
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 24

94

Flare: Architecture for rapid and easy development of

Internet-based Applications
Shashank Shekhar

School of Computing Sciences, VIT
University

304, J.J. Apartment, Vijayrangam
Layout, Basavangudi, Bangalore

ABSTRACT
The recent trend in application development that creates globally

accessible, Internet-based applications has proved to be a critical

paradigm for developers. However, the development of such

applications often require the creation and management of online

database storage servers, re-creation of user management schemes

and writing a lot of unnecessary code for accessing different web-

based services using their APIs. Our architecture, named Flare,

proposes a structured and easy way to develop applications

rapidly, in a multitude of languages, which make use of online

storage of data and management of users. The architecture

eliminates the need for server-side programming in most cases. A

Web API provides a common API for various web-based services

like Blogger [2], Wordpress, MSN Live, Facebook [3] etc. Access

Libraries provided for major programming languages and

platforms make it easy to develop applications using the Flare

Web Service. We demonstrate a simple micro-blogging service

developed using these APIs in two modes: a graphical browser-

based mode, and a command-line mode in C++, which provide

two different interfaces to the same account and data.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Storage

and Retrieval – clustering, search process

H.3.4 [Information Storage and Retrieval]: Systems and

Software – distributed systems

K.6.3 [Management of Computing and Information Systems]:

Software Management – software development

K.6.5 [Management of Computing and Information Systems]:

Security and Protection – authentication

General Terms
Algorithms, Performance, Design, Reliability, Languages

Keywords
Internet-based, Application development, Cloud storage, Unified

API, Web Service, User management

1.MOTIVATION
The Internet has become a ubiquitous entity and the development

of new and innovative web-based services has led to an explosion

in the amount of content available. Technologies like AJAX, and

Rich Internet Application providers like Adobe Flex, and JavaFX

have enabled the development of a new breed of innovative and

rich applications. These applications harness the storage and

computational power of the web, and bring it to the desktop and

mobile users. However, there still remains a significant scope for

improvement in the techniques and frameworks used for

developing such applications. There is a need to simplify the

process of writing code for Internet-enabled applications, and also

to bring the same ease of use to all major programming languages

and platforms. To date, each application uses different sets of

classes for accessing web storage services like Amazon S3 or

SimpleDB [1] or Box (or manage their own database servers),

manage their own users, and write separate access classes for each

of the web-based services used like Blogger, Wordpress, Gmail

etc. This can get quite cumbersome and results in significantly

increased time for development of applications.

Another challenge is that the data generated by applications and

users is rapid and evolving in nature. Maintaining suitable storage

systems to cater to everybody’s computing needs requires careful

selection of appropriate storage architectures. As the average

Internet access speed across most of the world increases, the

Internet is becoming increasingly real-time, often up to a single

key-stroke. Coping with such real-time applications requiring very

high rates of access, and performance is very important.

The need to simplify the tools and infrastructure for Internet-

based applications, and to bridge the gap between the web and

traditionally non-browser programming languages is the driving

motivation of this architecture. The architecture proposes a simple

four-layered model for developing Internet-based applications,

with the majority of the repetitive and non-core work being in the

bottom three layers, leaving the application developer free to

focus on rapidly prototyping and developing new ideas.

Mohit Soni
School of Computing Sciences, VIT

University
1, State Bank Colony, Tonk

Phatak, Jaipur

NVSN Kalyan Chakravarthy
School of Computing Sciences, VIT

University
Door 20-3-129, Flat 7, Maitri

Nilayam, Shivajyotinagar, Tirupathi

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 24

95

2.FLARE ARCHITECTURE

2.1Overall Architecture

Figure 1: The Flare architecture

Flare uses a four-tier architecture that uses open protocols (SOAP

[5], REST [6]) for communication. The simplified view of the

Flare architecture is given in Figure 1. The top-most layer is

formed by Applications that can be written in a multitude of

languages and platforms and target hosts (desktop, browser,

mobile). The applications layer uses the next layer formed by

Access Libraries that provide access to the web service exposed

by Flare-enabled servers. The third layer implements the Web

service running on Flare-enabled servers for managing the

application & user data, and routing data access calls to and from

the required external web services. The fourth layer is the Storage

backend that provides a high-performance, and indexed storage

system for the Flare Web Service.

