methods to design and tune the PID controller parameters have 

been developed for stable processes  

[1]-[3]. Some of them includes, the Coon-Cohen reaction curve, 

the Ziegler-Nichols step response, Ziegler-Nichols ultimate  

 

cycling, the Ziegler-Nichols frequency-response method, Internal 

model control, error-integral criteria (IAE, ISE, ITAE etc.). 

However, these tuning methods have certain limitations. They do 

not provide good tuning parameterizations for HO/HOPDT 

processes. The gain and phase margin (GPM) specifications 

methods have used in many applications to design the PID type 

controllers [4]-[7]. An important measures of robustness have 

been served by the GPM methods. The damping factor of the 

systems is related to phase margin and therefore served as a 

performance measure of the system. In GPM the solutions are 

normally obtained by numerically or graphically by means of trial-

and-error, generally using Bode plots. 

Many of the industrial processes have high order dynamics and 

includes small or large delay time, which makes difficulty in the 

design of low order feedback controllers. For such systems, the 

controller design methods like GPM and those incorporate small 

dynamic information of the systems have been failed. As a result 

the best methods of PI (PID) controllers design for higher order 

processes are always adopted time to time resulted from the 

research algorithms [8]-[9]. In control system design, the reduced 

model makes the synthesis, analysis and design of controller 

simpler. The reduction of high order processes to a reduced order 

processes have been a topic of interest of many researchers (e.g. 

[10]-[13]). The most of the prevalent controller tuning techniques 

for higher order processes are based on the reduced order models. 

The success of the controller depends on the accuracy of reduced 

order models. Any mis-match between plant and model may lead 

to serious problem and there is no guarantee of satisfactory 

performance of the process. It is true that the simple PI or PID 

controllers are normally preferred for high order and/or delay time 

linear-time-invariant systems. Therefore, many researchers and 

academicians follow the path of low order controllers design for 

HO/HOPDT processes. 

In this paper, the higher order process dynamics at dominant poles 

are used to calculate the parameters of the PI (with negligible D 

action) controllers. The desired closed-loop settling time is used 

to calculate the complex term in the complex plane. The linear 

simultaneous equations are achieved from characteristics 

equations and complimentary sensitivity functions. The 

parameters of the controllers are computed by solving constrained 

linear equations. The stability of closed-loop systems is always 

guaranteed in an acceptable operating regions by the designed 

controller. The proposed method is verified on several simulation 

examples of HO/HOPDT, including those that can not be easily 

solved with an existing techniques.  
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A real time experiment is carried out on level control system and 

an effectiveness of proposed method is verified.  

The organization of this paper is as follows. The proposed method 

is illustrated in section 2 while section 3 includes simulation 

examples. Section 4 is devoted to real time experimentation and 

the general conclusions are summarized in section 5.  

2. THE PROPOSED METHOD 

The single loop PID controller configuration with process is as 

shown in figure 1. Suppose the open-loop transfer function 

(OLTF) of the higher order plant is  
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where, qp , 
1

ib  ),0,1,2,=( pi   and 
1

ja  

),1,2,=( qj   are constant coefficients. The Pade 

approximation replaces delay time term 
s

e d
t

. The model given 

by equation (1) with Pade approximation for delay time can be 

written as  
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where ib  ),1,2,=( ni   and ja  ),0,1,2,=( nj   are 

constant coefficients. An exact analytical description of closed-

loop settling time and maximum peak overshoot is difficult to 

obtain for higher order systems. However, the relationship of 

second order system can be approximated to measure the 

performance of the systems. In the desired closed-loop response 

the maximum peak overshoot to be less than 10  % and settling 

time to be longer than s10  are assumed to ensure the location of 

the complex poles close to imaginary axis. The location of 

dominant poles in the complex plane can be computed as 

)
(0.1))(

(1
4

=
2ln

j
t

jbas
s

                      (3) 

where, a  and b  are constant coefficients, and ln  represent 

natural logarithm. 

