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ABSTRACT 

This paper purposed a new generalized predictive control based 

on state feedback theory for the large inertia and large delay 

characteristics of the discrete reheat steam temperature plant. 

The idea is to compensate the large inertia and delay 

characteristics of the plant by the state feedback theory and the 

generalized plant by predictive control. The simulation results 

show that that the new control system has good robustness and 

transient performance. So it is an effective control strategy for 

large delay industry process. 

Categories and Subject Descriptors 

MATLAB, SIMULINK and Model predictive toolbox 

General Terms 

Algorithms, Performance, Design, predictive control. Transfer 

function, controller. 

Keywords 

Generalized predictive control (GPC), Pole placement, Observer, 

controller, state feedback. 

1. INTRODUCTION 
We know that general control strategy is adopted in large scale 

power plants control systems, while many utilities are going 

through downsizing of their work forces as a means to stay 

competitive, the operational requirement for increased safety, 

reliability, and efficiency of the already stressed power system is 

at an all time high. As the demand of power is increasing, power 

plants are getting more complex and expansive to run. These 

have brought a great challenge to the research Community to 

develop new technologies that will benefit the utility industry. 

Modern control theory [1] [2] developed from 1960,s has more 

superiorities than classical control theory in many control areas, 

and it extract more and more important effect in modern control 

systems. Since 1990, some researches have done a great deal of 

theory researching work [3] [4] in modern control theory of 

power plant control system and acquired some achievements in 

combining new theory with the practice. Several researchers [6] 

[7] applied state feedback theory to power plant steam 

temperature control system and got the satisfying effect. So the 

control strategy based on state feedback [3] is an effective control 

method to the large inertia process. Predictive control  is another 

effective control method for large delay process, which was put  

 

 

 

forward in the  late 1970’s.The application and research of 

predictive control had a good many developments [8] [10] in 

1980’s.The algorithm of predictive control [9]  mostly includes 

DMC (Dynamic matrix control), MAC, GPC etc. 

The state variable control and predictive can resolve the control 

problem of large delay process, combining the two advanced 

control strategy together could represent well. Aiming the 

practical problem of power plant reheat steam temperature 

control, we propose a new predictive control based on state 

feedback theory, which combined state feedback theory with 

predictive theory, and got fine effect of the local control and 

simulation. It proved that the predictive control based on state 

feedback theory is fit for boiler steam temperature control 

system, and it is effective strategy to large delay process control. 

 

2. GENRALISED PREDICTIVE CONTROL 

AND STATE FEEDBACK THEORY 
 

We have combined the state feedback and predictive control, for 

the unit   reheat steam temperature’s control. We deduce state 

variable and state feedback theory into predictive control 

algorithm putting forward the new predictive control based on 

state feedback theory. 

In fig.1 by selecting proper state feedback gain matrix (k) it is 

possible system to have closed loop poles at the desired locations 

[5] [6] provided that the system is controllable. 

After state feedback compensating the generalized reheat steam 

temperature model will show rapid dynamic characteristics even 

though original model has large inertia. State feedback control 

needs the state variable system, but in practice some of the state 

variables cannot be measured accurately. So we should 

reconstruct real plant.by a state observer and acquire the 

parameters of the plant and estimates the state variable based on 

the measurement of the output and control variables.  
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Fig.1. predictive control   based on state feedback theory 

Thus the whole design process of steam temperature Control 

systems has five steps. 

1. Calculating the state feedback matrix k 

2. Designing of full state observer and prediction observer 

3. Computing observer gain matrix m 

4. Designing observer-state feedback controller 

5. Calculating parameters of GPC controllers for compensated 

generalized plant. 

2.1 DESIGN OF STATE FEEDBACK 

CONTROLLER 

The following steps are carried out to design state 

feedback controller. 

2.1.1 Calculating the State Feedback Matrix K 

Consider the discrete model of the plant. 

