
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 23

75

Mobile Agents for Audio Search & Retrieval

ABSTRACT
At present de-facto standard for providing contents in the Internet
is the World Wide Web, which implements the client server
technique. A technology, which is now emerging on the web, is
searching for the audio, video and images and retrieval of the
same. In this paper, we describe an architecture that helps the user
in performing the above tasks using mobile agents. Here the
system is designed and implemented for the search and retrieval
of the images and audio files over the Internet. We can observe
that several disadvantages of the World Wide Web’s client server
technology have been overcome by using this architecture. The
current commercial applet – based methodologies for accessing
audio files from web databases offers limited flexibility,
scalability and robustness. Our system is based on aglets which
are nothing but Java based mobile agents. The implementation of
the architecture shows that its performance is comparable to and

in some cases outperforms the current approach. As an application
on this architecture we have also created the speech synthesizer
Agent for the special purpose of playing an audio from a
particular word. To achieve this, we are making use of open
source software Free Text to Speech converter1.0.1 as a
supporting tool. This architecture makes use of pull model of E-
commerce. This work aims at saving the download time, reduces
network traffic for the users who compare and purchase audio
online.

Categories and Subject Descriptors
 H. Information Systems, H.3 INFORMATION STORAGE AND
RETRIEVAL, H.3.5 On-Line information Services

General Terms
Algorithms, Performance, Design, Experimentation, Verification.

Keywords
CBSR, Audio Aglet, User, Supplier, Speech Synthesizer Agent,

INTRODUCTION
Last one and a half decade has witnessed tremendous increase in
the size of audio and video collections on the web. With the
increase in the computational power of both hardware and
software, the ability to store, search, and retrieve complex data
types in databases such as video, audio and images has also
improved to a large extent. These new media types offer other
challenges thus demanding a different approach when compared
to pure text.

The World Wide Web is rapidly being accepted as universal
access mechanism for network information. The popularity of

web suggests that web browsers may offer an end-user interface
for a large class of applications including search and retrieval of
audio files. Content based Audio Search and Retrieval, CBSR is a
technique which is fast emerging on the web today.. A content
based query matches examples or prototypes to known instances
of a certain media type based on the measure of similarity.

The present approaches which support varieties of audio files
suffer from a number of disadvantages. All audio files have to be
transferred across network to some indexing process. Audio files
gatherers seek files using HTTP or FTP requests. The searcher
will have to wait between requests, which increases the time
required for requesting, searching and receiving the files. This
time is identified as a performance bottleneck. Hence an
alternative architecture has been proposed for distributed
indexation and searching of audio files which combine Content
Based Audio File search and retrieval technology, Mobile agent
technology.

The proposed architecture, called Audio-Aglet architecture
utilizes the latest technology of mobile agents and content based
audio search and retrieval and demonstrates its effectiveness over
a specific application context (i.e. audio search and retrieval). The
main advantage of the architecture is that it frees the remote
client which can perform other more important tasks. The
implementation of the framework shows that the performance of
the system is comparable to current approaches.

Pull Model of Marketing

At present most of the e-commerce sites are designed to support
business to customers (B2C) applications. Almost every B2C
applications make use of pull model of marketing. This model
borrows the interaction pattern between the buyers and sellers
from the trading model in everyday model. For example, buyers
visit sellers to purchase items that they wish to acquire. The items
that are sold by the sellers are characterized by an established
value in the market. This ensures that customers are likely to visit
the sellers, or in other words the customers are pulled to the
sellers. This is also called as Buyer Driven E-Commerce. In this
implementation, the users are customers who wish to acquire the
audio files on the internet. The sellers are nothing but, the sites
which maintain the database of millions of audio tracks.

