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ABSTRACT 

In a clause of combinational circuits, the throughput can be 

increased, without (wave) pipelining, by introducing data 

dependent delay feature thus avoiding the worst case delay. That 

is, in circuits like multipliers and adders which are the basic 

building blocks of any DSP system; the processing delay can be 

varied according to the magnitude of the input data. This makes 

the circuit asynchronous and necessitates a controller to arbitrate 

the data. Systems like FIR filters, where a series of combinational 

multipliers are used, can be asynchronously pipelined with a 

controller regulating the data between stages. With this system 

level pipelining, speed of circuit level pipelining can be achieved 

provided the data are of low magnitude.  In this paper, two 

controller architectures are presented to regulate the data flow 

between asynchronously pipelined stages. Firstly, as a stepping 

stone, Altera‟s soft-core NIOS processor [1] is used and secondly, 

an exclusive asynchronous controller is designed using HDL. 

These controllers are designed to suit asynchronous 

implementation in conventional FPGAs, to effectively handle 

repeated data and to perform self-test. These controllers issue the 

control signals to the various dual edge triggered pipelined 

registers to process the data in both the edges for further 

improving speed.  In the HDL version of the controller, 

programmable delays are generated by a „logic locked‟ high 

frequency counter without using delay elements. To verify the 

efficacy of these controllers 2 tap FIR filter is implemented using 

Braun array multipliers and adders. Thus, this approach consumes 

lower power and achieves data dependent throughput and also 

avoids the need for global clock signals and skew problems. 

Categories and Subject Descriptors 

B.7.1 [Hardware]: Integrated Circuits - VLSI 

General Terms 

Design 

Keywords 

Asynchronous, FPGA, Low power, Asynchronous Controller, 

Data Dependent Delay. 

1. INTRODUCTION 
The complexity in distributing a high speed accurate clock over a 

large circuit area without skew as well as the inherent high power 

consumption caused by the clock network has prompted designers 

to reconsider the role of asynchronous circuits [2]. A synchronous 

combinational circuit works on worst case delay while an 

asynchronous combinational circuit works on average case delay. 

But, when a synchronous or asynchronous system is pipelined, 

both should work theoretically with the same worst case delay, 

even though the hand shaking signals in asynchronous system 

contribute some excess delay. In synchronous systems the clock 

frequency governs the speed of the whole circuit, which is 

determined by its worse case delay. On the other hand, 

asynchronous circuits rely on the use of completion-detection 

methods to determine when a combinational logic block has 

completed its operation.  Several methods of completion detection 

are available in literature.  Asynchronous systems, based on dual 

rail  coding techniques  carry  the  disadvantages  of  a  very  high 

hardware  overhead  coupled with  low  operation speed while the 

systems based on bundled delay approach fails to exploit the data 

dependency of internal delays. In addition, conventional FPGAs 

are suitable only for synchronous implementations and lack of 

proper CAD tools negate the use of asynchronous systems. In this 

paper, two controller architectures are presented to subdue the 

challenges of using conventional FPGAs for asynchronous 

applications. With a controller in the system, the following 

advantages are realized:  

i. When same data is repeatedly coming, the present output is 

again latched at the output and immediately the next data is 

read. This avoids the repetition of same processing. 

ii. Controller is sensitive to both the edges and return to zero 

transitions is avoided. 

iii. Duplicating delay logic is removed by a „logic locked‟ 

counter structure with a delay resolution of 4 ns. 

iv. Fine tuning delay, prohibits glitches passing between stages. 