( 1) ( ) ( )x k fx k gu k                                     (1) 

( ) ( )y k cx k                                                       (2) 

Where, 

 x=state vector=scalar input=scalar output=nxn real constant 

matrix=nx1 real constant matrix=0, 1,2….. 

With state feedback control law, the resulting closed loop system 

(1) and (2) is given by  (3) and (4), 

 ( ) ( )u k kx k                                                    (3) 

1 2 3[ , , ]nk k k k k  

( 1) ( ( ( )x k f gk x k                                   (4) 

 

A necessary and sufficient condition for arbitrary placement of 

closed loop system is that the system (1) is completely 

controllable.  

2.1.2 Design of Full State Observer 

The purpose of this section is to show how to determine 

algorithms which will reconstruct all the states, given 

measurement of a portion of them, If the state is x then the 

estimate x̂  and the idea is to let u=-k x̂  replacing true states by 

observer is shown in fig.2 

 

Fig.2 Block diagram Prediction observer 

2.1.3 Prediction Observer 

An estimation scheme employing a full order observer is shown 

in fig.2 and the estimated equation is given   by, 

Let u (k) =-k x̂  (k) 

ˆ ˆ( 1) ( ) ( ) ( ) ( )x k f mc x k gu k my k                       (5) 

Where m     is an nx1   real   constant gain matrix. We will call 

this a prediction observer because the estimate x̂ (k+1) is one 

sampling period ahead of the measurement y (k). 

A difference equation describing the behavior of the error is 

obtained by subtracting (5) from (1) 

ˆ ˆ( 1) ( 1) ( )[ ( ) ( )]x k x k f mc x k x k  

Let 

ˆ( 1) ( ) ( )

( 1) ( ) ( )

e k x k x k

e k f mc e k
                                             (6)                                        

From (12) we see that the dynamic behavior of the error signal is 

determined by the eigenvalues of (f-mc).If matrix (f-mc) is stable 

matrix the error vector converges to zero for any initial error e(0). 

2.1.4 Design of Prediction Observer 

The following design steps are followed for designing of full 

state prediction observer 

Step1. Check the given system is completely state controllable 

and observable using 

  1[ : : ....... : ( ) ]T T T T n TN c f c f c                                (7)                                                  

We also assumed that control law  used is  

                u (k) =-k x̂  (k) 

Where x̂ (k) is observed state and k= rxn matrix. The state 

observer dynamics are given by , 

ˆ ˆ ˆ( 1) ( ) ( ) [ ( ) ( )]x k fx k gu k m y k y k                (8) 

ˆ ˆ( 1) ( ) ( ) ( ) ( )x k f mc x k gu k mcx k                    (9) 

If the given system is controllable and observable and it is   in 

canonical and observable form use transformation matrix equal 

to identity matrix (I) else transform the given system into 

observable canonical form using 

Define 

1( )To WN                                                                     (10) 

Where w is 
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1 2 1

2 3

1

a  a  .... a     1

a  a  .... 1    0

:      :  ....   :       :

a    1 ....    0    0

1     0 ....    0    0

n n

n n

W  

Where a1, a2………an are the coefficient of the characteristics 

equation given by 

| | 0zI f                                                                       (11) 

Step2. Let us define 

( ) ( )x k Q k
                                                                 (12) 

Where ( )k  is an n-vector using (12) the (1) and (2) can be 

modified to  

1 1( 1) ( ) ( )k Q fQ k Q gu k                               (13) 

( ) ( )y k cQ k                                                                (14) 

where 

11

1

0  0 .... 0    -a

0  0 .... 0    -a

:  : .... :       :

0  0 .... 1    -a

n

n
Q fQ                                             (15) 

[0  0 .... 0    1]cQ                                                    (16) 

Now,define                            ˆ( ) ( )x k Q k                   (17) 

 Then substituting (17) into (9) we have  

1 1 1ˆ ˆ( 1) ( ) ( ) ( ) ( )k Q f mc Q k Q gu k Q mcQ k     (18) 

Subtracting (19) from (17) 

1 1ˆ ˆ( 1) ( 1) ( )[ ( ) ( )]k k Q fQ Q mcQ k k         (19) 

ˆ( ) ( ) ( )

Define

e k k k
 

Then equation (20) becomes. 

