
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 24

22

An Analysis of Mechanisms for Making IDS Fault Tolerant
 Perminder Kaur Dhavleesh Rattan Amit Kumar Bhardwaj

ABSTRACT
This paper is a survey of the work, done for making an IDS fault

tolerant. IDS are prone to various attacks and it becomes the

natural primary target of hostile attacks with the aim of disabling

the detection feature and allowing an attacker to operate without

being detected. This paper suggests that intrusion detection

system (IDS) must be fault tolerant; otherwise, the intruder may

first subvert the IDS then attack the target system at will. Making

an IDS fault tolerant is a challenging task.

1. INTRODUCTION
Fault tolerance is a means of achieving dependability, working

under the assumption that a system contains faults, and aiming at

providing the specified services in spite of their presence. The

ubiquity of Internet has continually increased the incidence of

exploitation on the vulnerabilities of computer systems and

networks. Furthermore, the computing environment has shifted

from the traditional centralized computer systems to the

networked information systems (NIS), and unfortunately, the NIS

is subject to frequent intruder attacks. The current focus of IDS

research includes efficiency (i.e., reducing the computing

resources consumption), accuracy (i.e., design of a ‘better

intrusion detection algorithm) and coverage (i.e., detecting more

attack types). These issues are important; however, an IDS may be

attacked first. After it has been subverted, the system is left

defenseless. Hence, it is important to make an IDS fault tolerant.

This paper is organized as follows: section 2 covers analysis of

existing mechanisms, section 3 covers results and conclusions of

our research.

2. ANALYSIS OF PREVIOUS WORK
A survey on fault tolerance techniques, for IDS, can be found in

[1]. Some surveys on the architecture for Integrity checking and

intrusion tolerant server are there in [2-5].

Papers on fault tolerance mechanisms for Network Intrusion

Detection System are found in [6-10].

Disabling the intrusion-detection system can happen in the

following ways:

Denial-of-service attacks. Denial-of-service attacks are a

powerful and relatively easy way of temporarily disabling the

intrusion-detection system. The attack can take place against the

detector, by forcing it to process more information than it can

handle (for example by saturating a network link). This usually

has the effect of delaying detection of the attack or, in the worst

case, of confusing the detector enough so that it misses some

critical element of the attack. A second possibility is to saturate

the reaction capability of the operator handling the intrusion-

detection system. When the operator is presented with too many

alarms, he can easily miss the important one indicating

penetration, even if it is present on the screen.

Evasion of the detection. Several techniques have been

developed to evade detection of an attack by intrusion-detection

systems. Network-based tools, the most popular tools today,

particularly suffer from these attacks involving hand-crafted

network packets:

1. Attack by IP fragmentation. Intrusion-detection

systems have diffculties reassembling IP packets. Therefore,

splitting an attack artiffcially into multiple packets creates a

mismatch between the data in the packet and the signature, thus

hiding the attack.

2. Attack via the TTL (Time To Live). By altering the

TTL of IP packets, it is possible to make the intrusion-detection

system see packets that will not arrive at the target of the attack.

By inserting fake data into the communication stream, an attacker

can interleave the attack with bogus information, thus hiding the

attack from the intrusion detection system while the target

correctly reconstructs this attack data and reacts to it.

Karl N. Levitt & Steven Cheung[1] have given some common

techniques in fault tolerance and security. These are:

1. Redundancy.

2. Majority voting.

3. Sending packets over multiple communication paths.

4. Storing critical files in more than one site.

5. Using multiple servers for authentication, Error

detection or correcting codes.

6. Cryptography.

7. Heterogeneity (e.g. N-version programming) Having

heterogeneous hosts and routers which run different

communication protocols; cost: standardization of

protocol and OS.

8. Error containment Access control, firewalls.

9. Detection System Diagnosis (e.g. active probing for

faults) IDS, anomaly and misuse detection, auditing,

testing or monitoring by site administrators, virus

scanners, integrity checking.

If the likely faults affect a single protected component, only then

the Redundancy is effective e.g., a processing element. Moreover,

fault masking prevents the fault from inducing errors that

propagate beyond the component that suffered the fault. There

seems to be a related concept in the security domain. If a

computer on a network is compromised by an attacker, it should

be difficult for him to use this compromised machine as a base to

attack other machines. Access control mechanisms and firewalls

associated with network components can block or at least limit the

spread of attacks.

