
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 22

14

An Efficient Algorithm for Constructing

DNA Boolean Circuit

Michael Arock
Dept. of Computer Applications,
National Institute of Technology,
Trichy, Tamilnadu, 620 015, India

ABSTRACT

Computation using biological Deoxyribonucleic acid (DNA)

strand is increasingly found to be a viable proposition. A unique

generalized efficient algorithm for forming any Boolean circuit

strand is proposed in this paper. The implementation of the

Boolean circuit using the proposed algorithm is also presented.

This Boolean circuit requires only one kind of bio-operation at

each level. Further, this paper adopts a uniform representation for

logical 0 and 1 for all Boolean circuit. Simulation to validate the

efficient algorithm is also presented in this work.

Categories and Subject Descriptors

1.1 [Computer Science / Information technology] :

BioComputing – DNA Computing

General Terms

Algorithms, Design

Keywords

DNA computing, Boolean circuit, Truth table, Traffic light

signaling, Graph

1.INTRODUCTION
Ever since Adleman has published a paper on molecular

computation for solving Hamiltonian path problem (HPP),

attempts are being made to utilize DNA manipulations for solving

computationally difficult problems [1]. Several models of

computation using bio-molecular methods have also been

proposed. Some of the models for DNA computation are Turing

machine [12], Sticker model [13], Splicing systems [4], Surface-

based computing [7,14,16] and Boolean circuits [10,11].

The inherent parallelism in DNA was utilized before by many

researchers in constructing Boolean operators. Amos et al

described the simulation of a bounded fan-in Boolean circuit with

NAND gate, which takes time proportional to the depth of the

circuit for computation. Ogihara et al., proposed a bounded fan-in

Boolean circuit functioning in O(1)-time complexity[10]. Ogihara

et al., proposed the building of DNA-based Boolean circuits for a

semi-unbounded fan-in Boolean circuit [11]. Subsequently, Erk,

developed an abstract DNA model for simulating Boolean circuits

by finite splicing systems [4]. The

main drawback of this model is that the rules need to be altered

with the complexity of the Boolean circuit. Mulawka et al.,

proposed another simulation of the NAND gate using the Fok I

enzymes of nuclease class II [9]. Ahrabian et al. proposed a

different construction of NAND gate and the same authors

presented a DNA algorithm for solving an unbounded fan-in

Boolean circuit in O(1)-time complexity [2,3]. Liu et al. presented

a theoretical model of the NAND gate through the induced hairpin

formation [8]. Jianzhong et al. suggested reusable logic gates for

AND and OR functions using molecular beacon [6]. Zoraida et al.

has proposed a generalized design methodology for realizing any

Boolean circuit using the truth table of the Boolean circuit

[17,18]. Here the scanning (top to bottom, bottom to top) the truth

table of the corresponding Boolean circuit has to be altered

accordingly to get the efficient Boolean circuit strand with

shortest length.

In this context, this paper has attempted to construct a graph,

using the truth table. The longest path of the graph is utilized to

construct Boolean circuit strand having shortest length.

The rest of the paper is organized as follows: Section 2 describes

about molecular beacon, blocker and graph representation of truth

table. Section 3 gives the proposed design algorithm for

generating the strands for Boolean circuit with and time

complexity analysis. Also, it deals with a real time example that

needs Boolean circuitry and applies the algorithm. Section 4

presents the implementation of Boolean circuit. Section 5 explains

the simulation of the Boolean circuit using the proposed method.

Conclusion is given in section 6.

PRELIMINARIES

1.1Molecular Beacon
Molecular beacons (MB) are single-stranded oligonucleotide

hybridization probes that possess a stem and a loop structure. The

loop has a complementary probe sequence of a target sequence.

The stem is formed by annealing with the complementary

sequence present in either side of the probe sequence. A

fluorophore and a quencher are linked to the two ends of the stem.

