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ABSTRACT 

Real world problems in engineering domain are typically 

constraint optimization problems. An Adaptive Quantum 

Evolutionary Algorithm for solving such problems is proposed 

in this paper. The proposed technique uses a novel qubits 

representation for search and optimization and uses feasibility 

rules for handling constraints. Moreover, it does not need 

stochastic ranking or niching or other methods for maintaining 

diversity. It does not even require mutation and local heuristics.  

The algorithm is tested on a standard set of four widely studied 

benchmark engineering design optimization problems. The 

results obtained are better than the existing state of the art 

approaches. The proposed algorithm is simple in concept and 

implementation, while being robust. 
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1. INTRODUCTION 
Engineering optimization problems are mostly constrained 

optimization problems in continuous variables, which are 

formulated as follows: 

Optimize   f(x), where x = (x1, x2, …., xN ) ε RN, 

Such that:  xil < xi < xiu;  xi is ith variable with xil and xiu as          

  its lower and upper limits.  

gj (x) < 0 ;  gj is jth inequality constraint and j = 1…p.  

hk(x) = 0; hk is kth equality constraint and k = 1…q. 

The objective function as well as inequality and equality 

constraints are often nonlinear, non-convex and non-

differentiable. Such problems cannot be solved by traditional 

calculus-based methods and enumerative strategies [1].  

Evolutionary Algorithms (EA) have been applied to solve such 

complex constrained optimization problems.  

EAs are population based stochastic search and optimization 

techniques inspired by nature’s laws of evolution. They are 

popular due to their simplicity and ease of implementation. 

However, they suffer from issues like premature convergence, 

slow convergence, stagnation and are sensitive to the choice of 

the crossover and mutation operators and parameters. Many 

efforts have been made by researchers to overcome such 

limitations by establishing a good balance between exploitation 

and exploration. A typical EA is designed using selection, 

crossover, mutation operators and local heuristic. The mutation 

operator is used for escaping from local minima i.e. improving 

exploration and local heuristic is used for increasing the 

convergence rate i.e. improving exploitation. However, all such 

attempts tend to use user-selectable parameters in their 

algorithm design. Thus, the balance struck between exploration 

and exploitation in a specific EA has a user bias rather than 

problem bias. 

Quantum Evolutionary Algorithm (QEA) [2] was proposed to 

improve the balance between exploration and exploitation. 

QEAs are evolutionary algorithms inspired by the principles of 

Quantum Mechanics. They are developed by drawing some 

ideas from quantum mechanics and integrating them in the 

current framework of EAs. The important principles of Quantum 

mechanics are superposition, entanglement, interference and 

measurement [3]. The principles mostly utilized in designing 

QEAs are superposition and measurement [4] and have been 

used for improving diversity as reported in the literature. 

Another interesting observation is the use of single qubit 

(quantum analog of classical bit, and is governed by the 

principles of quantum mechanics) representation in almost all 

the efforts, thus ruling out use of any other principles of 

quantum mechanics such as entanglement.  

This paper proposes to utilize two qubits representation instead 

of one qubit representation. This helps in utilizing entanglement 

and superposition principles of quantum computing for 

improving the search. Further, a parameter free adaptive 

quantum crossover operator inspired by the phase rotation has 

been designed to generate new population. The effect of using 

different strategies in the proposed crossover operator is studied 

in detail. The proposed QEA does not require mutation operator 

and local heuristic for avoiding premature convergence and 

improving convergence rate respectively. The QEA uses 

Feasibility Rules [5] for handling constraints as EAs essentially 

perform unconstrained search. Therefore, in order to effectively 

and efficiently handle constraints, Feasibility Rules strategy is 

employed, which is free from fine-tuning of any penalty 

parameters.  

The rest of the paper is organized as follows. The design of 

proposed algorithm is presented in Section 2. The testing and 

results are discussed in Section 3. Section 4 concludes with a 

brief summary and direction of further work.   

2. ALGORITHM  
Feynman had originally proposed that Quantum Mechanical 

Systems can be used for computing purpose and can be a better 

alternative than classical Von Neumann computers for 

simulating quantum mechanical phenomena. Thus, Quantum 
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computing made its birth and gained popularity by the 

development of polynomial time Shor’s factoring algorithm and 

Grover’s algorithm for quick search in unsorted database [3]. 