1( 1) ( ) ( )e k Q f mc Qe k                                           (20) 

We require the error dynamics to be stable and e(k) to reach zero 

with sufficient speed. If we require e(k) to reach zero as fast as 

possible then we require then error response to be deadbeat. So 

we must select the eigen values of (f-gc) to zero. 

Notice that  

1 2 1 1

2 3 2

1

2
1 1

1

1

a  a  .... a     1

a  a  .... 1    0

:      :  ....   :       : : :

a    1 ....    0    0

1     0 ....    0    0

n n

n n

n
n

n
n

kc

kcf

Q m

kcf

kcf

where

k

k

m

2

1

:

n

n

k

k

 

 Since Q-1m is n-vector then let us write 

 

11

1

:

n

n
Q mcQ                                                         (21) 

Then referring to (19) we have 

 

1

11

1

0       0 .... 0     

0      0 .... 0    

0     0 ....       1 :      :  ....   :       :
:

0   0 ....    0    

n

n

n

n

n

Q mcQ  

 

Step3. Calculate the coefficient of the characteristics equation is 

given by 

1| ( ) | 0zI Q f mc Q                                               (22) 

From this equation. We find   out a1,a2…..an and  
1 2, ..... n . 

Step4. Calculate the observer gain matrix m as 

1 11

1 1

( )
:

n n

n nT

a

a
m WN

a

                                          (23) 

Equation (23) specifies the necessary observer feedback gain 

matrix m. fig. 3 shows alternative representation of the observed-

state feedback control system. Once we select the desired 

eigenvalues the observer can be designed in a way similar to the 

method used in the case of the pole placement problem. The 

desired characteristics equation should be chosen such that the 

observer responds at least four or five times faster than the 

closed loop system. 
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Fig.3 Alternative representation of observer-state feedback 

control system. 

If we wish to leave deadbeat response the desired characteristics 

equation becomes 

zn=0                                                                                  (24) 

Comparing (22) and (24) 

1 1

2 2

0

0

:

0n n

a

a

a

 

Hence for dead beat response 

1

2 1 1

1 1

( )
: : :

n n

n nT

n

ak

k a
m Q WN

k a

                     (25) 

2.1.5 Designing of Observer state feedback 

Controller 

In this design the effect of the addition of the observer on closed 

loop system is considered. In pole placement design process, we 

assumed that the true state x(k) was available for feedback. But 

in practice the true state x(k) may not be measurable, so we will 

need to use the observed state ˆ( )x k .Let us investigate the 

effects of the use of observed state ˆ( )x k  rather than x(k) upon 

the characteristics equation of a closed loop control system. 

Consider the completely state controllable and completely 

observable system defined by (1) and (2).For the state feedback 

control based on the observed state ˆ( )x k  we have 

ˆ( ) ( )u k kx k  

With this control the state equation becomes 

ˆ( 1) ( ) ( )x k fx k gKx k  

ˆ( ) ( ) [ ( ) ( )]f gK x k gK x k x k                               (26) 

The difference between the actual state x(k) and observed state 

ˆ( )x k has been defined as the error e(k) 

ˆ( ) ( ) ( )e k x k x k  

Put the error vector e(k), (1) becomes 

( 1) ( ) ( ) ( )x k f gK x k gm k                                  (27) 

( 1) ( ) ( )e k f mc e k                                                 (28) 

 Combining (27) and (28) we obtain 

 

( 1) f-gk    gk ( )

( 1) 0        f-mc ( )

x k x k

e k e k
                              (29) 

This equation describing the dynamics of the observed state 

feedback control system. 