MOBILE AGENTS

2.1 Introduction

The term “software agents” refer to programs which perform
certain tasks on behalf of the user. Software agents can be
classified as stationary agents and mobile agents. Stationary

Dr. V Ramaswamy
Professor & Head , IS & E, BIET

#325, Shamanur Road
Davangere-4

Mrs. Jyothi N M
Lecturer, MCA, BIET
#325, Shamanur Road

Davangere-4

Mrs. Nirmala C R
Asst.Professor, CS & E, BIET

#325, Shamanur Road
Davangere-4

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 23

76

agents achieve the goal by executing on a single machine. On the
other hand, mobile agents migrate from one computer to another
computer and executes on several machines. Mobility increases
the functionality of the mobile agents.

A mobile agent consists of the program code and the
program execution state. Initially, a mobile agent resides on a
computer called home machine or dispatching server. The agent is
then dispatched to execute on a remote computer called mobile
agent host. When a mobile agent is dispatched, its entire code and
the execution state are transferred to the mobile agent host. The
host provides a suitable execution environment for the mobile
agent. Another feature of mobile agent is that it can be cloned to
execute on several hosts. Upon completion, the mobile agent
delivers the results to the sending client.

Aglet Technology developed by IBM Research Labs,
Japan is a framework for programming mobile network agents in
Java. IBM’s mobile agent called ‘Aglet’, is a light weight java
object. One of the main differences between aglet and Java
Applets which is a simple mobile code with the itinerary that is
being carried along with an aglet. By having the itinerary, aglets
are capable of roaming the Internet collecting the information
from many servers.

An aglet can be dispatched to any remote host that
supports the Java Virtual Machine. The prerequisite for the remote
host is to, pre-install Tahiti, a tiny aglet server program
implemented in java and provided by Aglet framework.

2.2 Sound in Java

Java has incorporated sound functionality since release
1.3. Recording and playback as well as streaming of multiple
audio formats are supported either through the Java Sound API
[15] or the higher level Java Media Framework (JMF) [14]. Java
Sound is a framework for recording, playing and processing sound
within Java. It supports a wide range of formats, both 8 and 16
bits and sample rates from 8 to 48 kHz. Java Sound is relatively
low level and is thus useful for sound processing applications. For
instance, it is straightforward to record a sound and present it as a
byte array, suitable for FFT or other forms of analysis. JMF is also
designed for use with time-based media content such as audio and
video, and it too has methods for capturing and playback.
However, the emphasis is on real-time streaming and presentation
of media content rather than analysis.

2.3 Audio Analysis

There are two main categories of audio analysis that could be used
in a system such as this, i.e., sound matching and speech
recognition.

2.3.1 Sound Matching
Sound matching is a concept where a sound is compared

to known sounds to determine how similar they are. Sound
matching can use both physical properties of the sound, such as
amplitude and frequency, and psycho-acoustical ones, such as
onset and offset. Applications of sound matching range from
automatic violence detection for films [17] to automatic detection
of exciting parts in sports shows [22] to surveillance systems [8].
Sound matching could be used in this system to detect sounds
such as word or a phrase spoken in a speech. Much research has
been made on the subject and there are some techniques that could
without doubt be useful in this project.

• Spevak and Polfreman’s sound spotting approach
described in [21], which uses mel-frequency cepstral
coefficients for feature extraction, commonly employed
in speech recognition. Subsequently, self- organizing
maps, a particular typeof neural networks, is used for
classification and, finally, k-difference inexact
matching, a string matching algorithm, is used for
pattern matching.

• Pfeiffer et al’s audio content analysis [17], primarily
designed for automatic violence detection in films,
classifies sounds using both physical properties, such as
amplitude and frequency, and psycho-acoustical
properties, for instance onset and offset.

• Comparisonics’ commercially available sound-matching
technology [20]. Since the system is commercial, its
design is secret. However, its functionality is essentially
equivalent to Spevak and Polfreman’s method, creating
signatures from audio content and comparing them to
determine similarity.