Architecture For Integrity Checking:
Integrity represents whether or not an agent has been modified

from its original state This agent could be a device driver, a kernel

security agent (such as a firewall), a security service (such as

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 24

23

VPN), an OS kernel invariant or any other program. Today’s

advanced viruses and worms attack software running in memory

to circumvent operating system protections. Such attacks often

disable intrusion detection systems in order to execute malicious

payload.

Y. Peggy Shen, Wei-Tek Tsai, Sourav Bhattacharya, Ting Liu[3]

have proposed a system architecture to enhance the attack

tolerance of IDS through integrity cheking.

 The System uses the anomaly detection and sandbox techniques

to detect intrusions of the IDS. The anomaly detection technique

first establishes the normal program behavior (“self ’), then

detects deviation from the normal program behavior. The

definition of self is defined as finite numbers of sequence of

system calls in the running processes of an application program.

It is a real-time intrusion detection system. It has three major

components the Integrity Checker (IC), the IDS Monitor (IDM)

and the Neighborhood Watcher (NW).

Integrity Checker (IC) - The IC detects unauthorized

modification and replacement of executable and configuration

files. The IC does that by checking these files periodically. The IC

computes 32- bit CRC values for each executable file and

configuration file at the system initialization time as well as

runtime. If any files are modified or replaced, the runtime

computed CRC values will be different from the original CRC

values.

Intrusion Detection Monitor (IDM) -The IDM monitors the

normal program behavior of the IDS processes/threads, and

verifies that the IDS is operating within the sandbox. IDM sends

out the monitoring results of the previous frame to all the NWs in

the group. If the NW fails to receive the results in a frame, it

increments the strike-counter by one. The strike-counter is used to

accommodate the asynchronous nature of the NWs,

Neighborhood Watcher (NW) - The NWs are responsible to

monitor IDMs located in the network. The IDM and NW transmit

heartbeat messages to each other periodically. In other words,

they monitor each other periodically. If the NW detects that the

IDM has been compromised, it sends a warning message to the

security personnel and other NWs.

The advantage of this system is that it can detect intrusions of

IDS as well as itself in a real-time manner.

Architecture enhances the attack tolerance of IDSs. The

architecture is a hybrid of distributed, redundant and cross-

corroborating techniques. The design of the system is flexible and

scaleable.

Gene H. Kim and Eugene H. Spafford[5] describes the

design and implementation of the Tripwire tool. They analyzed

various security tools, and provide a model for building security

tools with similar goals. The goal of integrity checking tools is to

detect and notify system administrators of changed, added, or

deleted files in some meaningful and useful manner.

Tripwire uses interchangeable “signature” (usually, message

digest) routines to identify changes in files, and is highly

configurable. It uses two inputs: a configuration describing file

systemobjects tomonitor, and a database of previously-generated

signatures putatively matching the configuration. Selection-masks

(described below) specify file system attributes and signatures to

monitor for the specified items.

Intrusion Tolerant Architecture for IDS:
Dan Gorton[4] in his thesis work provides an intrusion

tolerant architecture for IDS. The architecture used is composed

of four major components:

Application servers, Tolerance proxies, IDS, and a Firewall

• The redundant application servers are used to provide

contents to requesting web browsers. Different

hardware, operating systems, and applications are used

to minimize the risk of all web servers being vulnerable

to the same attack or failure modes.

• The tolerance proxies are then used to provide a secure

front-end to the application servers. They mediate client

requests to one or more application servers depending

on the currently selected security policy.

• The IDS is used as one part of the monitoring subsystem

• The firewall is used to minimize the exposure of the

intrusion tolerant system. Only web requests are

allowed to pass through from the outside.

In the result of his thesis he showed that it is possible to use

different fault tolerant mechanisms, e.g. redundancy and diversity,

to be able to tolerate some degree of intrusions.

Fault Tolerance Mechanism For IDS:
Various mechanisms have been proposed for making an IDS fault

tolerant. I have analyzed some of the research papers published on

the area of concern.

