
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

23

Design and implementation of an Asynchronous

Controller for FPGA Based Asynchronous Systems

T.N.Prabakar
Saranathan College of Engineering,

Tiruchirappalli
Tamilnadu, INDIA

G. Lakshminarayanan
National institute of Technology,

Tiruchirappalli
Tamilnadu, INDIA

K.K.Anilkumar
Bahrain Technical University

Bahrain

ABSTRACT

In a clause of combinational circuits, the throughput can be

increased, without (wave) pipelining, by introducing data

dependent delay feature thus avoiding the worst case delay. That

is, in circuits like multipliers and adders which are the basic

building blocks of any DSP system; the processing delay can be

varied according to the magnitude of the input data. This makes

the circuit asynchronous and necessitates a controller to arbitrate

the data. Systems like FIR filters, where a series of combinational

multipliers are used, can be asynchronously pipelined with a

controller regulating the data between stages. With this system

level pipelining, speed of circuit level pipelining can be achieved

provided the data are of low magnitude. In this paper, two

controller architectures are presented to regulate the data flow

between asynchronously pipelined stages. Firstly, as a stepping

stone, Altera‟s soft-core NIOS processor [1] is used and secondly,

an exclusive asynchronous controller is designed using HDL.

These controllers are designed to suit asynchronous

implementation in conventional FPGAs, to effectively handle

repeated data and to perform self-test. These controllers issue the

control signals to the various dual edge triggered pipelined

registers to process the data in both the edges for further

improving speed. In the HDL version of the controller,

programmable delays are generated by a „logic locked‟ high

frequency counter without using delay elements. To verify the

efficacy of these controllers 2 tap FIR filter is implemented using

Braun array multipliers and adders. Thus, this approach consumes

lower power and achieves data dependent throughput and also

avoids the need for global clock signals and skew problems.

Categories and Subject Descriptors

B.7.1 [Hardware]: Integrated Circuits - VLSI

General Terms

Design

Keywords

Asynchronous, FPGA, Low power, Asynchronous Controller,

Data Dependent Delay.

1. INTRODUCTION
The complexity in distributing a high speed accurate clock over a

large circuit area without skew as well as the inherent high power

consumption caused by the clock network has prompted designers

to reconsider the role of asynchronous circuits [2]. A synchronous

combinational circuit works on worst case delay while an

asynchronous combinational circuit works on average case delay.

But, when a synchronous or asynchronous system is pipelined,

both should work theoretically with the same worst case delay,

even though the hand shaking signals in asynchronous system

contribute some excess delay. In synchronous systems the clock

frequency governs the speed of the whole circuit, which is

determined by its worse case delay. On the other hand,

asynchronous circuits rely on the use of completion-detection

methods to determine when a combinational logic block has

completed its operation. Several methods of completion detection

are available in literature. Asynchronous systems, based on dual

rail coding techniques carry the disadvantages of a very high

hardware overhead coupled with low operation speed while the

systems based on bundled delay approach fails to exploit the data

dependency of internal delays. In addition, conventional FPGAs

are suitable only for synchronous implementations and lack of

proper CAD tools negate the use of asynchronous systems. In this

paper, two controller architectures are presented to subdue the

challenges of using conventional FPGAs for asynchronous

applications. With a controller in the system, the following

advantages are realized:

i. When same data is repeatedly coming, the present output is

again latched at the output and immediately the next data is

read. This avoids the repetition of same processing.

ii. Controller is sensitive to both the edges and return to zero

transitions is avoided.

iii. Duplicating delay logic is removed by a „logic locked‟

counter structure with a delay resolution of 4 ns.

iv. Fine tuning delay, prohibits glitches passing between stages.