2.3.2 Speech Recognition

Speech recognition can be divided into two types;
dictation recognition and command recognition. Dictation
recognition is designed to recognize a vast range of words and is
used to quickly produce large quantities of text in a more natural
way than typing. Dictation recognizes many different words. As a
result, it is not very accurate. The other type of speech
recognition, command recognition, is used to parse commands
and can be used in a speech user interface, replacing or enhancing
a traditional user interface. Command recognition merely
recognizes certain pre-determined words, but with a much higher
accuracy than dictation recognition.

Speech recognition is available in Java through the Java
Speech API (JSAPI) [19].JSAPI defines interfaces for both speech
recognition and synthesis. As with all other Java technologies, it is
very high level and aims at complete platform independence.
There is no standard JSAPI speech engine. Instead, it relies on
third-party software to implement the API. Currently, there are a
few free open source speech synthesis engines written entirely in
Java. Speech recognition engines, in contrast, are normally
commercial, written in native code and hence platform dependent.
Examples of available JSAPI implementations are Cloud
Garden’s JSAPI [7], which can run on top of several different
speech engines, and IBM’s “Speech for Java” [8], using IBM’s
own ViaVoice [9].

MOBILE AGENTS FOR AUDIO SEARCH

AND RETRIEVAL (MAASR)

System Description
The concept of the entire system is a distributed system that ,

the audio-aglet architecture is used for the purpose of search and
retrieval of the audio files over the internet and web databases[4]
for the purpose of purchasing audio online. The framework
consists of two main systems or modules.

• User Module

• Supplier Module
The user module[1] consists of a static agent called user

agent and the mobile agent called Audio Agent. The audio agent
is held responsible for the search and retrieval of the audio file

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 23

77

requested. The user module also consists of Speech Synthesizer
Agent , which is a stationary agent.

The supplier module[1] consists of a static agent called
supplier agent. This agent helps the audio agent to get the required
information. The audio agent is coded in such a way that, it can
visit any number of hosts and get the required audio files from
various sites. Once the audio agent gets the audio files to host
system, it stores it in a folder specified. The user is given an
option to call the player and play the audio by using the player
interfaced with the system.

At the client side, one another important module is
developed. This is the audio synthesizer module. This module
helps the user to play the audio file from the specific point. For
this purpose, user agent creates a Speech Synthesizer Agent , in
turn this SSA Makes use of Open Source Speech Synthesizer .
Freetts 1.0.1. This application accepts the word or phrases in the
form of text and coverts it into speech. Then the SSA is called for
the purpose of speech matching. SSA take the speech in its
primary representation of byte array and tries to match with the
whole audio file for the word, if it is found, then the file is played
from that point otherwise returns unsuccessful search or some
error message.

This module finds an application in scenarios such as, there
is a very huge audio file which is a recorded voice of Gandhi- ji or
Swami Vivekananda or any important lecture delivered by famous
scientists like Dr. A P J Abdul Kalam. If the listener is interested
in only part of the speech then he can start that from the specific
point by specifying the name of the audio file and from which the
file has to be played.

This module also finds application where in a audio files are
embedded in the power point slides. Some times it is necessary to
fast forward the slide to start from different point. If this module
is interfaced, just typing the word from where it has to be started,
sound matching will be done and the slides will be displayed from
that point. These scenarios exists in the case of webinars(Seminars
on the web)

The figure 3.1 Shows the different modules of the system
with their respective agents. Here multiple agents are utilized to
get the work done efficiently without under or over utilizing the
capability of the agent.

First, the user has to log on to the system by using name and
password provided during the registration. If he is not registered,
he is given an option to register with the system. After he
registers, he gets a login name and password. Using these login
credentials, he/she can log on to the system. Once logs into the
system, he invokes the user agent at the dispatching host. This
user agent in turn creates the Audio Agent, which is mobile agent
and dispatches to the different hosts on the web. The audio agent
once reaches the predetermined hosts, it passes the request for the

audio files to the static agent at the supplier module. Then the
static agent in turn processes the requests on its local database as

well as on the directory tree structure and retrieves the results.
This result is updated to the audio-agent. The process repeats for
every predetermined host and the audio-agent returns to the
dispatching server with the results and dumps in the related tables
at the dispatching server.