Lindonete Siqueira and Zair Abdelouahab[6] have

proposed an adaptive fault tolerance mechanism for Network

Intrusion Detection System based on Intelligent Agents. Agents

collect information related to hosts by monitoring different

systems and using the collected information the following actions

can be taken:

1. Detect agents which are still active.

2. Detect agents to be replicated.

3. Detect the action of malicious agents.

By using a list of capacities for each agent , and monitoring the

actions that are accomplished by each agent of the system ,

malicious agents can be detected.

R.Shashikumar and L.C.S. Gouda[7], provide a

reconfigurable IDS architecture to provide confidentiality, data

integrity, authentication and nonrepudiation. The architecture was

implemented based on the FPGA hardware. The reconfigurable

hardware unit processes the TCP three way handshakes and the

Server and Client TCP stream reassembly. Five important states

(CLOSED state, SYNSENT state, SYN-RECV state,

ESTABLISHED state and EXCHANGE state) are examined to

build up the proper TCP three way handshakes needed for the

TCP connection. During the building of the TCP connection, the

control signals “Division”, “Flag-vulnerability” and “Established”

will be the output to the downstream units. The division signal

controls the Converger unit In this process, attacks such as

Stealthyscan and half TCP connection can be identified.

The autonomous restructuring algorithm is designed to handle the

faults that most frequently occur due to gate oxide shorts or metal

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 24

24

to metal shorts and provides the feature of self-healing, with built-

in autonomous restructuring units.

The results obtained confirms that the system is fast and is ideally

suited for monitoring high speed networks and provides improved

security to the shared resources on Internet and Intranet. By

parallelizing the tasks of reassembling TCP packets on the server

and the client on a FPGA the performance of the IDS is greatly

improved.

Pabitra Mohan Khilar, Jitendra Kumar Singh, Sudipta

Mahapatra[8] propose a failure detection service that uses a

heartbeat based testing mechanism to detect failure and take the

advantage of cluster based architecture to forward the failure

report to other cluster and their respective members.

Failure detection algorithm maintains a heartbeat receive table for

each member node in each clusterhead. When a heartbeat from a

particular member is received, a new freshness point is calculated

using the arrival time of this heartbeat and previous heartbeat

messages and new timeout period is set equal to this freshness

point.

(i) In every heartbeat interval THB each member node sends a

heartbeat message to the clusterhead.

(ii) If heartbeat from a particular member is received within the

timeout period TTM, clusterhead first saves the arrival time t of

this heartbeat message according to its local clock. Then a new

freshness point is calculated using the arrival time of this

heartbeat and previous heartbeat messages and new timeout

period is set equal to this freshness point.

(iii) If the heartbeat from a particular member is not received

within the timeout period TTM then that node is considered as

failed by the CH. The CH broadcast the firm failure message

containing ID of the node to the group.

When a gateway node GW receives this message it forwards this

message to the clusterhead of the neighboring clusters.

Results show that complexity of the message(bandwidth

utilization) increases linearly with the number of nodes. Local

detection time is independent of the number of nodes. This

approach is linearly scalable in terms of consensus time.

Liwei Kuang, Mohammad Zulkernine[9] propose an

intrusion-tolerant mechanism for network intrusion detection

systems (NIDS) that employ multiple independent components.

The mechanism monitors the detection units and the hosts on

which the units reside and enables the IDS to survive component

failure due to intrusions. As soon as a failed IDS component is

discovered, a copy of the component is installed to replace it and

the detection service continues. We implement the intrusion-

tolerant mechanism based on the CSI-KNN-based NIDS and

evaluate the prototype in the face of component failures. The

results demonstrate that the mechanism can effectively tolerate

intrusions.

3. RESULTS AND CONCLUSION
The results of the above analysis can be summarized based upon

the following evaluation criteria used for fault tolerance:

1. Availability of the resources in the hosts (memory, disk

space, etc.) i.e denial of service.

2. Reliability i .e. Mean time between break-ins, covert

channel capacity

The most widely used mechanisms for fault tolerance can be

summarized as:

1. Replication Of software agents.

2. Employing Redundancy in processing elements.

3. Integrity checking for self healing.

4. Using Reconfigurable hardware and restructuring

architectures.

5. Fault detection using Heartbeat messages in multiagent

systems.

The result of the evaluation of the above mechanisms based upon

above criteria is shown in table 1 below:

 Table 1: Evaluation results

Sr.