However, these Quantum Algorithms can be implemented 

efficiently on Quantum Computers and not on classical 

computers. The development in hardware of quantum computer 

is still in its nascent stages with a number technological 

challenges to overcome before a quantum computer of 

significance can be commercially available. However, since the 

quantum computing paradigm is now widely believed to be 

more powerful than classical computing, the quantum 

inspiration can be used for improving classical stochastic 

algorithms. Quantum Evolutionary algorithms are such an effort 

in integrating the principles of quantum computing and 

Evolutionary Algorithms.   

The smallest information element in quantum computer is a 

qubit, which is quantum analog of classical bit. The classical bit 

can be either in state ‘zero’ or in state ‘one’ whereas a quantum 

bit can be in a superposition of basis states in a quantum system. 

It is represented by a vector in Hilbert space with |0〉 and |1〉 as 

the basis states. The qubit can be represented by vector |ψ〉, 
which given by:  

|ψ〉 = α|0〉 + β|1〉.                (1) 

where |α|2 and |β|2 are probability amplitudes of the qubit to be in 

state |0〉 and |1〉 respectively and should satisfy the condition:  

|α|2 + |β|2 = 1.    (2) 

The qubits can store, in principal exponentially more 

information than classical bits. However, these qubits exist in 

quantum computing systems and are constrained by several 

limitations like they collapse to one of the basis states upon 

measurement and can be evolved by using unitary 

transformations. The simulation of qubits is inefficient on 

classical computers.  

In QEA, the probabilistic nature of qubits has been widely used 

for maintaining diversity [4]. A single qubit is attached to the 

solution vector and the solution is obtained by taking 

measurement or collapsing in binary coded as well as real coded 

QEA. The qubits associated with the solution vector is also 

evolved by using quantum gate operators, which are influenced 

by phase rotation transformation used in Grover’s Algorithm for 

searching unsorted database. Further, the past efforts have also 

used mutation operator and local heuristics [2].  

An interesting feature of such implementation is no direct 

correspondence between the solution vector and qubits 

especially in case of real coded QEA [2]. The quantum rotation 

gates / operators also behave independent of information from 

the problem as well as the solution domain assuming that the 

quantum behavior would help in reaching the solution. 

However, it should not be forgotten that such algorithms are to 

be run on classical computer without simulating any quantum 

phenomena. Further, it can be argued that increasing the 

diversity by collapsing the solution qubit may affect the 

exploitation of the solution as the solution found in the next 

iteration even of a good candidate solution may end up being far 

worse due to probabilistic implementation.  

This paper takes a different approach for designing the QEA by 

using not only qubit representation and associated superposition 

principle but also entanglement principal. Entanglement is one 

of the fundamental principles and if two qubits are entangled 

then performing any quantum operation on one of the qubits 

would affect the state of other qubit also i.e. there is a relation 

between the two qubits, which can be utilized for computation 

purposes. The proposed QEA uses two qubits per solution vector 

to utilize entanglement principle. An important point to 

remember is that the entanglement principle is being integrated 

in a classical algorithm, so the implementation would be 

classical.  This QEA tries to overcome the limitations associated 

with classical EAs. The classical EA being a black box 

optimization technique has only objective function value as the 

domain information regarding a specific problem. This feedback 

is mostly used in the selection phase and not for directly 

controlling the crossover or mutation operators or even local 

heuristic. Therefore, the feedback through objective function 

value is not being utilized properly. The algorithm uses the 

second qubit, which stores the information regarding the 

objective function value of the solution vector. This provides 

information regarding the solution domain as well as problem 

function domain made available simultaneously. The 

information stored in first and second qubit are entangled to 

harness the power of the important entanglement principle. The 

first qubit influences the second qubit as the probability 

amplitude of the first qubit would determine the objective 

function value and hence the probability amplitude of second 

qubit. The second qubit influences the first qubit as the 

parameter free adaptive quantum rotation crossover operator 

used for evolving the first qubit uses the probability amplitude 

of the second qubit. Any operation performed on either of the 

two qubits would affect the other and so they are entangled in 

classical implementation.   

2.1 Proposed QEA  
The first set of qubits |ψ1i〉 stores the current value of the ith 

variable as amplitude α1i whose value [0, 1]. The upper and 

lower limits of variables are scaled between 0 and 1. The 

amplitude β is not stored as it can be computed from equation 2. 