 Figure3.1.System Architecture

Developmental Model

3.2.1 Implementation

Here the prototypes are created first with very basic
functionalities and then extended into the more complicated
system. The main advantage of this approach to the well-known
waterfall model, for instance, is that, as initially knew either the
full potential or the limitations of the technologies used, the

Server containing
audio files

Audio Agent

User Agent

Supplier Agent

Audio
Synthesizer Agent

Folder containing
searched audio
files

Micro Phone

User
Supplier

Audio search route

Audio retrieval
route

Audio search at user

User calls out to
audio data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 23

78

design could be revised and remade as the tools became more
familiar.
The first design of the prototype was very rough. Using IBM’s
aglet framework the basic agents are created, which just search
and retrieves the text files. Later it is extended to search and
retrieve the images from predetermined hosts. Next, the actual
functionality of searching and getting the audio files is
implemented. For the purpose of audio matching, first, the sounds
like handclaps and whistle were tried.

Later the actual work of matching a specific word in an audio
file is done and preferred solutions were,

a. Recording with Java Sound. Java Sound can provide
sounds as a byte array that is practical for further
processing.

b. Identification with external sound matching. The idea
here was to send the recorded sounds as an array of
bytes to a sound matching method of Speech
Synthesizer Agent, which would return the similarity of
the sounds.

c. The volume is used as a parameter to match the sound.
And it is very easy to extract the volume of a sound.

3.2.2 Pseudo Code
 The system has got three main agents namely, User
Agent, Audio Agent and Supplier Agent. Following are the
pseudo codes for the agents mentioned above.

 User Agent:
//class for user agent
Import *.Aglet;
Class UserAgent extends Aglets {
 Public void run() {
AudioAglet(object init)
{
 create mobile Audio Agent
}
fill_itinerary(URL) {
Add destination URL’s(1……n)
};
get_proxy(Aglet Id)
{
onDispatch()
{
Wait for message agent;
}
}
 Public void AudioAglet (Object init)
{
Public void OnCreation(object args)
{
add MobilityListner;
}
Public void fill_itinerary(URL)
Add predetermined destination URLs;
Public void getProxy (AgletContext.getAgletProxy(Aglet
Id.Identity)
{ gets proxy for an aglet in the current context;
}

{

--
Audio Agent:

//class for Audio Mobile Agent

Import *.Aglet;
Class AudioAgent extends Aglets {
 Public void run() {
Get the audio file list from the user to be searched atethe

supplier site .
Get the itinerary filled by the user
Move to supplier site
Give the file list to be searched to the Supplier agnet
And wait for response
If search is successful it returns with searched audio

files
Else
Returns with “Requested audio file not available”

message.
Stop
}

Supplier Agent:

//class for stationary supplier agent at the supplier site
//import *.aglet;
class Supplier extends Aglet{
pulic void run(){
listen for arrival of mobile audio agent from user sites onArrival
of a mobile Audio aglet
for each component on the audio search list
processRequest(component)
}
public void processRequest(reqCompnentType
component){
search the local audio files using XML parser
if component is found
send response to AudioAgent about availability
else
request audio aglet for time to quote
if audio aglet agrees to wait then
invoke the search For _audio file }

Speech Synthesizer Agent (SSA):

//class for stationary Speech Synthesizer Agent at the user Module
Import *.aglet;
Class SSA extends Aglet {
 Public void run () {
Wait for FreeTTS to give the sound of the word typed
For a given file
Public void searchWord(word) {
Search for the word in the specified audio file, by using the byte
array representation of the audio recorded. if word found,
}
Public void callPlayer(Component) {
Play the audio starting from matched word
}
Else {
Public void Unsuccessful() {
Print the error message “word not found”
}

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 23

79

Experimental Setup
To deploy and check the functionality of the prototype

developed, the following LAN set up is made in the CS & E
Department. The five hosts namely A, B, C, D, E which are
connected via TCP/IP are considered. Each host is configured
with JDK1.5 above, Aglet Software Development Kit 2.0.2 and
MySql for the purpose to store the standard audio files.