Hence, the reduction in dynamic power consumption is

achieved.

v. The controller is a general purpose and can be used for any

application and any number of stages.

vi. The controller is suitable to implement asynchronous systems

in currently available synchronous FPGAs.

vii. The controller has the built-in self test feature.

viii. Problems with synchronous circuits like clock skew are

avoided.

ix. If the circuit is not under the clause of data dependent delay,

setting all the delays as same, will give a simplest

asynchronous pipelined architecture.

x. In addition to the above, the controller has the benefit of all

the advantages offered by the asynchronous systems.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

24

2. BRAUN ARRAY MULTIPLIER WITH

DATA DEPENDENT DELAY
In DSP operations like correlation, convolution, and filter banks

for multirate signal processing, multipliers are being used as a

foundation blocks [3]. Out of various algorithms available for

multipliers, Braun array multiplication algorithm is chosen for

implementation to realize data dependent delay feature. The block

diagram of an 8×8 pipelined Braun array multiplier is given in

Fig.1.

Fig 1. 8×8 pipelined Braun Array Multiplier

The process delay estimation is performed by finding the

magnitude of the inputs. Referring to the 8×8 Braun array

multiplier in Fig.1, if the inputs are “00000010” and “00000010”

the output is “0000000000000100”. In this case, bits up to P2

only are used. In that case, the delay is less. When the input data

has all the 8 bits, then comparatively higher delay is needed to

receive all bits up to P15. So, the position of first „1‟ from the

MSB in both the operands decides how many bits are in the

output and the processing delay. The following Table.1 depicts

this relation. In Fig 2.a the magnitude is low and also varying and

hence, the throughput is higher where as in fig 2.b the magnitude

is larger and fixed and hence throughput is lower. Hence, with a

controller in the system, the dynamic data dependent delay control

can be achieved. Similar works are referred in [6] and [7].

Table 1. Data Magnitude and No. of stages used with Prefix

result

S.No
Data A

(8Bits)

Data B

(8Bits)

Prefix Result
Stages

Used
(16 Bits)

1 0000 xxxx
0000

0000
 0

0000 xxxx 0000

0000

2
0000

0001

0000

0001

0000

0000

0000 000

1 1

3
0000

001x

0000

01xx

0000

0000 000
1 xxxx 4

4
0000

1xxx

0000

1xxx

0000

0000

1xxx

xxxx
7

5
1xxx

xxxx

1xxx

xxxx

1xxx

xxxx

xxxx

xxxx

8

3. INTASYCON – I BASED

ASYNCHRONOUS PIPELINED SYSTEM
The proposed asynchronous controller is named as

“INTASYCON” (stands for INTelligent ASYnchronous

CONtroller) which is an HDL based hardware module used to

control the asynchronous data flow inside an asynchronous circuit

[4] and [5]. The data manipulations inside the controller, as

shown in Fig. 2, are described below:

1. The controller has an in-built free running counter

which increments every 4 ns.

2. The source and destination of data are assumed to

memories. After the first start signal, the controller itself

fetches the new data from the memory. The controller

receives the data and verifies it is not a repeating data. If

it is a new data, the controller fetches the current value

in the counter.

3. The magnitude of the data is analyzed and for every

stage, the delay counts are selected based on the input

magnitude.

4. The delay values are added with the initial count value

so that the completion time of all the stages can be

estimated.

5. A critical case happens when the previous data

consumes more time and the current data consumes less

time. In that case, the current data has to wait in the nth

stage till the previous data gets manipulated in the n+1th

stage. In conventional asynchronous circuits, this is

taken care by the Muller-C element and

acknowledgement signal. Here, since the controller

dictates the end point of stages it compares the current

data‟s end point (of nth stage) and previous data‟s end

point (of n+1th stage) and which is greater is chosen as

the current data‟s endpoint (of nth stage).

6. The process continues till the data ceases.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

25

Fig. 2 INTASYCON with source and sink memory

Fig. 3.a & 3.b Dual Edge to Positive Edge conversion (Used for using Conventional Memory with dual rail Asynchronous process)

3.1 Circuit Description
1. The process is started by a leading edge transition of „start‟.

Since „next‟ and „c1‟ are at 0 states, positive edge in „start‟ will

drive „active‟ to toggle its state.

2. „Active1‟ is dual edge sensitive, but conventional memories are

positive edge triggered, hence a delay with XOR gate converts

dual edge sensitive into positive edge sensitive as in fig. 3.a &

3.b. „Temp1‟ is positive edge sensitive signal and given as the

clock after delay to source memory where input data are stored.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

26

The same is connected to an address counter to generate

addresses.