The characteristics equation for the system is given by (30). 

|zI-f+gK||zI-f+mc|=0                                                    (30) 

Notice that the closed loop poles of the observed state feedback 

control system consists of the poles due to the poles placement 

design plus poles due to observer design alone. This means that 

the pole placement and observer design are independent of each 

other. They can be designed separately and combined to form the 

observer state feedback control system.  

 

3 Formulation of Generalized Predictive 

Control (GPC) 

Before calculating the parameters of GPC first formulation is 

carried out [10], the different steps carried out in formulation are. 

Most SISO plants when considering operation around particular 

set points and after linearization can be described by equation 

1 1 11dA( z )y( t ) z B( z )u( t ) C( z )e( t )           (31) 

Where u(t) and y(t) are the control and output  sequence of the 

plant and e(t) is a zero mean white noise A,B,and C are the 

following polynomials in the backward shift operators. 

1 1 1

1 21 na

naA( z )y( t ) a z a z a z           (32) 

1 1 1

0 1 2

nb

naB( z )y( t ) b b z b z b z      (33) 

1 1 1

1 21 nc

naC( z )y( t ) c z c z c z        (34) 

Where d is the dead time of the system. This model is known as 

CARIMA model. It has been argued that for many industrial 

applications in which disturbances are non-stationery an 

integrated CARIMA model is more appropriate.  

1 1 11dA( z )y( t ) z B( z )u( t ) C( z ) e( t ) /        (35) 

With =1-
1z  

For simplicity C polynomial in equation is chosen to be 1.Notice 

that if C-1 can truncated it can be absorbed into A and B. 
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3.1 Minimization of cost function 

The Cost Function used in GPC algorithm consists of applying a 

control sequence that minimizes a multistage cost function of the 

form given by 

i

2 2
1 2 u

j N j 1

         J(N , N , N )  (j)[Y(t j/t)-W(t j)] (j)[ ( u)(t j-1)]
P M

(36)

Where y(t+j/t) is an optimum j-step ahead prediction of the 

system output on data up to time k,N1,P are the minimum and 

maximum costing horizons ,M control horizon δ(j) and (j) are 

weighing sequences and w(t+j) is the future reference trajectory 

which can be considered to be constant.The objective of 

predictive control is to compute the future control sequence 

u(t),u(t+1),------u(t+Nu) in such way that the future plant output 

y(t+j) is driven close to w(t+j) This is accomplished by 

minimizing J(N1,P,M).The Cost function minimization algorithm 

is given by,In order to minimize the cost function the optimal 

prediction of y(t+j) for j>N1 and j>P is required to compute the 

predicted output consider the following Diophantine equitation. 

1 1 1 1 11 j

j jE ( z )A( z ) z F ( z )with A( z ) A( z )      (37) 

The polynomials Ej and Fj are uniquely defined with degrees j-1 

and na respectively. They can be obtained dividing 1 by A(z-1) 

until the remainder can be factorized as z-jFj(z
-j).An example 

demonstrating calculation Ej and Fj coefficients in Diophantine 

equation is shown in example. If equation (2) is multiplied by 

ΔEj(z
-1)zj 

1 1 1 1 1
j j jA z E z y t j E z B z u t j d 1 E z e t j(    (38) 

Considering (35) the (37) can be written as 

j 1 1 1 1 1

j j j j1 z F z y t j E z B z u t j d 1 F z y t E z e t j

This can be written as  

1 1 1 1 1
j j j jy t j F z y t E z B z u t j d 1 F z y t E z e t j     (39) 

As the degree of polynomial Ej(z
-1)=j-1 the noise term in 

equation are used in all  future. The best prediction of y(t+j) is 

given equation by 

1 1

j jy t j G z u t j d 1 F z y t        (40) 