Every host on the network is identified by its IP Address and
default port
Host A : (User or dispatching server) IP Address is
8a828d3c:4434
Host B: (Predetermined Host) IP Address is 8a829d3c:4434
Host C: (Predetermined Host) IP Address is 8a830e1c:4434
Host D: (Predetermined Host) IP Address is 8a831c0d:4434
Host E: (Predetermined Host) IP Address is 8a832b8d:4434

Step 1: User Creates the user agent, in turn creates the Audio
Agent and dispatches to supplier sites to search for specified audio
files.
Step 2: After reaching the predetermined host, Audio Agent hands
over the request to Supplier Agent.
Step 3: Supplier Agent searches in its local database for the
specific audio file, if found updates the Audio Agent with success
or failure. If Success, the bit vector present in Audio Agent is
stuffed with the resulting audio files. If, Failure, the bit vector is
stuffed with the error message.
Step 4: This procedure repeated for all the predefined hosts in the
itinerary.
Step 5: Audio Agent comes back with the requested audio files
and gives it to User Agent. The User agent stores the path in the
specified table and files in the specified directory for further use .
Step 6: User can run the so collected audio files at any point of
time, without getting connected to the internet. He/she can also
make use of the Speech Synthesizer Agent to play the file from
somewhere in the middle or so.
Step 7: Exit or logout from the System

Observations.
The following observations are made from the above developed
prototype.

Two Cases are considered here.

Case I:

1. A single mobile agent is sent to all the five hosts to get
the audio files and the total time is calculated by noting
down the dispatch time and the arrival time (in
milliseconds) to get the images. The Dispatch time is
Td and Arrival Time is Ta. Round Trip time is
calculated using the following expression.

Rtt(ms)MA = Ta-Td.

2. Irrespective the type and size of the of the data that it
brings, the time taken was approximately same.

3. It resulted in empty result set , when the size of the file
increased beyond the size specified in the mobile agent
to bring the information.

Case II:

1. Simple timer program is written and is executed every
time the HTTP request is made to different host.

2. The timings are recorded for different type of data like
audio, image and text. Here the request time and the
receive time (Rt and Rc Respectively) are noted down.

3. The total time taken is calculated by using the following
expression

 Rtt(ms)HP =Rc-Rt

For example, in order to bring two images or two audio files
residing at two distinct locations, the user has to make two
separate requests and the RttHP will vary depending upon the
speed, bandwidth of network connection. where as a mobile agent
is capable of bringing both the files for a single request by going
to all the predefined hosts in its itinerary. This saves the time to a
greater extent.

4. CONCLUSION

Automation of global production and distribution through e-
commerce technology offers the opportunity for greatly increased
efficiency and responsiveness to changing the buyers preferences
and advances in technology. The challenge is to make it work.
Using mobile agents for search and retrieval, buyer or user can
check out for prices of audio tracks at different vendor sites and
can decide on the best price to buy. Irrespective of the type and
size of the file, the mean retrieval time is approximately same.
Speech synthesizer Agent gives ease of use in playing the audio
file from a particular point significantly applied to webinars. The
user can enhance search speed by involving multiple mobile
agents. This is proved in our previous work. The limitations of
this work are, the agents can search for the information only on
Tahiti enabled hosts and security threats from the hosts and the
network. Final conclusion that could be drawn from this work is,
performance is comparable to and in some cases outperforms the
current approach.