3. The data in releases the data which is compared with the

previous data. If it is a repeating data, „next‟ is toggled which is

connected to xor gates as shown in the fig.6. and is used to

trigger both memories. In the sink memory, the previous output

is latched again and in source memory next data will be

released because of this toggle in „next‟.

4. If the data is new, the delay selector, depending upon the

magnitude of the data gives out delays for various stages. In

this Fig. 2. it is for two stages. And the data has given out at

„dataout‟. The data processing need not wait for this control

manipulations. The data will get simultaneously processed in

the stage-1.

5. „Temp1‟ after suitable delay is used to pick the current value

from the free running counter. This „pcount‟ is the counter

value when the data enters into the process.

6. Since, there are two stages, two data will be available in them

and therefore 4 delays are available at any time. Hence, signals

b1reg (=pcount+delay1) and b2reg (=pcount+delay2) are

completion of data1 and signals b3reg and b4reg are

completion counts of data2.

7. Assume data2 is under process and first stage will over at

b3reg. The second stage cannot be opened if previous data1 has

not gone out of stage2. Hence, this b3reg is compared with b2

which gives second stage completion of data1.

8. Likewise, b1, b2, b3 and b4 are the obtained after comparison.

9. These values are compared with present counter value and

when counter reaches the end point calculated, c1 and c2

toggles.

10. c1 indicates the completion of stage1 and hence next

data can be taken from memory. So, c1 is also connected to

input XOR gate.

11. c2 is used to trigger the output memory so that the

output from stage2 can be properly latched.

12. c1 and c2 are also dual edge sensitive signals and hence,

dual edge triggered flip-flops are used to transmit data between

stages.

With this type of controller in the system, the data dependent

delay is used but for every data two comparison and two addition

operations are needed. This also consumes time. The initial count

is taken when the data enters but for determining the final count

which will not collide with previous data, these operations are

necessary. To reduce this complexity, these values are readily

stored in a memory and this architecture is presented in the next

section as INTASYCON – II.

4. INTASYCON – II BASED

ASYNCHRONOUS PIPELINED SYSTEM

In order to avoid the computation time of the controller, the

Second variation in the INTASYCON – II, as shown in Fig. 4,

uses minimum computation to find out the end points since all the

data are stored in different memories. The data manipulations

inside the controller are described below:

1. The controller has an in-built free running 6 bit counter which

counts every 4 ns.

2. The source and destination of data are assumed to memories.

After the first start signal, the controller itself fetches the new

data from the memory. The controller receives the data and

verifies it is not a repeating data. If it is a new data, the

controller fetches the current value in the counter.

3. The magnitude of the data is analyzed and graded as low,

medium or high.

4. As a two stage case two data will be available in two stages. A

critical case happens when the previous data consumes more

time and the current data consumes less time. In that case, the

current data has to wait in the nth stage till the previous data

gets manipulated in the n+1th stage. In conventional

asynchronous circuits, this is taken care by the Muller-C

element and acknowledgement signal. Here, since the controller

dictates the end point of stages it compares the current data‟s

end point (of nth stage) and previous data‟s end point (of n+1th

stage) and which is greater is chosen as the current data‟s

endpoint (of nth stage).

5. Low, Medium and High memories are used to store this data.

When previous data is of high and current data is medium or

when previous data is medium and current data is low, then in

order to avoid collision HIGH1 memory is used. Similarly

when the previous data is high and current data is low then

HIGH2 memory is used.

6. To resolve this issue, different memories are used which

dictates the delay values as shown in the following table 2.