Therefore, the number of qubits per quantum register QR1 is 

equal to the number of variables. The quantum register stores 

the qubits. The number of quantum registers has also been made 

a function of the number of variables in the specific problem. 

Thus, giving it a problem bias rather than user bias. The number 

of QR1 is 100 times the number of variables. The number of 

QR1 is kept high in order to utilize the benefit of superposition 

and quantum rotation in EA. The structure of QR1 is shown 

below: 

QR11 =  [α111, α112 …. α11n] 

QR12 = [α121, α112 …. α12n]   

 ………………………………… 

QR1100N = [α1100n1, α1100n2 …. α1100nn] 

The second set of qubits ψ2i stores the ranked and scaled 

objective function value of the ith solution vector as amplitude 

α2i whose value [0, 1]. The fittest vector’s objective function 

value is assigned 1 and the worst vector is assigned value 0. The 

rest of the solution vectors’ objective function value is ranked 

and assigned in between the 0 and 1. Another alternative was 

normalizing the solution vector’s objective function value 

between 0 and 1 and assigning it to α2i. However, it was found 
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that amplitude amplification due to quantum phase rotation led 

to disruptive rotation around the fittest vector.  

Quantum Rotation based Adaptive Cross-over (QRACO): 
Quantum gates are used for evolving the qubits in quantum 

computing paradigm. Quantum phase rotation gate has been 

used in Grover’s algorithm for amplitude amplification in 

searching the marked element in an unsorted database. Most of 

the efforts have used rotation gates for evolving the qubits. A 

quantum rotation based adaptive and parameter tuning free 

cross-over operator is designed for the QEA. The second 

qubits’s amplitude is used for determining the angle of rotation 

for evolving the first qubit. The following equation is used for 

the purpose: 

ψ1i(t+1) = ψ1i(t) + f(ψ2i(t), ψ2j(t))*( ψ1j(t) - ψ1i(t))   (3) 

where t is iteration number, ψ1j can be the best solution vector or 

any other randomly or deterministically selected solution vector. 

All solution vectors are rotated towards best solution vector 

when ψ1j is the best solution. When the solution vector is 

randomly or deterministically picked then inferior solution is 

rotated towards better solution. In case of best solution, it is 

rotated away from the inferior solution. Therefore, the rotation 

crossover operator balances the exploration and exploitation and 

converges the solution vector adaptively towards global optima 

by using three strategies viz. Rotation towards Best (R-I), 

Rotation away from worse (R-II) and Rotation Towards Better 

(R-III). 

The function f(ψ2i(t), ψ2j(t)) controls gross and fine search. 

Presently, f(ψ2i(t), ψ2j(t)) generates a random number either 

between α2i and α2j or |α2j|
2 and | α2i|

2. The value |α2j|
2 - | α2i|

2 is 

generally smaller than α2j - α2i, thus the later is used for gross 

search and former for fine search. The salient feature of the new 

quantum rotation crossover operator is that it adaptively changes 

each variable in the solution vector and at the same time is 

problem driven rather than being an arbitrary choice of the user. 

Fixed rotation was also attempted by using |α2j|
2 - | α2i|

2 and α2j - 

α2i, but failed as it reduces the diversity and spoils the balance 

between exploration and exploitation. 

Constraint handling is one of the main issues in constrained 

optimization. The choice of the technique tends to have serious 

impact on the quality of the algorithm as EAs are generically 

unconstrained optimization algorithms. Constraint handling has 

been implemented using Feasibility rules discussed in [6]. It is 

free from fine-tuning of penalty parameters. 

2.2 Constraint Handling 
Constraint handling is one of the main issues in constrained 

optimization as the choice has serious impact on the quality of 

the algorithm. Constraint handling is implemented using Deb’s 

Feasibility rules [6]: 

i. If both solutions are feasible, the one with better 

objective function value wins. 

ii. If one solution is feasible and the other infeasible, the 

feasible one wins.  

iii. If both solutions are infeasible, the one with lower 

constraint violation wins. 

Feasibility Rules is again parameter free but reduces the 

diversity of the population [7]. In order to improve diversity, 

EAs using Feasibility Rules often incorporate niching and other 

associated techniques. However, the proposed QEA does not 

require any such technique. Tournament selection is used for 

selecting the next generation of solution vector by comparing 

with their respective best evolved vector. 