Where 

1 1 1

j jG z  E z B z  

It is very simple to show that the polynomials Ej+1 and Fj can be 

obtained recursively. Consider the polynomials Ej and Fj have 

been obtained by dividing as z-jFj(z
-1).These polynomials can be 

expressed as  

1 1 2 na

j j 0 j 1 j 2 j naF z f f z f z f z  , , , ,    (41) 

1 1 2 j

j j 0 j 1 j 2 j naE z e e z ef z e z ( na )

, , , ,   (42) 

Suppose that same procedure is used to obtain Ej+1 and Fj+1 , that 

is dividing 1 by A(z-1) until the remainder of the division can be 

factorized as  z-(j-1)Fj+1(z
-1)  with 

1 1 2 na
j 1 j 1 0 j 11 j 1 2 j 1 naF z f f z f z f z, , , ,    (43) 

It is clear that only another step of the division of the performed 

to obtain the polynomials Ej+1 and Fj+1 the polynomials Ej+1   will 

be given by 

1 1 1
j 1 j j 1E z E z e z                                   (44) 

With ej+1,j=fj,0.The coefficients of polynomials fj+1 can then be 

expressed as: 

j 1 i j 1 i 1 j 0 i 1f f f a  i 0 na 1 , , ,                          (45) 

The polynomials Gj+1 can be obtained recursively as follows: 

1

j 1 j 1 j j 0G E B E f z B,                                        (46) 

1

j 1 j j 0G G f z B,                                                         (47) 

That is the first j coefficient of Gj+1will be identical to those of 

Gj and the remaining coefficients will be given by: 

j 1 j 1 j j i j 0 ig g f b  for i 0 nb, , ,                           (48) 

To solve the GPC problem the set of control signals u(t),u(t+1),----

---u(t+N) has to be obtained in order to optimize expression. As 

the system considered has a dead time d sampling period, the 

output of the system will be influenced by signal u(t) after 

sampling period d+1.The values N1,P,M defining the horizons can 

be defined by P=d+N,P=d+N and M=N. Notice that there is no 

point in making N1>d+1 as added to expression will only depend 

on the past control signals. on the  other hand ,if N1>d+1 the 

first point in the reference sequence, being the ones guessed with 

most certainly, will not be taken into account. Now consider the 

following set of j ahead optimal predictions given in equitation. 

d 1 d 1

d 2 d 2

d N d N

Y t d 1 t G u t f y t

Y t d 2 t G u t f y t

Y t d N t G u t N 1 f y t)

/

/

.

.

/ (

 

This can be written as: 

1 1Y Gu f z y t G z u t 1                       (49) 

Where  

oNN ggg

gg

g

G

Ntu

tu

tu

u

tNdty

dty

dty

y

21

01

0

0

00

,

)1(

)1(

)(

,

)/(

)2(

)1(

 

1 1

1 0 1

1 1 2 1

11 0 1 2

1 1 1 1

0 1 1

d d

d d

( N ) N

d N N d N

( G ( z ) g )z F ( z )

( G ( z ) g g z )z F ( z )
G( z ) ,F( z )

( G ( z ) g g z g z )z ) F ( z )

 

 

Note that if the plant dead time is d>1 the first d-1 rows of G 

will be null, but if instead N1 is assumed to be equal to d the 
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leading element is non-zero.Howerer, as d will not in general 

known in the self tuning case one key feature of the GPC 

approaches is that a stable solution is possible even if the leading 

rows of G are zero. 

Notice that the last two terms in (16) only dependent on the past 

and can be grouped into f leading to: 

Y Gu f                                                                            (50) 

Notice that if all initial conditions are zeros the free response f is 

also zero. If a unit step is applied to the input at time t i.e.(t)=1, 

Δu(t+1)=0,…. Δu(t+N-1)=0 he expected output 

sequence[y(t+1),y(t+2)….y(t+N)]T is equal to the first column of 

matrix G.That is the first column of matrix G can be calculated 

as the step response of the plant is applied to the manipulated 

variable. The free response term can be calculated by (18). 