Table 2. Data Magnitude with Delay & Memory

Selection

7. As a case study, 8×8 Braun array multiplier is considered. The

combinational implementation takes 28.414 ns as critical path

on a Cyclone II FPGA. The input data range is divided into

low, medium and high as follows:

a. Low – When the result is within 8 bits

b. Medium – When the result is within 12 bits

c. High – When the result is all 16 bits

8. The corresponding delays are assigned as 15, 24 and 30 ns.

When the counter runs at 3 ns, the count values for these delays

will be 5, 8 and 10. If the data of 10 (Low range data) enters

Magnit

ude of

Previou

s Data

Magnit

ude of

Current

data

Collisi

on

Stage

-1

Delay

Stage

-2

Delay

Memor

y Used

Low Low No Low Low LOW

Low Medium No Medi

um

Medi

um

MEDI

UM

Low High No High High HIGH

Medium Low Yes High Low HIGH1

Medium Medium No Medi

um

Medi

um

MEDI

UM

Medium High No High High HIGH

High Low Yes High Low HIGH2

High Medium Yes High Medi

um

HIGH1

High High No High High HIGH

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

27

when the count is equal to 50, the first stage is over by

55[initial (50) +delay (5)] and second stage will be over by 60.

9. Since, the counter used is a 6 bit counter, the data range is from

0 to 63. Hence, for address=50, the data should be 55 and 60.

The following table 3 gives the memory contents.

Table 3. Memory Contents of all memories (pcount

indicates the count when data enters and c1, c2 indicate

the process completion depending on data magnitude)

10. When the present value of the counter reaches 25 and

30, the first and second DETFF are opened to allow the

data to the second stage and to output respectively.

11. The process continues till the data ceases.

Fig. 4a. Architecture of INTASYCON-II

Fig. 4b. Data input section (fetching data from source memory) Fig. 4c. Data Output Section (storing result in sink memory)

pcou

nt

(Initi

al)

Low Med High High 1 High 2

C1 C

2

C1 C

2

C

1

C

2

C

1

C

2

C

1

C

2

0 5 10 8 16 10 20 10 15 10 18

1 6 11 9 17 11 21 11 16 11 19

2 7 12 10 18 12 22 12 17 12 20

Continues…

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

28

4.1 Circuit Description
1. The process is started by a leading edge transition of

„start‟. Since „next‟ and „c1‟ are at 0 states, positive

edge in „start‟ will drive „active‟ to toggle its state as

shown in fig. 4b.

2. „Active1‟ is dual edge sensitive, but conventional

memories are positive edge triggered, hence a delay

with XOR gate converts dual edge sensitive into

positive edge sensitive. „Temp1‟ is positive edge

sensitive signal and given as the clock after delay to

source memory where input data are stored. The same is

connected to an address counter to generate addresses.

3. The data in releases the data which is compared with the

previous data. If it is a repeating data, „next‟ is toggled

which is connected to XOR gates and is used to trigger

both memories. In the sink memory, the previous output

is latch again and in source memory next data will be

released because of this toggle in next.

4. If the data is new, the delay selector, depending upon

the magnitude of the data gives out delays for various

stages. In this figure it is for two stages. And the data

has given out at „dataout‟. The data processing need not

wait for this control manipulations. The data will get

simultaneously processed in the stage-1 as shown in fig.

2b.

1. „Temp1‟ after suitable delay is used to pick the current

value from the free running counter. This „pcount‟ is the

counter value when the data enters into the process.

2. This „pcount‟ is used as the address to fetch the end

points from any one of the 5 memories as shown in fig.

2c. This is a straight forward operation and consumes

no time. Both c1 and c2 end points are stored in an

appended fashion (like 5560, referring to the previous

example in III.). The separated memory output will be

end points and these values are compared with present

counter value and when counter touches the end point

calculated here, c1 and c2 toggles.

3. c1 indicates the completion of stage1 and hence next

data can be taken from memory. So, c1 is also

connected to input XOR gate.

4. c2 is used to trigger the output memory so that the

output from stage2 can be properly latched as shown in

fig. 4c.

5. c1 and c2 are also dual edge sensitive signals hence,

dual edge triggered flip-flops are used to transmit data

between stages.

5. INTASYCON BASED 2 TAP 16 BIT

FILTER
The Fig.5 shown is INTASYCON based FIR filters in which the

three stages are given as two multipliers and one adder. The Braun

array multiplier with data dependent delay is placed in both

multiplier sections. For the 16 bit adder, a series of carry ripple

adder is designed so that depending upon the magnitude the data

can be taken out at any time. After preprocessing of data, the data

is exposed to the first stage (× b0). Based on the data magnitude,

C1, C2, and C3 are issued. C1, C2 and C3 operate DETFFs to

pass the data between stages. The completion times of all the

stages for a particular data are known and hence, the controller

verifies whether the previous data has come out from a particular

stage before the next data is presented.

