
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 26

93

Pre-Parallelization Exercises in Budget-Constrained HPC

Projects: A Case Study in CFD

ABSTRACT
Projects associated with the Grand Challenge Applications

(GCAs) often involve large multi-disciplinary teams, are well

funded and have access to good computational resources. The

code base used in these projects is mature and well maintained

and may have gone through multiple revisions spanning decades.

Parallelization of this serial code to enable execution on a

distributed multi-computer architecture or a shared memory multi-

processor system is the next immediate step.

Parallelization of serial code used by young researchers working

on GCA-related applications in privately-funded institutions, on

the other-hand, is not as straightforward. These researchers work

under tight budget and resource constraints and do not have much

access to funds or experienced programmers as their other

counterparts. Initial findings from a case study are presented that

show how such limitations can be alleviated by inter-departmental

collaboration involving undergraduate students’ final year

projects. Code developed by a single programmer over a period of

about three years for the Conjugate Heat Transfer problem in

Computational Fluid Dynamics (CFD) has been used for the

study.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques, Concurrent

Programming

General Terms
Parallel Programming, Parallel and Distributed Computing

Keywords
Parallelization, Parallel Programming, CFD, HPC, Cluster

Computing

1. INTRODUCTION
A category of applications, known as the Grand Challenge

Applications (GCAs) [6], need extremely high performance and

high memory computers for successful execution. Serial code

written for such applications first needs to be parallelized before it

can be executed on a multi-computer or a multi-processor system.

These applications fall in the scientific domain, and area in which

the knowledge of an average computer science graduate may be

limited. This exercise in parallelizing the serial code, thus,

becomes extremely challenging and time consuming as it requires

the programmers to have more than a working knowledge of the

domain.

Parallelization of code is a mature field of study and there have

been various approaches presented in literature to address it in

different ways [1, 2, 3, 4, 7, 9, 10]. A characteristic of teams using

such approaches is that they use a fairly mature software base to

initiate the parallelization process. The software, in most cases, is

many decades old and has been developed by a large multi-

disciplinary team [5]. The parallelization process can begin using

this correct and, in most cases, compact, easy to comprehend, well

written and well documented code. The research team also has

substantially large funds available at their disposal to purchase or

develop proprietary software like automatic parallelizing

compilers, profilers and debuggers and for hiring experienced

programmers to aid their parallelization process [5].

There is another category of researchers involved with GCAs who

work on similar real world research problems. However, unlike

their counterparts, they do not have access to large funds or other

basic High Performance Computing (HPC) resources. Left with

little alternatives, such researchers make use of free and open

source software and COTS components for their research.

Additionally, these researchers do not have access to funds that

can enable them to hire new developers or purchase expensive

software. Working in these tight resource constraints, their

research accomplishments can be severely limited.

This paper takes the example of one such case at an undergraduate

institution and shows how inter-departmental collaboration can

help alleviate some of the problems. Code written for the

Computational Fluid Dynamics (CFD) domain by a single

developer with a non-Computer Science background has been

used as the input to this study. Initial experiences and

observations of a group of undergraduate Computer Science

students attempting to parallelize the code for parallel execution

on a Linux based cluster are presented. The rest of the paper is

organized as follows. The next section introduces the reader to the

Shamsheer Ahmed
P. A. College of Engineering,

Mangalore, India

Suma Bhat
P. A. College of Engineering,

Mangalore, India

Mohammed Isham
P. A. College of Engineering, Mangalore,

India

Waseem Ahmed

P. A. College of Engineering,
Mangalore, India

Ramis M. K.
P. A. College of Engineering,

Mangalore, India

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 26

94

Conjugate Heat Transfer problem in the field of CFD and gives

details on the working of the code. Section 3 lists the initial

observations. Suggestions for improvement of code and other pre-

parallelization exercises are listed in section 4. Section 5

concludes the paper.

2. CONJUGATE HEAT TRANSFER

2.1 Introduction
The term Conjugate Heat Transfer refers to a heat transfer process

involving an interaction of heat conduction within a solid body

with either of the free, forced, and mixed convection from its

surface to a fluid (or to its surface from a fluid)flowing over it. An

accurate analysis of such heat transfer problems necessitates the

coupling of the problem of conduction in the solid with that of

convection in the fluid by satisfying the conditions of continuity

in temperature and heat flux at the solid–fluid interface.