2.3 Pseudo code for Proposed QEA  
The Pseudo code for Proposed AQEA is given below: 

Random_Initialize (QR1); 

while (!termination_criteria)  {  

f(x) = Compute_fitness(QR1); 

  QR2 = Rank_Scale(f(x));  

QRACO(QR1, QR2); 

Tournament_Selection(QR1);  } 

Print(Result); 

3. EXPERIMENTAL RESULTS AND 

ANALYSIS 
The proposed algorithm has been tested on four standard 

benchmark engineering optimization problems, which have been 

widely used for testing similar constraint handling optimization 

algorithms.  

The proposed algorithm has been implemented in ‘C’ 

programming language on an IBM Workstation with Pentium-

IV 2.4 GHz processor, 2GB RAM and Windows XP platform. 

Thirty independent runs have been performed for each problem 

in each experiment. The testing has been performed for 

determining the stability of the proposed algorithm. The stability 

is determined by analyzing statistically the quality of the 

solutions produced for each problem in thirty independent runs. 

The efficiency is determined by the number of function 

evaluations and by plotting the convergence graph. 

The first problem (P-1) is designing of a welded beam for 

minimum cost, subject to some constraints [10]. The objective is 

to find the minimum fabrication cost, considering four design 

variables and constraints of shear stress, bending stress in the 

beam, buckling load on the bar, and end deflection on the beam. 

The second problem (P-2) is designing a compressed air storage 

tank with a working pressure of 3,000 psi and a minimum 

volume of 750 ft3. A cylindrical vessel is capped at both ends by 

hemispherical heads. Using rolled steel plate, the shell is made 

in two halves that are joined by two longitudinal welds to form a 

cylinder. The objective is to minimize the total cost, including 

the cost of the materials forming the welding [10]. The design 

variables are: thickness, thickness of the head, the inner radius 

and the length of the cylindrical section of the vessel. The 

variables x1 and x2 are discrete values, which are integer 

multiples of 0.0625 inch.  

The third problem (P-3) is designing of the speed reducer [11] 

and is concerned with the face width, module of teeth, number 

of teeth on pinion, length of the first shaft between bearings, 
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length of the second shaft between bearings, diameter of the first 

shaft, and diameter of the first shaft (all variables are continuous 

except number of teeth on pinion that is integer). The weight of 

the speed reducer is to be minimized subject to constraints on 

bending stress of the gear teeth, surface stress, transverse 

deflections of the shafts and stresses in the shaft. 

The fourth problem (P-4) is minimizing the weight of a 

tension/compression spring, subject to constraints of minimum 

deflection, shear stress, surge frequency, and limits on outside 

diameter and on design variables. There are three design 

variables: the wire diameter, the mean coil diameter, and the 

number of active coils [10]. 

The experiments have been performed to gain better insight into 

the working of the proposed algorithm by analyzing the 

QRACO in four different configurations. The first is standard 

configuration (SC-I) as described in section 2 and the results are 

given in Table 1. The second configuration (SC-II) uses 

deterministic rotation instead of random rotation in standard 

configuration and the results are given in Table 2. The results in 

Table 1 and 2 show that random rotation is a better design 

option than deterministic rotation. The third configuration (SC-

III) uses R-I and R-II of standard configuration i.e. random 

exploration is turned off and the results are given in Table 3.  

The results in Table 1 and 3 show that exploration part of the 

QRACO is performing its job. The fourth configuration (SC-IV) 

uses deterministic rotation and R-I and R-II of standard 

configuration and result is given in Table 4. This test was 

performed to validate the choice of each component in designing 

QRACO and the results as predicted were much worse than in 

former studies. 

Table 1. Results with standard configuration (SC-I) 

Prob-# P-1 P-2 P-3 P-4 

Best 1.724852 6059.714 2996.348 0.012665 

Median 1.724854 6061.203 2996.348 0.012666 

Mean 1.725497 6072.980 2996.348 0.012667 

S.D. 0.002706 15.491 0.000000 2.24E-06 

Worst 1.738919 6090.708 2996.348 0.012672 

Table 2. Results with deterministic rotation (SC-II) 

Prob-# P-1 P-2 P-3 P-4 

Best 1.724852 6059.714 2996.348 0.012667 

Median 1.777314 6410.100 3018.266 0.012711 

Mean 1.968457 6572.043 3020.834 0.012769 

S.D. 0.377568 0535.804 20.03446 0.000147 

Worst 3.320852 7710.367 3055.462 0.01316 

Table 3. Results with limited exploration (SC-III) 