The two moieties are kept in close proximity to each other by the

stem, enabling fluorescence of the fluorophore to be quenched

through energy transfer and at this point the MB is “dark”. When

the MB encounters its target DNA molecule, it undergoes a

spontaneous conformational reorganization that forces the stem

apart so that the fluorophore and quencher moves away. So there

R.Ponalagusamy

Department of Mathematics,, National
Institute of Technology, Trichy, Tamilnadu,

620 015, India

B.S.E.Zoraida
Dept. of Computer Applications,

National Institute of
Technology, Trichy, Tamilnadu,

620 015, India

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 22

15

is a transition from “dark” to fluorescence “bright” in MB.

Molecular recognition specificity is one of the major advantages

of MB. They are highly target-specific to the extent that they

ignore target sequences that differ even by a single nucleotide

[5,15]. The hybridization of the MB with the target is shown in

Figure 1.

MB can be one among the choices for the inputs to the proposed

Boolean circuit.

Figure 1. Hybridization of the MB with the target

2.2 Blocker
The hybridization of input strand to the Boolean circuit strand is

necessary for implementing logical Boolean circuits. However,

hybridization should be prevented in certain locations of the

Boolean Circuit strand. Hence, a DNA sequence is used as a

blocker in the Boolean Circuit. In this paper, the assigned blocker

sequence is “GGGGGG”. Input strands should be different from

the blocker sequence. The blocker is denoted by a circle and an

“X” through it in the subsequent figures, and by an asterisk (*) in

the text..

2.3 Graph representation

The proposed efficient algorithm represents the truth table as a

graph. It considers only those input bit strings whose output is 1.

All such strings are represented as nodes. Those strings are

henceforth known as 1-output bit strings.

2.3.1 Overlapping and Edge Formation

Two 1-output strings are said to overlap when the suffix of n-1

bits of first string matches exactly with the prefix of n-1 bits of the

second. In the proposed method, a directed edge from one node to

another is introduced only when they overlap.

2.PROPOSED DESIGN OF BOOLEAN

 CIRCUIT USING DNA
Each Boolean variable I can take two values I=0 and I=1 which is

denoted as I0 and I1. Each Boolean circuit has n inputs I1, I2, ..., In.

We take only one strand to represent
0

1I
0

2I , ...,
0

nI and

another strand to represent both
1

1I ,
1

2I ,
1

nI . The

respective complements of the chosen strand are employed to

represent
0

1I ,
0

2I , ...,
0

nI
and

1

1I ,
1

2I ...,
1

nI .Thus we

require only four strands for each Boolean circuit. A colored

pattern representation instead of representing actual strand

for
0

1I ,
0

2I , ...,
0

nI and
1

1I ,
1

2I ...,
1

nI is followed in this

paper for visualizing the implementation. Figure 2 shows the

patterns and logical inputs and their complements.

0

1I ,
0

2I , ...,
0

nI � 5’ 3’

0

1I , 0

2I , ..., 0

nI � 3’ 5’

1

1I ,
1

2I ,,
1

nI � 5’ 3’

 1

1I , 1

2I ..., 1

nI � 3’ 5’

Figure 2. Colored pattern representation of the Strand

A general form of truth table for n-input Boolean circuit is shown

in Table 1. I1, I2, ..., In are the inputs and R1 to nR
2 are the

outputs.

Table 1.Truth table for n-input Boolean circuit

1 I1 I2 In R1

2 I1 I2 In R2

2n-1 I1 I2 In
12 nR

−

2n I1 I2 In
nR

2

Our aim is to form a single DNA strand capable of recognizing 1-

output bit strings and rejecting 0-output bit strings. An algorithm

is proposed that forms the single DNA strand. The algorithm

considers only the rows having their output Ri = 1 (i = 1 to 2
n).

These rows are represented as nodes of a graph. The nodes of the

graph have the binary input bits (I1, I2 ... In) as labels of the nodes.