There are many engineering and practical applications in which

conjugate heat transfer occurs. One such area of application is in

the thermal design of a fuel element of a nuclear reactor. The

energy released due to fission in the fuel element is first

conducted to its lateral surface, which in turn is dissipated to the

coolant flowing over it so as to maintain the temperature

anywhere in the fuel element well within its allowable limit. If this

energy generated is not removed fast enough, the fuel elements

and other components may heat up so much that eventually a part

of the core may melt. In fact, the limit to the power at which a

reactor can be operated is set by the heat transfer capacity of the

coolant. Therefore, the knowledge of the temperature field in the

fuel element and the flow and thermal fields in the coolant is

needed in order to predict its thermal performance.

2.2 Computational Details
Software was developed that deals with the study of conjugate

heat transfer problem associated with a rectangular nuclear fuel

element washed by upward moving coolant. Accordingly,

employing stream function-vorticity formulation, equations

governing the steady, two-dimensional flow and thermal fields in

the coolant are solved simultaneously with the steady, two-

dimensional heat conduction equation for the fuel element using

second-order accurate finite difference schemes. Keeping Prandtl

number Pr = 0.005 for liquid sodium as coolant, numerical results

thus obtained are presented for a wide range of the involved

parameters aspect ratio Ar in the range 5 to 30; conduction-

convection parameter, NCC in the range 0.2 to 0.4; total energy

generation parameter Qt in the range 0.2 to 0.8 and Reynolds

number, ReH in the range 100 to 10000.

Complete code for the software was developed in-house over a

period of about 3 years. Coding involved a single developer with

a Mechanical Engineering background who had limited

programming and Software Engineering experience. The code was

initially coded using Microsoft’s Visual C++ IDE and consisted of

about 1800 LOC with 31 functions.

3. CODE ANALYSIS

3.1 Parallelization Team
The team undertaking the parallelization task was undergraduate

students in the Computer Science department with limited or no

knowledge of Computational Fluid Dynamics (CFD) or the code.

The pre-parallelization tasks involved porting the code to Linux,

code comprehension, profiling, analysis and optimization. While

one student worked on the optimization part, two others were

involved in profiling, code comprehension and analysis. The

subsections below describe the tasks in more detail.

3.2 Porting
As the cluster used was a Linux based cluster, the first step

involved porting of the code written in Visual C++ to the Linux

platform. This did not present a problem as no Visual C++

specific libraries were used in the initial code and the code

compiled and executed without change on Linux.

3.3 Profiling and code comprehension
The students used gprof, Gnu’s open source profiler, to profile the

code. The output of gprof, which includes a flat profile and a call

graph, was also used for code comprehension. The following

observations were made by the students

1. Values for the different input parameters were hard-

coded into the program. Each change of parameter value

necessitated a recompilation of the code.

2. For the given set of parameters present in the code the

observed run time was about 23 minutes. The run time

could get much larger (ranging from a few hours to

days) with changed parameters. The large system run

time discouraged experimenting with a range of values

of the computational grid system that may have resulted

in values with a finer resolution. Additionally, the range

of values of parameters that may compute results giving

more insight into the physics of the problem could not

be studied for the same reasons.

3. Multiple output files were used and data was being

written to a large set of output files. File handling could

have been more efficiently done to positively impact the

total execution time.

4. As the program was serially executed, the execution of a

few functions was delayed, even though parameters or

values required to compute that function were available.

A similar case was of functions being called after the

complete execution of loops although no data or control

dependencies existed between the loops and/or the

functions.

5. It was observed that there was an excessive and

sometimes unnecessary use of global variables.

6. Some loops were identified that could have been

combined to bring down the size of the code.

7. None of the functions used any input parameters nor did

they return any value. Global variables were used as a

replacement for both.

8. Some functions that have been defined exhibit identical

functionality with few differing statements.

3.4 Analyzing Data Dependencies

The call graph was used to understand the initial working of the

code after which the data dependencies at the coarse function-

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 26

95

level granularity were analyzed. More specifically, the following

data dependencies were identified.

1. Flow dependence - If the variables modified in one

function are passed to another function then the

execution must follow the same path.

2. Anti-dependence - If a changed variable in one function

is being used by a previously called function. The order

of these functions cannot be interchanged.

3. Output dependence - If two functions produce or write

to the same output variable they are said to be output

dependent; thus their order cannot be changed.