Hence, the reduction in dynamic power consumption is 

achieved. 

v. The controller is a general purpose and can be used for any 

application and any number of stages.  

vi. The controller is suitable to implement asynchronous systems 

in currently available synchronous FPGAs. 

vii. The controller has the built-in self test feature. 

viii. Problems with synchronous circuits like clock skew are 

avoided. 

ix. If the circuit is not under the clause of data dependent delay, 

setting all the delays as same, will give a simplest 

asynchronous pipelined architecture. 

x. In addition to the above, the controller has the benefit of all 

the advantages offered by the asynchronous systems. 
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2. BRAUN ARRAY MULTIPLIER WITH 

DATA DEPENDENT DELAY 
In DSP operations like correlation, convolution, and filter banks 

for multirate signal processing, multipliers are being used as a 

foundation blocks [3].  Out of various algorithms available for 

multipliers, Braun array multiplication algorithm is chosen for 

implementation to realize data dependent delay feature. The block 

diagram of an 8×8 pipelined Braun array multiplier is given in 

Fig.1.  

 

Fig 1.  8×8 pipelined Braun Array Multiplier 

 

The process delay estimation is performed by finding the 

magnitude of the inputs. Referring to the 8×8 Braun array 

multiplier in Fig.1, if the inputs are “00000010” and “00000010” 

the output is “0000000000000100”. In this case, bits up to P2 

only are used. In that case, the delay is less. When the input data 

has all the 8 bits, then comparatively higher delay is needed to 

receive all bits up to P15. So, the position of first „1‟ from the 

MSB in both the operands decides how many bits are in the 

output and the processing delay. The following Table.1 depicts 

this relation. In Fig 2.a the magnitude is low and also varying and 

hence, the throughput is higher where as in fig 2.b the magnitude 

is larger and fixed and hence throughput is lower. Hence, with a 

controller in the system, the dynamic data dependent delay control 

can be achieved. Similar works are referred in [6] and [7]. 

 

Table 1. Data Magnitude and No. of stages used with Prefix 

result 

S.No 
Data A 

(8Bits) 

Data B 

(8Bits) 

Prefix Result 
Stages 

Used 
(16 Bits) 

1 0000 xxxx 
0000 

0000 
 0 

0000 xxxx 0000 

0000 

2 
0000 

0001 

0000 

0001 

0000 

0000 

0000 000 

1 1 

3 
0000 

001x 

0000 

01xx 

0000 

0000 000 
1 xxxx 4 

4 
0000 

1xxx 

0000 

1xxx 

0000 

0000 

1xxx 

xxxx 
7 

5 
1xxx 

xxxx 

1xxx 

xxxx 
 

1xxx 

xxxx 

xxxx 

xxxx 

8 

3. INTASYCON – I BASED 

ASYNCHRONOUS PIPELINED SYSTEM 
The proposed asynchronous controller is named as 

“INTASYCON” (stands for INTelligent ASYnchronous 

CONtroller) which is an HDL based hardware module used to 

control the asynchronous data flow inside an asynchronous circuit 

[4] and [5]. The data manipulations inside the controller, as 

shown in Fig. 2, are described below: 

1. The controller has an in-built free running counter 

which increments every 4 ns. 

2. The source and destination of data are assumed to 

memories. After the first start signal, the controller itself 

fetches the new data from the memory. The controller 

receives the data and verifies it is not a repeating data. If 

it is a new data, the controller fetches the current value 

in the counter. 

3. The magnitude of the data is analyzed and for every 

stage, the delay counts are selected based on the input 

magnitude. 

4. The delay values are added with the initial count value 

so that the completion time of all the stages can be 

estimated. 

5. A critical case happens when the previous data 

consumes more time and the current data consumes less 

time. In that case, the current data has to wait in the nth 

stage till the previous data gets manipulated in the n+1th 

stage. In conventional asynchronous circuits, this is 

taken care by the Muller-C element and 

acknowledgement signal. Here, since the controller 

dictates the end point of stages it compares the current 

data‟s end point (of nth stage) and previous data‟s end 

point (of n+1th stage) and which is greater is chosen as 

the current data‟s endpoint (of nth stage). 

6. The process continues till the data ceases.  
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Fig. 2 INTASYCON with source and sink memory 

 

Fig. 3.a & 3.b Dual Edge to Positive Edge conversion (Used for using Conventional Memory with dual rail Asynchronous process) 

 

3.1 Circuit Description 
1. The process is started by a leading edge transition of „start‟. 

Since „next‟ and „c1‟ are at 0 states, positive edge in „start‟ will 

drive „active‟ to toggle its state.  