The edges are formed for these constructed nodes if each node

overlaps with other nodes in their binary input bits (as

overlapping defined in subsection 2.3.1). From the graph

obtained, the longest path is found so that as many as possible

number of nodes is connected in the path. If the first longest path

found doesn’t involve all the nodes, for the remaining nodes

which are not included in the longest path, next longest path from

the remaining nodes is formed. This process is continued until all

the nodes are in a path or other. After the paths are identified,

consider the first longest path and find its starting node. The

binary input bits of the starting node (I1, I2 ... In) are stored in an

array. From the next node of the path onwards, only the In
th bits

are stored and a binary string is formed. The same is done for

other paths also and their corresponding binary strings are

appended to the first one separating the strings with a ‘*’ between

every pair of the binary strings. Then, we replace each value in the

array with the corresponding complementary strand which is

assigned earlier. The symbol ‘*’ is replaced by the blocker

sequence. The desired Boolean circuit strand is obtained. The

design is given in the form of an algorithm below and the same is

illustrated with the case studies:

Algorithm:
 First, the truth table is represented as a graph, G = (V,E)

(as stated in section 2.3)

1. Apply Depth-first Search (DFS) to find the longest path

possible in the graph.

2. Check if it involves all the nodes. If so, form a binary

string with the binary values (labels) of the nodes. For

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 22

16

the first node alone, the entire binary value is

considered and for the successive nodes in the path, the

nth bit is appended to the so-far formed binary string.

Once all nodes are processed, go to step 7.

3. Otherwise, form a binary string as stated in step 2 for

the longest path found and make a subgraph with the

left–out nodes.

4. Repeat steps 1 through 3 on the subgraph.

5. Repeat steps 1 through 4 until no node is left.

6. Combine the binary strings of all subgraphs by

introducing ‘*’ between every pair of the strings into the

final single string.

7. Replace the 0’s and 1’s of the final string with the

respective complementary strands and the (‘*’) with

blockers, so that it can attract input strands.

Note:

1. The edges that make cycles in the graph are duly

identified and ignored, as DFS employs back-edge

determining technique.

2. The proposed algorithm produces a set of longest paths

corresponding to subgraphs: VV
k

i

i =
=

U
1

and

φ=
=

I
k

i

iV
1

, 1≥k where iV andV are

vertex sets of ‘ k ’subgraphs and of the graph

respectively. When k =1, a single longest path involving

all nodes of the graph is formed.

3. The blockers serve to avoid binary strings

corresponding to 0-output bit strings to be formed

anywhere in the final string. Hence, the final DNA

strand simulates the gate or the circuit precisely.

The strand formed by the algorithm is of minimum length due to

the exploitation of overlapping feature.

3.1. Time Complexity Analysis
Theorem: The algorithm needs Ө(r2) time, where r is the

row-size of the truth-table.

Proof:

The algorithm has two stages: graph representation and

production of the final strand. Graph representation takes

O(r2) time, as every 1-output row is to be compared with

every other 1-output row for making edges between any two

nodes, in the worst case.

The next stage involves DFS and DFS requires

O(EV +) time for a graph, G=(V,E). In our strategy,

V is O(r) and E is O(r2). Though there can be more

than one call for DFS for different subgraphs(when single

longest path involving all nodes is not available), the

amortized time complexity is O(|V|+|E|) only, as

VV
k

i

i =
=

U
1

and φ=
=

I
k

i

iV
1

, where iV ’s are

vertex sets of subgraphs.

So, combining the time complexities of two stages, the

total time complexity is O(r2), in worst case. The lower

bound for the minimum-length strand forming problem is

Ω(r2), as every row is to be compared with every other row

of the truth table.

Hence, the worst case time complexity of our algorithm is

Ө(r 2).

3.2. Case 1 Development of Boolean circuit for

 NAND gate

Consider the truth table of the NAND gate given in Table 2.