5. REFERENCES
1) P.Dasgupta, N Narasimhan, L.Moser, and P.M. Mellier

Smith,” MAgNET: Mobile Agents for Networked
Electronic Trading”, IEEE Transactions on Knowledge
and Data Engineering, Special Issue on Web
Technologies Vol. 24, No.6, July/August 1999, pp 509 -
525

2) IBM Agents, Mobile Java™ Agents with Aglets™, by
Christian Weigel, Department of Computer
Science,University of Applied Sciences
Kaiserslautern,Amerikastr. 1, 66482 Zweibrücken,
Germany,cweigel@gmx.net -
http://www.christianweigel.com/

3) Mobile Agents: What about Them? Did They Deliver
what They Promised? Are They Here to Stay?, by
George Samaras,Department of Computer Science,
University of ,Cyprus,CY-1678 Nicosia,
Cyprus,cssamara@cs.ucy.ac.cy

4) MOBILE AGENTS FOR CONTENT-BASED WWW

DISTRIBUTED IMAGE RETRIEVAL , by Sabu .M
Thampi1, Dr. K. Chandra Sekaran2

5) Digital Watermark Mobile Agents* , by Jian Zhao and
Chenghui Luo

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 23

80

6) Chess, D., Harrison, C., and Kershenbaum, A. (1997).
Mobile agents: Are they a good idea? ,In: Mobile
Object Systems: Towards the Programmable Internet,
pp. 25-45. Springer-Verlag,

7) Cloud Garden’s Java Speech API, December 3 2002.
URL:

8) http://www.cloudgarden.com/JSAPI/. ,321 South Main
Street,Providence, RI 02903

9) M. Cowling and R. Sitte. Sound identification and
direction detection in matlab

10) For surveillance applications. In Proceedings of
Australasian MATLAB Users Conference, November
2000.

11) R.H. Glitho, E. Olougouna, and S. Pierre. Mobile agents
and their use for information retrieval: A brief overview
and an elaborate case study. IEEE Network, 16(1):34–
41, 2002.

12) D. Hagimont and L. Ismail. A Performance Evaluation
of the Mobile Agent Paradigm. In Proceedings of the
1999 ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications,
pages 306–313.

13) ACM Press, 1999. ISBN 1-58113-238-7. Speech for
Java, December 3 2002. URL:
http://www.alphaworks.ibm.com/tech/speech.

14) IBM ViaVoice, December 3 2002. URL: http://www-
3.ibm.com/software/speech/.

15) Java Media Framework API, December 5 2002. URL:
http://java.sun.com/products/java-media/jmf/.

16) Java Sound API, December 5 2002. URL:
http://java.sun.com/products/javamedia/sound/.

17) Mitsuru Oshima, Guenter Karjoth, and Kouichi Ono.
Aglets Specification 1.1 Draft. IBM Corp., September
1998.

18) S. Pfeiffer, S. Fischer, and W. Effelsberg. Automatic
audio content analysis. In Proceedings of the fourth
ACM international conference on Multimedia, pages
21–30. ACM Press, 1996. ISBN 0-89791-871-1.

19) M. Scarpa, M. Villari, A. Zaia, and A. Puliafito. From
client/server to mobile agents: an in-depth analysis of
the related performance aspects. In Seventh
International Symposium on Computers and
Communications, pages 768–773. IEEE Press, July
2002.

20) Sun Microsystems, Inc. Java Speech API Programmer’s
Guide, October 1998.

21) Comparisonics’ homepage, September 27 2002. URL:
http://www.comparisonics.com.

22) R. Polfreman and C. Spevak. Sound Spotting – a Frame-
Based Approach. Technical report, University of
Hertfordshire, 2001.

23) Surya Nepal, Uma Srinivasan, and Graham Reynolds.
Automatic detection of ’goal’ segments in basketball
videos. In Proceedings of the ninth ACM international
conference on Multimedia, pages 261–269. ACM Press,
2001. ISBN 1-58113-394-4.

24) Performance Enhancement of E-Commerce
Applications using Multiple Mobile Agents