 

 

 

2. „Active1‟ is dual edge sensitive, but conventional memories are 

positive edge triggered, hence a delay with XOR gate converts 

dual edge sensitive into positive edge sensitive as in fig. 3.a & 

3.b.  „Temp1‟ is positive edge sensitive signal and given as the 

clock after delay to source memory where input data are stored. 



©2010 International Journal of Computer Applications (0975 - 8887) 

Volume 1 – No. 21 

26 

The same is connected to an address counter to generate 

addresses. 

3. The data in releases the data which is compared with the 

previous data. If it is a repeating data, „next‟ is toggled which is 

connected to xor gates as shown in the fig.6. and is used to 

trigger both memories. In the sink memory, the previous output 

is latched again and in source memory next data will be 

released because of this toggle in „next‟. 

4. If the data is new, the delay selector, depending upon the 

magnitude of the data gives out delays for various stages. In 

this Fig. 2. it is for two stages. And the data has given out at 

„dataout‟. The data processing need not wait for this control 

manipulations. The data will get simultaneously processed in 

the stage-1. 

5. „Temp1‟ after suitable delay is used to pick the current value 

from the free running counter. This „pcount‟ is the counter 

value when the data enters into the process. 

6. Since, there are two stages, two data will be available in them 

and therefore 4 delays are available at any time. Hence, signals 

b1reg (=pcount+delay1) and b2reg (=pcount+delay2) are 

completion of data1 and signals b3reg and b4reg are 

completion counts of data2.  

7. Assume data2 is under process and first stage will over at 

b3reg. The second stage cannot be opened if previous data1 has 

not gone out of stage2. Hence, this b3reg is compared with b2 

which gives second stage completion of data1.  

8. Likewise, b1, b2, b3 and b4 are the obtained after comparison. 

9. These values are compared with present counter value and 

when counter reaches the end point calculated, c1 and c2 

toggles. 

10. c1 indicates the completion of stage1 and hence next 

data can be taken from memory. So, c1 is also connected to 

input XOR gate. 

11. c2 is used to trigger the output memory so that the 

output from stage2 can be properly latched. 

12. c1 and c2 are also dual edge sensitive signals and hence, 

dual edge triggered flip-flops are used to transmit data between 

stages. 

With this type of controller in the system, the data dependent 

delay is used but for every data two comparison and two addition 

operations are needed. This also consumes time. The initial count 

is taken when the data enters but for determining the final count 

which will not collide with previous data, these operations are 

necessary. To reduce this complexity, these values are readily 

stored in a memory and this architecture is presented in the next 

section as INTASYCON – II.  

 

4. INTASYCON – II BASED 

ASYNCHRONOUS PIPELINED SYSTEM 
 

In order to avoid the computation time of the controller, the 

Second variation in the INTASYCON – II, as shown in Fig. 4, 

uses minimum computation to find out the end points since all the 

data are stored in different memories. The data manipulations 

inside the controller are described below: 

1. The controller has an in-built free running 6 bit counter which 

counts every 4 ns. 

2. The source and destination of data are assumed to memories. 

After the first start signal, the controller itself fetches the new 

data from the memory. The controller receives the data and 

verifies it is not a repeating data. If it is a new data, the 

controller fetches the current value in the counter. 

3. The magnitude of the data is analyzed and graded as low, 

medium or high. 

4. As a two stage case two data will be available in two stages. A 

critical case happens when the previous data consumes more 

time and the current data consumes less time. In that case, the 

current data has to wait in the nth stage till the previous data 

gets manipulated in the n+1th stage. In conventional 

asynchronous circuits, this is taken care by the Muller-C 

element and acknowledgement signal. Here, since the controller 

dictates the end point of stages it compares the current data‟s 

end point (of nth stage) and previous data‟s end point (of n+1th 

stage) and which is greater is chosen as the current data‟s 

endpoint (of nth stage). 