The standard form of the PID controller is  
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where, pK , iK  and dK  represents proportional, integral and 

derivative gain respectively. The characteristic equation of the 

system with controller )(sGc  for the structure as shown in Fig. 

1  is 

0.=)()(1 sGsG cp                                                         (5) 

Suppose that the requirements of the closed-loop control 

performance in frequency or time domain are converted into a pair 

of conjugate poles [1] as jbasd =
1,2

. The problem of the 

dominant pole placement is to find the PID parameters such that 

the closed-loop poles jbasd =
1,2

 should be lie on the 

locus of cpGG  in the desired region. Hence the desired closed-

loop response can be achieved by adjusting the controller 

parameters at jbas =  or jbas = . Substituting 

jbas =  in equation (5)  
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 or 
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Where the terms in equation (6) are )]([=1 jbaGReX p  

)]([=2 jbaGImX p . Re  and Im  denotes real and 

imaginary term. After simplification, and comparisons of real-real 

and imaginary-imaginary parts in equation (6), it can be written as  
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The pole placements with controller can be ensured by verifying 

the magnitude and angle condition at 
1,2

ds . For the structure as 

shown in Fig. 1, the magnitude condition at jbas =  is  

1|=)()(| jbaGjbaG cp  

or 

|=|

|])][2()[(| 21

22

jba

XXabKbKjKaKKba dpipd  

(9) 

After simplification, equation (9) yields, 

Fig. 1 Structure of PID with plants 
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 The angle condition for the system with controller at 

jbas =  is,  
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After simplification, equation (11) can be wriiten as, 
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To ensure a high frequency noise rejection a constraint on the 

complementary sensitivity function S can be defined as  
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where, A is the desired value of the complementary sensitivity 

function for the desired frequency range s  rad/s, and  

and  are real coefficients. A factor of )]()([1 sGsG cp  is 

much greater than unity in most of the practical cases over the 

frequency ( at js = ) of interest. Thus the value of 

complimentary sensitivity function A  is always positive and less 

than unity. With a=  and b= , the desired 

complementary sensitivity function is A =
22 ba . The 

coefficients in sensitivity function are computed at 

js = . The desired sensitivity function in the range 

form 5  dB  to 20  dB  is assumed, but one can have a 

freedom to select any appropriate value of dominant poles such 

that the desired sensitivity function 0<A  dB . After 

simplification, with real-real and imaginary-imaginary 

comparison,  

;= 22
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The design of controller is based on the equations (7), (8), (10), 

(12) (14) and (15), at least three equations should be fulfilled, 

since it has three parameters to tune. In this paper, the condition 

given in Eq. (14) is taken as the main function to minimize, and 

the conditions given in equations (7), (8), (12) and (15) are taken 

as equality constrains for the minimization. The optimization 

toolbox of Math-works MATLAB has been used to reach out the 

best solution with the minimum error. The function used for this 

purpose is called LINPROG, which finds the constrained 

minimum of a function of several variables. It solves problems of 

the form:  

xf T

x
min  

such that bAx , eqeq bxA =  and ubxlb , where f  

is the function to be minimize, Ax  and b  are matrices of 

inequalities constraints, eqA  and eqb  matrices of equality 

constraints, lb  and ub  defines a set of lower and upper bounds 

on the design variables, x , so that the solution is always in the 

range ubxlb . To ensure the positiveness values of 

controller parameters, nonlinearity constraints such as 0>dK ,  
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0>pK  and 0>iK  are also included . The parameters of the 

controllers can be accepted only if the conditions given in 

equations (7), (8) (10) and (12) are fulfilled and a function given 

in equation (14) is with minimum value. It should be note that the 

constraint given in eq. (10) is not used in the LINPROG function, 

but it should be satisfy by the obtained controller parameters. This 

ensures the guaranteed dominant of the assigned poles in the locus 

of )(sGG cp . 

Design procedure:   

1. Find the dominant poles using the relation given by 

equation (3) such that A  dB   (-5, -20) dB . 