Prob-# P-1 P-2 P-3 P-4 

Best 1.728963 6210.053 3008.528 0.012671 

Median 1.975894 7054.347 3046.714 0.01317 

Mean 2.038391 7194.338 3061.622 0.013132 

S.D. 0.319265 686.4489 49.14603 0.000358 

Worst 3.34185 8510.765 3183.587 0.014096 

Table 4. Experimental Results (SC-IV) 

Prob-# P-1 P-2 P-3 P-4 

Best 1.942917 6214.444 3036.677 0.012928 

Median 2.429257 9008.829 3072.224 0.013405 

Mean 2.453762 8978.313 3097.475 0.014623 

S.D. 0.462394 1958.365 58.18803 0.001898 

Worst 3.838626 13017.60 3208.92 0.018834 

Further, Table 5 presents experimental results when standard 

BLX-α crossover operator with α = 0.3 is used instead of 

QRACO. The results in Table 1 and 5 show that the QRACO is 

an improvement over an efficient BLX-α crossover operator. 

Table 5: Results with BLX-α crossover operator 

Prob-# P-1 P-2 P-3 P-4 

Best 1.726097 6133.133 2996.348 0.012671 

Median 1.907752 6778.268 2996.348 0.012868 

Mean 1.945073 6771.723 2996.348 0.012902 

S.D. 0.148081 196.2644 0.000 0.000187 

Worst 2.376852 7332.842 2996.348 0.013296 

Table 6 presents comparison of the proposed Adaptive RQEA 

(ARQEA) with existing state of art algorithms like RQIEA [4], 

ECPSO [8] and DTS [9] on best solution on problems P-1, P-2 

and P-4.  The results of Table 1 and Table 6 show that the 

proposed algorithm named ARQEA is far better than the earlier 

proposed RQIEA, which is a quantum inspired EA and is also 

better than ECPSO and DTS. 

Table 6: Comparison of known algorithms (Best Solution) 

Prob-# P-1 P-2 P-4 

ARQEA 1.7248520 6059.714 0.012665 

RQIEA[4] 1.7513172 6088.568 0.012680 

ECPSO [8] 1.7248600 6059.714 0.012669 

DTS [9] 1.7282260 6059.946 0.012681 

Figure 1 shows the convergence graphs for Problem P-1of the 

four configurations of the proposed ARQEA (median of Table 1 

to 4) and BLX-α version (median of Table 5) indicated by T-1 to 

T-5 respectively on the graph. The proposed ARQEA is efficient 

as takes around 20K function evaluations to reach near optima. 

Figure 2 shows the convergence graphs for Problem P-2of the 

four configurations of the proposed ARQEA (median of Table 1 

to 4) and BLX-α version (median of Table 5) indicated by T-1 to 

T-5 respectively. The proposed ARQEA is efficient as takes 

around 75K function evaluations to reach the vicinity of optima. 

Figure 3 shows the convergence graphs for Problem P-3 of the 

four configurations of the proposed ARQEA (median of Table 1 

to 4) and BLX-α version (median of Table 5) indicated by T-1 to 

T-5 respectively. The proposed ARQEA is efficient as takes 

around 110K function evaluations to reach the vicinity of 

optima.  
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Figure 4 shows the convergence graphs for Problem P-4of the 

four configurations of the proposed ARQEA (median of Table 1 

to 4) and BLX-α version (median of Table 5). The proposed 

ARQEA is again efficient as takes around 25K function 

evaluations to reach the vicinity of optima. 

4. CONCLUSIONS AND FUTURE WORK  
Constrained Optimization is an important problem in 

engineering domain for which a new adaptive quantum inspired 

evolutionary algorithm is proposed. The algorithm uses two 

qubit representation instead of one and utilizes the quantum 

entanglement and superposition principles hitherto not tapped. It 

does not require mutation or local heuristic for improving 

solution quality but still provides better solutions than the state 

of the art approaches. Future work would involve in-depth 

analyses to understand the working of the proposed algorithm. 
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Fig 1: Convergence Graphs (Problem P-1)  

 

Fig 2: Convergence Graphs (Problem P-2) 
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Fig 3: Convergence Graphs (Problem P-3) 

 

Fig 4: Convergence Graphs (Problem P-4) 
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