No.

Mechanisms for

Fault Tolerance

Availability Reliability

1.

2.

3.

4.

5.

Replication Of
software agents.

Employing
Redundancy in
processing
elements.

Integrity checking
for self healing.

Using
Reconfigurable
hardware and
restructuring
architectures.

Fault detection
using Heartbeat
messages in
multiagent
systems

High

Appropriate

High

High

High

High

Low

Appropriate

High

Low

From the above analysis I can conclude that intrusion detection

system (IDS) must be fault tolerant; otherwise, the intruder may

first subvert the IDS then attack the target system at will and the

main requirements for making an IDS fault tolerant are:

Timeliness - the system shall detect intrusions of IDS in a timely

fashion. Since the IDS protects the computer systems and

networks, a compromised IDS makes the target system’s door

wide open for intruders. A compromised IDS needs to be

detected and reported immediately.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 24

25

Scalability - the system shall be scaleable in the sense that it

should work in a network of few workstations or hundreds of

servers, with few IDSs or hundreds of IDS.

Flexibility - the system shall be flexible. Some IDSs employ

centralized detection algorithms, but some

distributed detection algorithms. Since the system protects IDSs,

thus, it must accommodate both the

centralized and distributed IDSs.

Accuracy - the system shall detect intrusions accurately. It is

essential to reduce the false alarm rate. When the false alarm is

high, the security personnel are overwhelmed with the false

alarms. Worst yet, he or she must plow through all the false

alarms to hunt for intrusions.

Resilience to Subversion - the system shall resist subversion. If

the system is compromised, then the IDS is in danger of being

attacked. Thus, it is vital that the system has built in self-

protection mechanism.

4. REFERENCES
[1] K.N. Levitt, S. Cheung, "Common Techniques in Fault-

Tolerance and Security," Proc. of the Dependable Computing for

Critical Applications 4, pp. 373-377, 4-6 Jan. 1994,

[2] L. Catuogno, I. Visconti,”A Format-Independent Architecture

for Run-Time Integrity Checking of Executable Code.” Proc. of

the Third International Conference on Security in

Communications Networks, 2002

[3] Shen, Y.P. Tsai, W.-T. Bhattacharya, S. Liu, T,” Attack

Tolerant Enhancement Of Intrusion Detection Systems.” Proc.

21st Century Military Communications Conference, Vol 1, pp.

425-429.

[4] Dan Gorton, “Extending Intrusion Detection with Alert

Correlation and Intrusion Tolerance” Masters Thesis, 2003

[5] G. H. Kim, E. H. Spafford, “The design and Implementation

of Tripwire: A File System Integrity Checker”. Proc. Conference

on Computer and Communications Security,Vol 2, pp. 18-29,

November 1994

[6] Lindonete Siqueira and Zair Abdelouahab,” A Fault Tolerance

Mechanism for Network Intrusion Detection System based on

Intelligent Agents (NIDIA).” Proc. The Fourth IEEE Workshop

on Software Technologies for Future Embedded and Ubiquitous

Systems, and the Second International Workshop on Collaborative

Computing, Integration, and Assurance (SEUS-WCCIA'06) , Vol

00, pp. 49-54, 2006

[7] R.Shashikumar and L.C.S. Gouda,” Self-Healing

Reconfigurable FPGA Based Fault Tolerant Security Model for

Shared Internet Resources” IJCSNS International Journal of

Computer Science and Network Security, VOL.9 No.1, January

2009

[8] Pabitra Mohan Khilar, Jitendra Kumar Singh, Sudipta

Mahapatra,” Design and Evaluation of a Failure Detection

Algorithm for Large Scale Ad Hoc Networks Using Cluster Based

Approach” Proc. 2008 International Conference on Information

Technology , Vol 00, pp.153-158, 2008.

[9] Liwei Kuang, Mohammad Zulkernine, “"An Intrusion-

Tolerant Mechanism for Intrusion Detection Systems," Proc. 2008

Third International Conference on Availability, Reliability and

Security, pp.319-326, 2008.

[10] C. KO, “Execution Monitoring of Security-Critical Programs

In A Distributed System: A specification Based Approach”, Ph.D.

Dissertation, Computer Science Department, University of

California at Davis, 1996.