4. I/O dependence - This dependence between two

functions occurs when a file is being read and written by

both these functions.

Based on the identified dependencies, the code was statically

restructured for a theoretical execution on a multi-processor

system. Initial analysis indicated a reduction of the execution time

to about 13 seconds indicating a theoretical speedup of 1.7

ignoring the communication overhead.

4. PRE-PARALLELIZATION

EXERCISES
Based on the analysis, it was noted that the following need to be

completed before the start of the parallelization step:

1. Code needs to be changed to read in parameters from

the command-prompt or from an externally available

input file. This would allow the code to be executed

unchanged for different values of the parameters

without the need for a recompilation.

2. Reduction in the number of output files. If the files are

genuinely required, the output sequence needs to be

further analyzed; else the data that is written to these

files can be combined into a reduced set.

3. Functions that have been identified with no data

dependencies between them are good candidates for

parallel execution. Their execution time profiles and the

computation-communication ratio needs to be further

studied to see if parallelization will indeed produce a

speedup.

4. The code needs to be rewritten to reduce the usage of

global variables. This may involve changing all or most

of the function signatures to read in input parameters

and return results. This exercise may also involve the

creation of more efficient data structures for parameter

passing between functions.

5. Many functions can be eliminated by rewriting functions

to combine the functionality of two or more functions.

This would considerably reduce the code size and will

result in more compact and well written code. However,

as noted in [8], code repeated in different programs

offers the advantage that it can be customized to execute

that part of the program where it lies in a unique

manner; combining similar portions of code into a

generalized single function, while offering other

advantages, removes this advantage [8]. The trade-offs

need to be deliberated before performing this exercise.

6. Loops that are temporally close need to be studied along

with their indices to see if they can be successfully

combined. In addition to reduce the code size, this

would reduce the effort of parallelization as only a

single loop needs to analyzed.

5. CONCLUSION
A case study was presented that analyzed code for the Conjugate

Heat Transfer problem. As the code was developed by a person

with a non-Computer Science background with limited

programming and Software Engineering experience, modification

of the code for parallel execution on a multi-computer or a multi-

processor system cannot begin immediately. It was observed that

the pre-parallelization exercise involves substantial rewriting of

code. Some initial findings by a team of under-graduate Computer

Science students have been reported. Static restructuring of the

code revealed a theoretical speedup of 1.71

REFERENCES

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P.

Husbands, K. Keutzer, D. A. Patterson, W. L.Plishker, J.

Shalf, S. W. Williams, and K. A. Yelick. The landscape of

parallel computing research: A View from Berkeley.

Technical Report, UCB/EECS-2006-183, EECS

Department, University of California, Berkeley, Dec 2006.

[2] P. Boulet, A. Darte, G.-A. Silber, and F. Vivien. Loop

parallelization algorithms: From parallelism extraction to

code generation. Parallel Computing, 24(3-4), 1988.

[3] D. E. Culler, J. P. Singh, and A. Gupta. Parallel Computer

Architecture. Morgan Kauffman, 1999.

[4] T. R. Halfhill. Parallel processing with CUDA.

Microprocessor Report, Reed Electronics Group,January

2008.

[5] L. Hochstein and V. R. Basili. The ASC-Alliance projects:

A case study of large-scale parallel scientific code

development. IEEE Computer, 41(3), 2008.

[6] K. Hwang. Advanced Computer Architecture. McGraw

Hill, 1993.

[7] W.-M. Hwu, S. Ryoo, S.-Z. Ueng, J. H. Kelm,I. Gelado, S.

S. Stone, R. E. Kidd, S. S. Baghsorkhi, A. A. Mahesri, S.

C. Tsao, N. Navarro, S. S. Lumetta,M. I. Frank, and S. J.

Patel. Implicitly parallel programming models for

thousand-core microprocessors. In DAC ’07: Proceedings

of the 44th annual conference on Design automation, pages

754–759, New York, NY, USA, 2007. ACM.

[8] D. E. Knuth. The Art of Computer Programming, Volume

1. Pearson Education, Third Edition.

[9] P. Lee and Z. M. Kedem. Automatic data and computation

decomposition on distributed memory parallel computers.

ACM Transactions on Programming Languages and

Systems, 24(1), January 2002.

[10] S.-W. Liao. SUIF Explorer: An Interactive and Inter-

procedural Parallelizer. PhD thesis, Stanford, 2000.