2. Obtain the values of 1X  and 2X  at jbas = . 

3. Minimize the function given by eq. (14) with equality 

constraints of eqs. (7), (8), (12) and (15). Set =A [ ], 

=b [ ], the initial starting point =0x [ ], =ub [ ] 

and =lb [ ] in MATLAB's LINPROG function. Also 

apply the inequality constraints such as 0>dK , 

0>pK  and 0>iK . 

4. If the constraints given in equations (7), (8), (10), (12) 

and (15) are not satisfied, repeat the step 1 to 3 by 

changing the st . This ensures the robustness and 

guaranteed solution of the problem. 

5. Finally, obtain the controller parameters dK , pK  and 

iK  using the minimized variable x . 

The proposed approach has superior features, including: 

simplicity; easy implementation; and good computational 

efficiency. Fast tuning of PID controller parameters yields high-

quality results. 

3.  SIMULATION EXAMPLE 

A higher order with delay time process is simulated in MATLAB 

7.0.1 to show effectiveness of the proposed method. The 

controller designed by proposed algorithm are compared with 

prevalent tuning techniques such as Wang et al.'s method [8], Ho 

et al.'s method [6] and latest method of Q.-G. Wang et al.'s [14] 

and Malwatkar et al.'s [9]. Wang et al.'s controller design method 

is based on the fitting of the process frequency response to a 

particular second-order plus dead time structure and Ho et al.'s 

method is based on gain margin and phase margin specifications 

which are set at 3 and 60 degree respectively. Q.-G. Wang et al's 

method is based on Nyquiest plot and root-locus for systems with 

and without delay time respectively. Malwatkar et al's method 

uses reduction of higher order system by frequency response data 

and design of controllers has been made for reduced order. These 

methods are the most suitable candidates for comparison since 

these are the best and latest methods compared with most of other 

tuning formulas. 

 Consider the process given in [8] with OLTF  

.
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The range of settling time st  for the desired closed-loop response 

can be approximated using the equation (3). Suppose the settling 

time to be no longer than 12  The values of complex term for this 

specifications are 0.45480.3333= js . The real and 

imaginary components of 0.4548)0.3333( jGp  are 

0.0025=1X  and 0.0132=2X  respectively. The 

function  

ipd KKKKf 0.00240.01060.0041=)(  

given by eq. (14) is minimized by equality constraints  
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resulted from the equations (7), (8), (12) and (15). The resulting 

controller is,  

.
51.12

67.16=)(
s

sGc  

The parameters of the controller satisfy all the constraints. Wang 

et al.'s, Ho et al.'s Malwatkar et al.'s methods give the controllers,  

,22.09
49.78

58.62=)( s
s

sGcWang  

s
s

sGcHo 14.43
48.83

53.08=)(  

and 

s
s

sGcM 23.74
50.33

60.43=)(  

respectively. By Q.-G. Wang et al.'s method, the range of 

proportional gain is (0,310)pK  for the desired closed-loop 

response as stated above. Let 60=pK  to ensure the  
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positiveness of the controller parameters, the structure of the 

controller is,  

.2.465
46.32

60=)(. s
s

sG GcQ  

The closed loop response of the process with all prevalent 

controllers and proposed controller is as shown in Fig. 2 to unit 

set point change at time 0=t . The responses due to proposed 

controller is fast and the settling time is less than s12  with 5  % 

overshoot. The responses of Wang et al.'s, Ho et al.'s and 

Malwatkar et al.'s controllers are identical with large settling time 

as compared to proposed. The Q.-G. Wang et al.'s method gives 

less overshoot and settling time is approximately equal to 

proposed method.  