 Table 2.Truth table of the NAND gate

Row

No.

I1 I2 R

1 0 0 1

2 0 1 1

3 1 0 1

4 1 1 0

In constructing a graph for the above truth table shown in Table 2,

only three nodes are considered as shown in Figure 3, Since the

rows 1,2,3 has the output value R=1.

Figure 3. Graph representation for the NAND truth table

In order to form the edge, check for the overlap for the node 1 and

node 2. Since there is an overlap an edge between node 1 and

node 2 is added and also, there is an overlap between the node 2

and node 3 to form the edge between node 2 and node 3. Here, the

start node is node 1 and in the array the binary input bits (00) is

added. Node 2 is the next node in the path so that 1(I2) is added in

the array. Next is node 3 having 0 as I2 value is appended to the

array. As a result the array has (0,0,1,0). Replacing the values

with the corresponding complementary strand, the NAND gate

strand is obtained as shown in Figure 4.

Figure 4. Gate strand for NAND gate

The same process is carried out for all other gates using their

respective truth table and their gate strands can be obtained.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 22

17

3.2 Case 2: Development of Boolean circuit for

Traffic Light Signaling

Consider the problem to construct a Boolean circuit for

controlling the traffic light signaling. Two roads, one is the main

highway and the other is the secondary access road intersects each

other as shown in Figure 5.

Figure 5. Traffic Light Signaling

Vehicle-detection sensors are placed along lanes C and D (main

road) and lanes A and B (access road). These sensor outputs are

low (0) when no vehicle is present and High (1) when a vehicle is

present. The intersection traffic light is to be controlled according

to the following logic:

a) The east-west (E-W) traffic light will be green whenever

both lanes C and D are occupied.

b) The E-W light will be green whenever either C or D is

occupied but lanes A and B are not both occupied.

c) The north-south (N-S) light will be green whenever both

lanes A and B are occupied but C and D are not both

occupied.

d) The N-S light will also be green when either A or B is

occupied while C and D are both vacant.

e) The E-W light will be green when no vehicle is present

For the above problem the truth table is constructed having four

inputs (A,B,C,D) and two outputs E-W and N-S as shown in table.

Table 3. Truth table for the traffic light signaling

Since there are two outputs (E-W, N-S), it is required to construct

two graphs for obtaining two strands one for the (E-W) direction

and the other for the (N-S) direction to implement the traffic light

signaling. For constructing the (E-W) graph consider only the

rows having logical output 1 for the E-W direction. In the above

table 3, rows 1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 16 have their E-W

output as 1, and so their inputs (A,B,C,D) are considered as nodes

shown in Figure 6. To construct their edges, it is to identify the

overlapping between every pair of nodes. If there is overlap
between every pair of nodes an edge be placed between nodes of

each pair. For example node 2 has overlap with node 3 and node

4. So, node 2 has edges to node 3 and to node 4.The E-W graph is
shown in Figure 6 for the truth table shown in Table 3.

Figure 6. Graph representation for the E-W direction

In the graph shown in Figure 6 the longest path involves nodes

1� 2� 3� 6� 12� 8� 16. From the remaining nodes 10, 4, 7,

11, a path with nodes 10�4�7 can be constructed. The node 11

is left alone, as it has no overlap. Using the paths generated an

efficient strand can be constructed for implementing E-W

direction. In the first path the starting node is node 1. So that the

inputs A,B,C,D of row 1 are added to an array followed by D input

of the next node along the path. This process is carried out until

the last node in the path is encountered. Now the array has

(0,0,0,0,1,0,1,1,1,1). The same process has to be carried out for

the next path with a “*” symbol in between, so that array has

(0,0,0,0,1,0,1,1,1,1, *, 1,0,0,1,1,0). The inputs (A,B,C.D) of node

11 is added to the array with a “*” symbol between which is the

node left alone. The final array has the value

(0,0,0,0,1,0,1,1,1,1,*,1,0,0,1,1,0,”*,1,0,1,0). Replacing the values

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 22

18

with the corresponding complementary strand, the E-W strand is

obtained as shown in Figure 7.