5. Low, Medium and High memories are used to store this data. 

When previous data is of high and current data is medium or 

when previous data is medium and current data is low, then in 

order to avoid collision HIGH1 memory is used. Similarly 

when the previous data is high and current data is low then 

HIGH2 memory is used. 

6. To resolve this issue, different memories are used which 

dictates the delay values as shown in the following table 2. 

 

Table 2. Data Magnitude with Delay & Memory 

Selection  

 

7. As a case study, 8×8 Braun array multiplier is considered. The 

combinational implementation takes 28.414 ns as critical path 

on a Cyclone II FPGA. The input data range is divided into 

low, medium and high as follows: 

a. Low – When the result is within 8 bits 

b. Medium – When the result is within 12 bits 

c. High – When the result is all 16 bits 

8. The corresponding delays are assigned as 15, 24 and 30 ns. 

When the counter runs at 3 ns, the count values for these delays 

will be 5, 8 and 10. If the data of 10 (Low range data) enters 

Magnit

ude of 

Previou

s Data 

Magnit

ude of 

Current 

data 

Collisi

on 

Stage 

-1 

Delay 

Stage 

-2 

Delay 

Memor

y Used 

Low Low No  Low  Low  LOW  

Low  Medium No  Medi

um  

Medi

um  

MEDI

UM 

Low  High No  High  High  HIGH 

Medium Low Yes High  Low  HIGH1 

Medium Medium No  Medi

um  

Medi

um  

MEDI

UM 

Medium High No  High  High  HIGH 

High Low Yes High  Low  HIGH2 

High Medium Yes High  Medi

um  

HIGH1 

High High No  High  High  HIGH 
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when the count is equal to 50, the first stage is over by 

55[initial (50) +delay (5)] and second stage will be over by 60. 

9. Since, the counter used is a 6 bit counter, the data range is from 

0 to 63. Hence, for address=50, the data should be 55 and 60. 

The following table 3 gives the memory contents. 

 

 

Table 3. Memory Contents of all memories (pcount 

indicates the count when data enters and c1, c2 indicate 

the process completion depending on data magnitude) 

 

 

10. When the present value of the counter reaches 25 and 

30, the first and second DETFF are opened to allow the 

data to the second stage and to output respectively. 

11. The process continues till the data ceases.  

 

 
 
 

 
 
 

 

Fig. 4a. Architecture of INTASYCON-II 

 

 

Fig. 4b. Data input section (fetching data from source memory)            Fig. 4c. Data Output Section (storing result in sink memory) 
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4.1 Circuit Description 
1. The process is started by a leading edge transition of 

„start‟. Since „next‟ and „c1‟ are at 0 states, positive 

edge in „start‟ will drive „active‟ to toggle its state as 

shown in fig. 4b.  

2. „Active1‟ is dual edge sensitive, but conventional 

memories are positive edge triggered, hence a delay 

with XOR gate converts dual edge sensitive into 

positive edge sensitive.  „Temp1‟ is positive edge 

sensitive signal and given as the clock after delay to 

source memory where input data are stored. The same is 

connected to an address counter to generate addresses. 

3. The data in releases the data which is compared with the 

previous data. If it is a repeating data, „next‟ is toggled 

which is connected to XOR gates and is used to trigger 

both memories. In the sink memory, the previous output 

is latch again and in source memory next data will be 

released because of this toggle in next. 

4. If the data is new, the delay selector, depending upon 

the magnitude of the data gives out delays for various 

stages. In this figure it is for two stages. And the data 

has given out at „dataout‟. The data processing need not 

wait for this control manipulations. The data will get 

simultaneously processed in the stage-1 as shown in fig. 

2b. 

1.  „Temp1‟ after suitable delay is used to pick the current 

value from the free running counter. This „pcount‟ is the 

counter value when the data enters into the process. 

2. This „pcount‟ is used as the address to fetch the end 

points from any one of the 5 memories as shown in fig. 