2.2API Interfaces
The Flare Web Service provides web methods grouped under

three APIs: Apps API, Users API, and Web API. These APIs

allow apps to store and manage data and users, and access

different web services in a unified fashion without requiring any

server-side programming on the part of the developer. The Apps

API allows the application to easily store and manage data that is

accessible across the Internet without requiring database

management. The Users API provides the basic operations needed

for managing users, and allows applications to manage users

specifically meant for that application. The Web API provides a

set of common APIs to the developer to easily access web-based

services that are similar to each other.

2.3Storage Architecture
Flare can be used with a number of different databases, forming

the bottom-most layer in Figure 1. But the conditions that must be

met by the storage solution are:

• High performance

• High availability

• Scalability

• Indexed

• Data redundancy

• Error recovery

Amazon's SimpleDB provides a simple and elegant solution and

also meets the above conditions. Using SimpleDB eliminates the

need to create and maintain database servers that divert attention

from developing and maintaining the core web service. But the

architecture permits use of other databases like ThruDB [4],

MySQL etc, and both Schema-oriented and Schema-less by

changing the wrapper class between Layer 3 (Flare Web Service)

and Layer 4 (Storage Backend).

3.IMPLEMENATION
The Flare API is exposed as a Web Service supporting SOAP and

RESTful techniques of communication. The web methods are

grouped into three APIs:

• Apps API

• Users API

• Web API

3.1Apps API

Figure 2: Apps API

The Apps API is used for creating globally accessible applications

in any of the major languages and permit them to persist data, and

share data between application instances across the Internet. It

eliminates the need for server-side programming and database

management on the developers' part. It makes it trivially easy to

get, put, query/update and delete data from within the code and

keeping it specific for each user account of the application. Thus

the developer only needs to worry about the Presentation and

Application logic.

Two types of storage mechanisms are provided by the Apps API:

the userStore and staticStore. The userStore is a per-user storage

provided for applications that store information particular to a

user, like his high scores in a gaming application, or his updates

in a micro-blogging service built on Flare etc. The data stored is

by default private, but desired items can be made public to enable

other users to view the data without authentication. The

staticStore is useful for storing data that is accessible across all the

instances of the application, regardless of which user is logged in.

For e.g. a blogging service built on Flare could use the staticStore

to keep track of the ten most recent blog posts made by its users.

This data is static to all the instances of the application, so a user

could see the ten most recent posts made by users of that service

across the web.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 24

96

3.2Users API

Figure 3: Users API

The Users API provides a simple interface for permitting

applications to create and manage users. It eliminates the need to

redo authentication algorithms, user data storage schemas and

server-side programming on the part of the developers as they can

store user data and authenticate them from the Flare servers. The

API provides flexibility to developers by permitting the storage of

as many data key-value pairs about users as required by the

application, without imposing a structure on what is stored. This

is required because every application differs in what it needs to

store about its users. For e.g., social networks built on Flare might

need in-depth personal and professional information, while simple

games might need just the real name of the user, apart from

username and password which are the only mandatory fields

enforced by the Users API.

3.3Web API
The Web API provides a unified API for web services that are

similar to each other. For e.g. all Blogging services can be

accessed and used programmatically using the same API exposed

by Flare, which implements the code for communicating with the

various underlying services like Blogger, Wordpress etc. The Web

API categorizes web services into 9 broad groups:

• Blogging

• Email

• Instant Messaging

• Feeds

• Offbeat devices (SMS, VoIP etc)

• Social Networks

• Maps

• Search

• Music, Videos, Photos and other media services

Thus there are nine different APIs providing a minimum common

feature specification for each group thereby requiring the

developer to work with just one common API for each group. The

APIs also provide a mechanism for the developer to access extra

features provided by a particular web service that the common

API for the group doesn’t provide. Thus it becomes easy for

developers to build complex mash-ups and provide support for

various services in their applications using this API.