1 1

j 1 jF z 1 A z f B z  u t d j(             (51) 

With f0=y(t) and Δu(t+j)=0 for j>0 

Expression (5) can be written as 

T TJ Gu f w Gu f w u u              (52) 

Where 

T

W w t d 1  w t d 2 w t d N  

Where it has been considered that the future reference trajectory 

keeps constants along the horizon or its evolution is unknown 

and therefore w(t+i)=w(t).Equitation (52)can be written as  

T T

0J 1 2 u Hu b u f/                                             (53) 

T

TT

T

0

H 2 G G RI

b 2 f w G

f f w f w

 

The minimum of J assuming there are no constraints on the 

control signals can be found by making the gradient of J equal to 

zero which leads to 

1u  H b

 
 

1
T T G G I G w f)    (                                           (54) 

The dimensions in the matrix involved in equitation (20) is N *N 

.Although in the nonadaptive case the inversion need be 

performed only once. In a self tuning version the computational 

load of inverting at each sample would be excessive .Moreover if 

the wrong value for the dead time is assumed GTG is singular 

and hence a finite nonzero value of weighing λ would be required 

foe a realizable control law which is inconvenient because the 

accurate value for λ would not be known a piror notice that the 

control signal that is actually sent to the process is the first 

element of vector u which is given by (55). 

u k w f                                                                  (55) 

 Where k is the first row of matrix (GTG+λI)-1GT.If there are no 

future predicted errors that is (w-f)=0, then there is no control 

move. Since the objective will be fulfilled with the evaluation of 

the process. However in other case there will be an increment in 

the control action proportional (with factor k) to the future errors. 

Notice that the action is taken with respect to the future errors as 

is the case in conventional feedback controllers. 

 Notice that only the first element of u is applied then at next 

sampling instant new data are acquired   and a new set of control 

move is calculated once again only the first control move is 

implemented. These activities repeated at each sampling instant 

and the strategy is receding horizon approach. It may strange to 

calculate an M step control policy and then only implement the 

first move. The important advantage of receding horizon 

approach is that new information in the form of the most recent 

measurements y(k) is utilized immediately instead of being 

ignored for the next M sampling intants.otherwise the multistep 

predictions and control moves would be used on old information 

and thus be adversely affected by unmeasured disturbances. 

4 MODIFIED GPC-OBSERVER CONTROLLER 

Fig shows the modified GPC-Observer controller which is 

connected in cascaded to obtain combined effect of both 

controllers and the time response obtained from the above 

controller gives excellent results as compared to individual 

controllers used for control of plant shown in Fig.8. 

 

Fig. 8 Block diagram GPC-Observer state feedback 

controller. 

5. SIMULATION RESULTS 

The Reheating temperature control model is considered from [3] 

and simulation is carried out using GPC Control Based on State 

Feedback Theory. 

0.2000   0.0548   0.0069   0.00087206   0.00010613   4.9944 006

0.2500       0        0            0               0                   0

0          0.2500     0            0              0       

e

A
            0

0               0        0.1250       0            0                   0

0              0         0            0.0625       0                   0

0              0         0                0          0.0625             0

                          (56) 

 

0.0020

0

0

0

0

0

B
 

 

C    0        0         0         0         0   0.00093056  

The above model converted in to discrete model with sampling 

time of 6.5 sec, the transfer function of discrete plant is given by, 
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-4.837e-009 z^5 - 2.304e-007 z^4 - 1.018e-006 z^3 - 8.456e-007 z^2 - 1.32e-007 z - 1.912e-009
( )

 z^6 - 4.923 z^5 + 10.04 z^4 - 10.84 z^3 + 6.528 z^2 - 2.078 z + 0.2725
dG z   (57) 

The discrete plant compensated by state feedback(k) for desired 

eigen values is given by,  

-4.837e-009 z^5 - 2.304e-007 z^4 - 1.018e-006 z^3 - 8.456e-007 z^2 - 1.32e-007 z - 1.912e-009
( )

z^6 + 0.2591 z^5 + 0.02894 z^4 + 0.001902 z^3 + 6.614e-005 z^2 + 5.723e-007 z + 1.885e-009
cG z       (58) 

The response to initial conditions of x(0) and e(0) is shown in fig. 