2c. This is a straight forward operation and consumes 

no time. Both c1 and c2 end points are stored in an 

appended fashion (like 5560, referring to the previous 

example in III.). The separated memory output will be 

end points and these values are compared with present 

counter value and when counter touches the end point 

calculated here, c1 and c2 toggles. 

3. c1 indicates the completion of stage1 and hence next 

data can be taken from memory. So, c1 is also 

connected to input XOR gate. 

4. c2 is used to trigger the output memory so that the 

output from stage2 can be properly latched as shown in 

fig. 4c. 

5. c1 and c2 are also dual edge sensitive signals hence, 

dual edge triggered flip-flops are used to transmit data 

between stages. 

 

5. INTASYCON BASED 2 TAP 16 BIT 

FILTER 
The Fig.5 shown is INTASYCON based FIR filters in which the 

three stages are given as two multipliers and one adder. The Braun 

array multiplier with data dependent delay is placed in both 

multiplier sections. For the 16 bit adder, a series of carry ripple 

adder is designed so that depending upon the magnitude the data 

can be taken out at any time. After preprocessing of data, the data 

is exposed to the first stage (× b0). Based on the data magnitude, 

C1, C2, and C3 are issued. C1, C2 and C3 operate DETFFs to 

pass the data between stages. The completion times of all the 

stages for a particular data are known and hence, the controller 

verifies whether the previous data has come out from a particular 

stage before the next data is presented. 

 
Fig. 5. INTASYCON Based 2 Tap FIR Filter 

 

6. IMPLEMENTATION RESULTS 
The system is implemented on a Altera Cyclone II FPGA and the 

results are given in Table 4.  

Table 4. Comparison of Schemes 

 

The synchronous pipelined system is implemented as per the 

conventional scheme. The asynchronous pipelined system is 

implemented using Bundled data protocol scheme. In bundled 

data protocol, two problems are to be addressed. One is the 

accumulation of delay in the passage of acknowledgement signals 

from final stage to first stage and the other is bundled time 

constraint, that is designed delay should exactly match the delay 

of the combinational circuit. The rows 3 and 4 of the table give 

the implementation results using INTASYCON I and II 

respectively. In all the cases, a data set of 0 to 255 numbers with 

20% repeating data is taken as the test data. To process this test 

data, the time consumed is given in the last column.  

S 

N

o 

Implementation 

Type 

Comb 

Reg- 

isters 

Logic 

Reg- 

isters 

Memory  Time to 

Process 

1 Synchronous 

Pipelined 

670 56 2048 5.8 μs 

2 Conventional 

Asynchronous 

Pipelined  

673 40 2048 8.8 μs 

3 INTASYCON – 

I 

938 209 2048 5.3 μs 

4 INTASYCON- - 

II 

855 185 3648 5.1 μs 
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Fig. 6. Normalized comparison results 

 

From the results, as seen in the normalized form, the 

INTASYCON based system operates faster than synchronous 

pipelined system because for all data, worst case delay is not 

considered. Hence, with system level pipelining, circuit level 

pipelining can be achieved. The memory is used to store input and 

output data. INTASYCON – II needs more memory to store the 

delay values.  

7. CONCLUSION 
Asynchronous circuits have many potential advantages over their 

synchronous equivalents including lower latency, lower power 

consumption, less noise, design reuse and lower electromagnetic 

interference (EMI).   In the INTASYCON system, the addition of 

controller a) increases the area because of controller architecture 

but compensates by removing the pipelining registers, b) reduces 

speed when compared to a pipelined architecture but compensates 

by providing data dependent delay.  

The control signals generated by these controllers avoid a global 

synchronizing signal used in synchronous systems. The data 

dependent delay assures the delay to be varied according to the 

data and hence, the throughput of the system is further increased.   

The overhead is comparably higher for a 2 Tap FIR filter but, the 

same INTASYCON controller can be used for even higher order 

circuits with minimum modification. Hence, as the complexity of 

the application increases, the overhead due to INTASYCON is 

acceptable.  
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