4. Real Time Implementation 

The applicability and effectiveness of the proposed method has 

been carried on real-time level control experiment. The set-up of 

level loop and its representation is shown in Fig. 3. The system 

mainly includes gravity flow tank, pneumatic valve, capacitive 

type sensor and transmitter, electro-pneumatic converter, all 

connected in series. Since all the elements in this system are first 

order with small time constant, it is a type zero and conditionally 

stable system. The system is self-regulatory and the model 

obtained for this system is linearized version around an operating 

point. Gravity flow tank is a first order system with a time 

constant higher than the time constants of other elements in the 

set-up (pneumatic valve, transmitter, electro-pneumatic converter  

 

 

 

 

 

etc.). The open loop identification carried out by designing 

appropriate pseudo random binary signal (PRBS) signal. The 

system connected to computer through a data acquisition card. To 

find an empirical model of the system, the open loop output data 

collected by exciting the system with PRBS from stored input 

vector (computer). The PRBS which is voltage signal converted 

into pressure signal through voltage to current converter, current 

to pressure converters and applied to the pneumatic valve as input 

signal to the system. Effect of the PRBS signal on water level is 

recorded using capacitive level sensor and transmitter, which is a 

current signal. The level in terms of current signal converted into 

voltage signal and stored as output vector. The model of the level 

system together with components such as valve, I/P converter, 

level sensor and transmitter identified by using input-output data . 

Fitting of input-output data has been made using autoregressive 

with external input model with orders of [5 1 0], that is five poles, 

no zeros and zero delay. The discrete time model converted into 

continuous time using matched pole-zero method. For the model 

obtained thus, the controller parameters are obtained by the 

proposed method and the performance of the overall closed loop 

system is checked. 

The identified continuous time system with transfer function is,  

,10
1.62

=)( 6

321 ppp
sGP  

where, 

Fig. 2 Closed-loop responses with controllers 

(simulation example) 

Fig. 3: Experimental Set-up and its portrayal. (LT: Level 

transmitter, E/P: Current to pressure converter, CV: Control 

Valve, SP: Set point, LIC: Level indicating controller) 
 

Fig. 4 Closed-loop responses with controllers (experimental 

results) 

 

 

Fig. 5 Controller actions (current from PC to E/P 

converter) 
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0.05055=1 sp , 0.1640.07171= 2

2 ssp  and 

0.034050.1901= 2

3 ssp . The controller for this 

system is ,  

.
7.179

47.27=)(
s

sGc  

The controllers given by Ho et al. and Wang et al. are  

s
s

sGcHO 421
6.719

106.3=)(  

and 

s
s

sGcWang 177
9.041

79=)(  

respectively.   

The PID parameters given by Wang et al. and Ho et al. strategies 

together with tuned parameter given by proposed method are used 

to check the overall performance of the system. The Step change 

of set point from empty tank to 50 percentage is applied at time 

0t . The closed loop response of systems with controllers are 

as shown in Fig. 4 and the output of the controller in terms of 

percentage closing of the valve is shown in Fig. 5. The response 

given by proposed controller is faster than the Wang's and Ho's 

controller. Q.-G. Wang et al.'s method have no solution for this 

system. The proposed controller gives overshoot as compared to 

others but the controller action is smooth. The Wang's and Ho's 

controller gives more oscillatory action of the control valves (or 

controller output) as shown in Fig. 5. Such natures of controller 

action consumes more power and create the bumping of the 

valves.  

5. Conclusions 

A simple method of controller design for higher order with delay 

time processes has been proposed. The method is demonstrated 

through a simulation example and a real time experimentation. 

The design method is not based on reduced order models and 

hence enhanced performance of the processes can be expected. 

Once the location of dominant poles obtained, simple and 

effective design rules presented in the paper are used to control 

the any process with different characteristics. Since the proposed 

design method incorporates pole placement by PI(D) controllers, 

the closed-loop process with designed PI controller results in 

good set point responses. By the designed controller, the closed 

loop response would be fast or slow which is depend on the 

desired settling time. The output response of the processes by 

proposed controller is always smooth and bump-less action of the 

controller can be expected. The proposed method would be 

extended to the non-minimum phase and unstable higher order 

systems. 
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