4 for the desired eigen values selected for discrete plant 

equation(57).  

1,2

3,4

5

6

0.0053022 *0.003341,

0.033736 *0.068634,

0.087338

0.092728,

j

j
                        (59) 

The response to initial condition seems to be acceptable. It 

means the selected eigen values (poles) are acceptable. It also 

confirms the designed observer state feedback controller is 

stable. 

 

Fig.4 Response to initial condition of discrete plant. 

The actual states and estimated states of reheat Temperature 

control system of discrete plant shown in fig.5 

 

Fig.5 Response of actual observer states and estimated states 

of reheat steam temperature Control of discrete plant. 

For the above desired eigen values the state feedback gain matrix 

is given by, 

[183.6094   337.3673 3   327.9824   422.4545  686.2259   537.7020]k  

After working with state feedback gain matrix K we have find 

the step disturbance on reheat steam temperature model before 

compensation after compensation shown figure.6 and figure.7. 

 

Fig.6 the step response curves for generalized reheat steam 

temperature plant before compensation. 

 

Fig.7 the step response curves for generalized reheat steam 

temperature plant after compensation. 

Compare fig.6 and fig.7 open loop steady time constant decreases 

900 sec to 700 sec.The response speed of reheat steam 

temperature plant has become rapid after compensation.  

The observer gain matrix is obtained using desired eigen values 

given by (59) 

 

0.1637

   -0.1077

   -2.5726
m=1.0e+004 *

   -3.9876

   -1.7785

   -0.5569

                                           (60) 

The transfer function of observer state feedback controller is 

obtained considering state feedback and observer gain matrix 

-4.054e007 z^5 + 1.309e008 z^4 - 1.753e008 z^3 + 1.199e008 z^2 - 4.146e007 z + 5.766e006
( )

z^6 + 5.442 z^5 + 16.68 z^4 + 29.67 z^3 + 19.11 z^2 + 2.811 z + 0.04045

 

G z
   (61)  

fig.9 shows the step response of   state feedback and observer 

controller which is not stable and fig.10 shows response of 

Generalized  predictive controller and observer controller for 

different set point also fig.11 shows the stability of modified 

controller as the poles of modified controller lies  unit circle in z- 

plane. 
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The GPC design parameters selected are prediction horizon 80; 

control horizon 20 and weights on manipulated variable and 

output variable are Input rate 0.1 and output rate 1.  

 

Fig.9 Response of State feedback and observer controller for 

step input. 

 

Fig.10 Response of GPC-State feedback controller for step 

input. 

 

Fig.11 Response of GPC-State feedback controller for set 

point of 40, 60, 80 ċ 

 

 

Fig.12 the response of closed 

lo

op poles of observer controller 

 

Fig.13 Response of GPC-observer controller for step input 

 

Fig.14 Response of GPC-observer controller for set point of 

40 ċ 

 

Fig.15 Response of GPC-observer controller for set point 60 ċ 
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Fig.16 Response of GPC-observer controller for set point 80 ċ 

 

6  CONCLUSION 

We know that only the advanced system can improve the plant 

dynamic behavior to get efficient control of temperature of 

reheating plant. Predictive control theory based on state feedback 

theory is effective to control the thermal process with large inertia 

and large delay. It is observed in simulation study that the 

independent state feedback control is not sufficient to control the 

dynamics of plant but if we combined the predictive control and 

state feedback the simulation results are excellent in terms of 

settling time and stability of reheating temperature control system. 
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