3.4Access Libraries
The APIs exposed by Flare will be accessed by libraries ported to

each of the major languages and platforms. These libraries will

enable desktop applications, mobile applications and web-based

Javascript applications to use the storage and unified web APIs in

a standard way. Developers could also write multiple interfaces

for accessing the same application. For e.g. a Web-based micro-

blogging application in Javascript, and a C++ based command-

line version of the same application, both using the same

userStore item thus providing different interfaces to perform the

same actions. To enforce security and authentication. all

communications with the Web service should use the HTTPS

protocol [7].

4.DEMONSTRATION SCENARIO
This demonstration explains in brief the essential code fragments

of Flitter, a simple micro-blogging service in two modes: a

graphical, browser-based interface in Javascript, and a command-

line interface in C++. Both modes provide access to the same

account and data.

4.1Javascript version

The Javascript version, shown in Figure 4, uses the Flare library

from the server and registers the application along with a

developer key with the statements at lines 43 and 44.

Figure 4: Code snippets from Fitter.js

The authentication of the user is performed by line 65 that passes

an argument ‘r’ to the callback function that is either false,

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 24

97

signifying authentication failure, or a valid long-type number,

denoting the userID. This userID is used along with the

password in all future transactions. The recent 10 posts written by

the user is fetched at line 76. The Javascript library for Flare

decodes the XML response sent by the server and sends a key-

value map as the argument ‘data’ to the callback function.

New posts are stored online by the code at line 87 and 88. This

stores the data as public in the userStore in the item marked

by the userID and the appID.

The other screen takes the username as the input, and gets the ten

latest posts by the specified user at line 102. This verifies the

visibility mode of the data requested, and returns the ten posts that

can be shown on the screen.

4.2C++ version
The C++ version, shown in Figure 5, uses a library enclosed in

flare.dll, and includes the necessary header file on line 2.

Figure 5: Code snippets from Flitter.cpp

The remaining syntax for performing the tasks is almost identical,

except with the replacement of anonymous functions (that were

used in the Javascript version) with function pointers and the

scope resolution operator (::) being used for namespace access

as in lines 41 – 43. This snippet calls a developer-defined function

show_my_posts() and passes to it the received data. The

application can also show posts by other users with the code at

lines 75 – 77, using syntax similar to the Javascript version.

5.APPLICABILITY
While our demonstration application was a simple one, the

architecture and API can be successfully implemented on Web

servers to permit an elegant way for developers to simplify

development. A few, specialized systems that require custom

storage systems and data management schemas might not be

suitable candidates for using the Flare architecture. But this

addresses the needs of a very large base of web and application

developers looking for simpler ways to create Internet-enabled

applications that work on multiple devices and platforms.

The kind of applications that can be developed using the Flare

APIs is really diverse owing to the lack of enforcement of

structure, and a generic design. Applications can be simple and

complex, including simple games and mash-ups to social

networks, blogging services and service aggregators. However,

there remain significant challenges in keeping the system secure

and highly available, and more development and design is needed

to refine the architecture further to cover deeper issues.

6.REFERENCES
[1] Amazon’s Cloud Storage Hiccups.

http://www.wjla.com/news/stories/0208/496511.html.

[2] S Murugesan. Understanding Web 2.0. IT Professional 2009.

IEEExplore. Pg 34 – 41.

[3] R Figueiredo, O Boykin, PS Juste, D Wolinsky. Social

VPNs: Integrating overlay and social networks for seamless

P2P networking. Workshop on Collaborative Peer-to-Peer

Systems 2008.

http://byron.acis.ufl.edu/papers/cops08.pdf

[4] T. J. Luciani. ThruDB: Document Oriented Database

Services.

http://thrudb.googlecode.com/svn/trunk/doc/Thrudb.pdf

[5] M zur Muehlen, JV Nickerson, KD Swenson. Developing

web services choreography standards—the case of REST vs.

SOAP. Decision Support Systems, 2005. Elsevier.

[6] RESTful URL Naming Conventions.

http://microformats.org/wiki/rest/urls#URL_Convention

s

[7] I Goldberg, D Wagner, R Thomas, EA Brewer. A Secure

Environment for Untrusted Helper Applications. In

Proceedings of the Sixth USENIX Security Symposium

(1996).

http://eprints.kfupm.edu.sa/20822/