Figure 7. E-W strand

The same process is carried out for the N-S direction by

considering the truth table shown in Table 3 with the inputs

A,B,C,D and the N-S output. The graph obtained for the N-S

direction is shown in Figure 8. The array has the value

(1,1,1,0,0,0,”*”,1,1,0,1,”*”,0,1,0,0). Replacing the values with the

corresponding complementary strand, the N-S strand is obtained

as shown in Figure 9.

Figure 8. Graph representation for the E-W direction

Figure 9. N-S strand

3.3 Inputs of the Boolean Circuit

Boolean circuit strand that has been obtained from executing

the above algorithm will be fixed on the surface at the 3’end. The

inputs for this Boolean circuit strand are the sequences

representing the inputs of the Boolean circuit. The Boolean circuit

for traffic light signaling has four inputs so that the input

sequence has four strands which are the assigned input strands for

the input variable as shown in Figure 10. In this paper molecular

Beacon probe is used as the input. The four sequences I1, I2, I3 and

I4 are placed in the loop of the Molecular Beacon (MB). Changes

that occurred after introducing the MB represent the results of the

Boolean circuit. In our simulation always the fluorescence

represents 1 and the dark represents 0.

Figure 10. Few input strands for the Traffic light signaling

 Boolean circuit

When the number of inputs to the Boolean circuit is increased the

appropriate probe can be chosen.

4. IMPLEMENTATION OF TRAFFIC

LIGHT SIGNALING BOOLEAN CIRCUIT
To implement Boolean circuit, fixing the strands obtained from

the algorithm for which the input is the truth table of the traffic

light signaling. In this case, there are two strands one for the N-S

direction and the other for the E-W direction are fixed on the

surface so that they are immobilized. The input for the fixed

strand is the two MB’s having the same inputs (A,B,C,D) in the

loop. The input MB is hybridized if it has desired target and

becomes bright else it will be dark. The bright fluorescence light

represents green light for the corresponding direction and the dark

light represents red light for the particular direction.

5. SIMULATION OF TRAFFIC LIGHT

SIGNALING BOOLEAN CIRCUIT
In the proposed method the two strands (E-W, N-S) as shown in

Figure 7 and Figure 9 obtained after implementing the algorithm

by giving the truth table as the input are fixed on the surface. Let

the inputs for the Traffic light signaling Boolean circuit A, B, C, D

be (1,1,1,1). Two MB’s with the same input sequence on the loop

is given as input to the two stands. The input MB given to E-W

strand get hybridized after finding a target in the E-W strand

indicating the green light signal for the E-W direction. The input

MB to the N-S strand can not find its target sequence and it will

be dark indicating a red signal for the N-S direction. The output of

the Boolean circuit is depicted in Figure 10.

Figure 10. Simulation of Traffic light signaling Boolean circuit

6. CONCLUSION

A theoretical model using molecular beacons, for all the Boolean

circuit with n inputs has been established in this paper. The

application of the proposed algorithm to form any Boolean circuit

has been illustrated. Compared to earlier models, the present

work needs only one bio-operation to complete the computation.

Case studies presented demonstrate amply that reusable and

reliable logic gates can be developed with ease using the proposed

algorithm. As MB’s are highly target specific, the logic gates thus

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 22

19

formed are reliable. Their specificity is to the extent that they

distinguish target sequences by a single nucleotide. It is also to be

noted that the Boolean circuits constructed can be reused for

subsequent simulation. The logical 1 and logical 0 has been

maintained the same for any logical gate in this paper.

7. REFERENCES

[1] Adleman, L., 1994. Molecular computation of solutions

to combinatorial problems.Science 266, 1021–1029.