Fig. 5. INTASYCON Based 2 Tap FIR Filter

6. IMPLEMENTATION RESULTS
The system is implemented on a Altera Cyclone II FPGA and the

results are given in Table 4.

Table 4. Comparison of Schemes

The synchronous pipelined system is implemented as per the

conventional scheme. The asynchronous pipelined system is

implemented using Bundled data protocol scheme. In bundled

data protocol, two problems are to be addressed. One is the

accumulation of delay in the passage of acknowledgement signals

from final stage to first stage and the other is bundled time

constraint, that is designed delay should exactly match the delay

of the combinational circuit. The rows 3 and 4 of the table give

the implementation results using INTASYCON I and II

respectively. In all the cases, a data set of 0 to 255 numbers with

20% repeating data is taken as the test data. To process this test

data, the time consumed is given in the last column.

S

N

o

Implementation

Type

Comb

Reg-

isters

Logic

Reg-

isters

Memory Time to

Process

1 Synchronous

Pipelined

670 56 2048 5.8 μs

2 Conventional

Asynchronous

Pipelined

673 40 2048 8.8 μs

3 INTASYCON –

I

938 209 2048 5.3 μs

4 INTASYCON- -

II

855 185 3648 5.1 μs

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 21

29

Comparison of Results

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4

Time in microsec.

Memory

Log. Registers

Comb. Reig

Fig. 6. Normalized comparison results

From the results, as seen in the normalized form, the

INTASYCON based system operates faster than synchronous

pipelined system because for all data, worst case delay is not

considered. Hence, with system level pipelining, circuit level

pipelining can be achieved. The memory is used to store input and

output data. INTASYCON – II needs more memory to store the

delay values.

7. CONCLUSION
Asynchronous circuits have many potential advantages over their

synchronous equivalents including lower latency, lower power

consumption, less noise, design reuse and lower electromagnetic

interference (EMI). In the INTASYCON system, the addition of

controller a) increases the area because of controller architecture

but compensates by removing the pipelining registers, b) reduces

speed when compared to a pipelined architecture but compensates

by providing data dependent delay.

The control signals generated by these controllers avoid a global

synchronizing signal used in synchronous systems. The data

dependent delay assures the delay to be varied according to the

data and hence, the throughput of the system is further increased.

The overhead is comparably higher for a 2 Tap FIR filter but, the

same INTASYCON controller can be used for even higher order

circuits with minimum modification. Hence, as the complexity of

the application increases, the overhead due to INTASYCON is

acceptable.

8. REFERENCES

[1] “Nios II Processor Reference Handbook,” 2008. Altera

Corporation, ver 8.0, May.

[2] Jens Sparsø, Steve Furber, “Principles of asynchronous circuit

design”, Kluwer academic Publishers, 2001.

[3] K.K. Parhi, “VLSI Digital Signal Processing Systems”, Wiley

Interscience

 [4] T.N.Prabakar, G. Lakshminarayanan, Dr. K.K.Anilkumar,

“SOPC based asynchronous pipelined DCT with self test

capability”, IEEE International Conference on Microelectronics,

Egypt, 2007.

[5] T.N.Prabakar, G. Lakshminarayanan, Dr. K.K.Anilkumar,

“Asynchronous Pipelined Multiplier with Intelligent Delay

Controller”, IEEE International Conference on System on Chip

Design, Korea, 2008.

[6] S.M.Nowick, “Design of a low-latency asynchronous adder

using speculative completion”, IEE Proc. –Comput. Digit. Tech.,

Vol. 143, No. 5, September, 1996.

[7] S.M.Nowick, Kenneth Y. Yun, Peter A.Beerel, Ayoob

E.Dooply, “Speculative Completion for the Design of High-

Performance Asynchronous Dynamic Adders” pp 210-223,1997.