[2] Ahrabian, H., Ganjtabesh, M. and Nowzari-Dalini, A.,

2005. DNA algorithm for an unbounded fan-in Boolean

circuit. Biosystems 82, 52–60.

[3] Ahrabian, H. and Nowzari-Dalini, A., 2004. DNA

simulation of NAND circuits. AMO Advanced

Modeling and Optimization 6, 2.

[4] Erk, K., 1999. Simulating Boolean circuits by finite

splicing. In: Proceedings of the Congress on

Evolutionary Computation, vol. 2. IEEE Press, 1279–

1285.

[5] Fang, X., Liu, X., Schuster, S. and Tan, W., 1999.

Designing a novel molecular beacon for surface-

immobilized DNA hybridization studies. Journal of the

American chemical Society 121 (12), 2921–2922.

[6] Jianzhong, C., Zhixiang, Y., Wei, W., XiaoHong, S. and

Linqiang, P., 2006. Towards reliable simulation of

bounded fan-in Boolean circuits using molecular

beacon. In: Proceedings of the World Congress on

Intelligent Control and Automation, IEEE, Dalian,

China, 3910–3914.

[7] Liu, Q.,Wang, L., Frutos, A.G., Condon, A.E., Corn,

R.M., Smith, L.M., 2000. DNA computing on surfaces.

Nature 403, 175–179.

[8] Liu, W., Shi, X., Zhang, S., Liu, X., Xu, J., 2005. A

new DNA computing model for the NAND gate based

on induced hairpin formation. Biosystems 77, 92–97.

[9] Mulawka, J.J.,Wasiewicz, P., Plucienniczak, A., 1999.

Another logical molecular NAND gate system. In:

Proceedings of the Seventh International Conference on

microelectronics for Neural, Fuzzy and Bio-Inspired

Systems, Granada, Spain, 340–346.

[10] Ogihara, M., Ray, A., 1998. DNA-based self-

propagating algorithm for solving bounded-fan-in

Boolean circuit. In: Proceedings of the Third

Conference on Genetic Programming. Morgan Kaufman

Publisher, San Francisco, . 725–730.

[11] Ogihara, M., Ray, A., 1999. Simulating Boolean circuits

on a DNA computers. Algorithmica 25, 239–250.

[12] Rothemund, P., 1996. A DNA and restriction enzyme

implementation of Turing machines. In: DIMACS

Series, Proceedings of a DIMAC Workshop, AMS 27,

pp. 75–119.

[13] Roweis, S., Winfree, E., Burgoyne, R., Chelyapov, N.,

Goodman, M., Rothemund, P., Adleman, L., 1998. A

sticker based model for DNA computation. Journal of

Computational Biology 5 (4), 615–629.

[14] Su, X., Smith, L.M., 2004.Demonstration of a universal

surface DNA computer. Nucleic Acids Research 32

(10), 3115–3123.

[15] Tyagi, S., Kramer, F.R., 1996. Molecular beacon:

probes that fluorescence upon hybridization. Nature

Biotechnology 14, 303–308.

[16] Wang, L., Liu, Q., Frutos, A., Gillmor, S., Thiel, A.,

Strother, T., Condon, A., Corn, R., Lagally, M., Smith,

L., 1999. Surface-based DNA computing operations:

destroy and readout. Biosystems 52 (1), 189–191.

[17] Zoraida, B.S.E., Arock, M., Ronald, B.S.M. and

Ponalagusamy, R., 2009. A novel generalized design

methodology and realization of Boolean operations

using DNA, Biosystems, vol.97, pp.146-153.

[18] Zoraida, B.S.E., Arock, M., Ronald, B.S.M. and

Ponalagusamy, R., 2008. A novel generalized model for

constructing reusable and reliable logic gates using

DNA. In: Proceedings of the Fourth International

Conference on Natural Computing, vol. 7. IEEE Press,

China, pp. 353–357.

